
Citation: Jeong, H.; Shin, H.; Zhang,

S.; Li, X. Measurement and In-Depth

Analysis of Higher Harmonic

Generation in Aluminum Alloys with

Consideration of Source Nonlinearity.

Materials 2023, 16, 4453. https://

doi.org/10.3390/ma16124453

Academic Editor: Krzysztof

Schabowicz

Received: 27 April 2023

Revised: 12 June 2023

Accepted: 16 June 2023

Published: 18 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Measurement and In-Depth Analysis of Higher Harmonic
Generation in Aluminum Alloys with Consideration of
Source Nonlinearity
Hyunjo Jeong 1,*, Hyojeong Shin 2, Shuzeng Zhang 3 and Xiongbing Li 3

1 Department of Mechanical Engineering, Wonkwang University, Iksan 54538, Republic of Korea
2 Graduate School of Flexible and Printable Electronics, Jeonbuk National University,

Jeonju 54896, Republic of Korea; hjshin95@jbnu.ac.kr
3 School of Traffic and Transportation Engineering, Central South University, Changsha 410083, China;

sz_zhang@csu.edu.cn (S.Z.); lixb213@csu.edu.cn (X.L.)
* Correspondence: hjjeong@wku.ac.kr

Abstract: Harmonic generation measurement is recognized as a promising tool for inspecting mate-
rial state or micro-damage and is an ongoing research topic. Second harmonic generation is most
frequently employed and provides the quadratic nonlinearity parameter (β) that is calculated by the
measurement of fundamental and second harmonic amplitudes. The cubic nonlinearity parameter
(β2), which dominates the third harmonic amplitude and is obtained by third harmonic generation,
is often used as a more sensitive parameter in many applications. This paper presents a detailed
procedure for determining the correct β2 of ductile polycrystalline metal samples such as aluminum
alloys when there exists source nonlinearity. The procedure includes receiver calibration, diffraction,
and attenuation correction and, more importantly, source nonlinearity correction for third harmonic
amplitudes. The effect of these corrections on the measurement of β2 is presented for aluminum
specimens of various thicknesses at various input power levels. By correcting the source nonlinearity
of the third harmonic and further verifying the approximate relationship between the cubic non-
linearity parameter and the square of the quadratic nonlinearity parameter (β ∗ β), β2 ≈ β ∗ β, the
cubic nonlinearity parameters could be accurately determined even with thinner samples and lower
input voltages.

Keywords: nonlinear ultrasound; higher harmonic generation; source nonlinearity; cubic nonlinearity;
quadratic nonlinearity

1. Introduction

The principle of nonlinear ultrasonic inspection is to generate and detect higher
harmonic waves having integer multiples of the incident fundamental wave frequency
when a fundamental wave of finite amplitude is injected into the transmitter and propagates
in a test object. Since the degree of generated nonlinear wave components depends on the
material state, the magnitude and characteristics of the received second or third harmonic
signal can be correlated with microscopic damage or defects in testing components. The
second harmonic, which has a frequency twice the fundamental frequency, has been mostly
used so far for nonlinear ultrasound examinations. The quadratic nonlinearity parameter
(β), calculated by the fundamental and second harmonic wave amplitudes, is now widely
accepted as a quantitative index of damage.

The generation and use of the third harmonic that has a frequency three times the
fundamental frequency are also possible, and it is known that the sensitivity to damage
or defects is much higher than that of the second harmonic. The cubic nonlinearity pa-
rameter (β2) is often used as a more sensitive and qualitative parameter by generating
third harmonic waves. Actually, plane wave solutions for the nonlinear wave equation
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provide an approximate relationship, β2 ≈ β ∗ β, between the cubic nonlinearity parameter
(β2) and the square of the quadratic nonlinearity parameter (β ∗ β) [1]. Compared to the
second harmonic wave or β, the β2 ≈ β ∗ β relation and the high frequency nature of the
third harmonic wave are expected to provide a much higher sensitivity and resolution
to the same defect or damage. The advantages of using the cubic nonlinearity parameter
for fatigue cracks [2,3], plastic deformation [4–6], microstructures [7–9], dislocation [10],
and precipitation [11,12] of metals were discussed by comparing the relevant results of the
quadratic nonlinearity parameter. In addition to longitudinal waves, third harmonic gener-
ation using Lamb waves and Rayleigh surface waves was studied for different application
purposes. Lissenden et al. [13] studied the effect of microstructure evolution on the higher
harmonic generation of guided waves. Zhao et al. [14] used third harmonic Lamb waves
for early fatigue damage detection. Li et al. [15] and Wen et al. [16] applied third harmonic
shear horizontal waves for material degradation monitoring. Achenbach and Wang [17]
and Wang and Achenbach [18] used third harmonic surface waves for the characterization
of incompressible material of cubic nonlinearity and interface conditions, respectively.

Measuring the cubic nonlinearity parameter using third harmonic wave amplitude is
more challenging in many ways. One major problem is the generation of source nonlinearity.
When a piezoelectric element with a fundamental resonance frequency f is used as a
transmitter, it also resonates at the 3rd, 5th, 7th, . . . overtones. Therefore, a large frequency
component of 3f is also generated and propagates as an additional fundamental wave of
3f when a toneburst pulse of frequency f excites the transmitter. This is called “source
nonlinearity”, and when a finite amplitude signal is applied as an input source, it is
superimposed with the damage- or defect-induced third harmonic wave. The amplitude
of this source nonlinearity can be many times greater than that of the nonlinear third
harmonic; therefore, it is very important to carefully check for its presence and remove it
appropriately for an accurate assessment of the material state or β2.

The absolute measurement of β generally includes receiver calibration, sound beam
diffraction correction, and material attenuation correction. The absolute measurement of
β is now well established [19,20], but to the best of our knowledge, the absolute β2 has
never been measured before for solid samples, especially with consideration of source
nonlinearity. Thompson theoretically obtained the relationship between β and β2 for
various materials [1]. In the case of brittle fused quartz, it was shown that the relationship
of β2 ≈ β ∗ β is almost satisfied, and some other materials also approximately satisfy this
relationship. He also experimentally verified this relationship for brittle materials but could
not draw any conclusions on ductile materials such as aluminum. Recently, Jeong et al. [21]
demonstrated that this approximate relationship holds in water through simultaneous
measurement of the absolute nonlinearity parameters.

The purpose of this paper is to accurately measure the cubic nonlinearity parameter
(β2) and compare it with the square of the quadratic nonlinearity parameter (β ∗ β) by
considering the source nonlinearity associated with the generation of second and third
harmonic waves in ductile polycrystalline materials such as aluminum alloys. To this end,
the inclusion of source nonlinearity in the measured amplitude of higher harmonics is
confirmed and is appropriately corrected in the calculation of the nonlinearity parameters.
The effect of source nonlinearity correction on β2 is then analyzed through aluminum
specimens of various thicknesses at various input power levels.

The rest of this paper is organized as follows. Section 2 briefly introduces the
plane wave solutions for the nonlinear wave equation and the definition of quadratic
(β) and cubic (β2) nonlinearity parameters with corrections for attenuation and diffraction.
Section 3 describes the elements of absolute measurement of nonlinearity parameters: Re-
ceiver calibration measurement, harmonic generation measurement, absolute displacement
measurement, diffraction, and attenuation corrections, and check for source nonlinearity
and correction. Section 4 presents the in-depth analysis of the experimental results with an
emphasis on the correction of source nonlinearity for accurate comparison of β2 and β ∗ β.
Lastly, conclusions are outlined in Section 5.
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2. Plane Wave Solutions and Nonlinearity Parameters

The normal stress can be expressed in terms of strain/displacement in the x-direction
for pure longitudinal wave propagation in an isotropic solid with cubic nonlinearity [18]

σx = ρc2

[
∂u
∂x
− β

2

(
∂u
∂x

)2
− γ

3

(
∂u
∂x

)3
]

(1)

where ρ is the density, c is the wave speed, and β and γ are nonlinearity parameters. β and
γ are given by β = −(3 + C111/C11) and γ = −(3/2 + 3C111/C11+C1111/2C11), where C11,
C111, and C1111 are the second-, third-, and fourth-order elastic constants.

Substituting Equation (1) into the equation of motion leads to the displacement equa-
tion of motion governing the longitudinal wave propagation [1],

1
c2

∂2u
∂t2 −

∂2u
∂x2 = −
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β

(
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)
+ γ
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]

∂2u
∂x2 (2)

The perturbation method can be used to obtain the solutions of Equation (2), where
the total solution is expressed as u = u1 + u2 + u3 with the assumption of u1 � u2 � u3.
Here, u1, u2, and u3 are the displacement solutions for the fundamental, second, and
third harmonic waves, respectively. The governing equations for the first three waves are
obtained as

1
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(5)

Equation (1) is the traditional linear wave equation for the fundamental wave u1 of
which the solution is the plane wave with initial source amplitude U0, wave number k, and
angular frequency ω:

u1 = U0 sin(kx−ωt) (6)

Substituting u1 into Equations (4) and (5) and performing some algebra give the
solutions for u2 and u3 [18,22]:

u2 =
βU2

0 k2x
8

cos 2(kx−ωt) (7)

u3 =
β2U3

0 k4x2

32
sin 3(kx−ωt) (8)

The fundamental wave amplitude is U1 = U0 in Equation (6), and the second harmonic

wave amplitude is given by U2 =
βU2

0 k2x
8 from Equation (7). The third harmonic wave

amplitude generally depends on both β and γ [22]. It should be noted that the third

harmonic amplitude U3 ≈
β2U3

0 k4x2

32 in Equation (8) is valid when (kx) is large. However,

U3 ≈
γU3

0 k3x
32 in the cases where γ is the large and dominant factor, which directly links the

third harmonic amplitude to γ [22].
It is worth noting that, if γ has a major effect on the third harmonic amplitude, the

following conditions must be satisfied: γ� β2 and kx � 1. However, in most nonlinear
ultrasound measurements using a finite amplitude method, the frequency in megahertz
is usually used, and the third harmonic amplitude is very small at a short propagation
distance; therefore, kx � 1 should be employed. A reliable generation of the third harmonic
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amplitude actually requires kx � 500. Therefore, third harmonic generation due to γ cannot
be measured experimentally under the existing nonlinear experimental conditions, and this
is why the third harmonic wave amplitude in Equation (8) is expressed in terms containing
only β2 [21,22]. In this study, we call β2 the cubic nonlinearity parameter because it actually
dominates third harmonic generation.

The actual displacement of a wave generated and received by finite-size transducers
can be expressed by the plane wave amplitude modified by diffraction and attenuation
effects [21]

U1(x) = U0[D1(x)][M1(x)] (9)

U2(x) =
βU2

0 k2x
8

[D2(x)][M2(x)] (10)

U3(x) =
β2U3

0 k4x2

32
[D3(x)][M3(x)] (11)

where Di and Mi, i = 1, 2, 3 represent the diffraction and attenuation corrections at a
propagation distance x, respectively.

Equations (9)–(11) provide a practical means to determine the displacement-based
nonlinearity parameter β in Equation (10) and β2 in Equation (11). β can be determined by
measuring the fundamental and second harmonic amplitudes using Equations (10) and
(11). We call β the quadratic or second-order nonlinearity parameter. β2 can be determined
by measuring the fundamental and third harmonic amplitudes using Equations (9) and
(12). We call β2 the cubic or third-order nonlinearity parameter. The quadratic and cubic
nonlinearity parameters at the propagation distance x are defined as [21]

β(x) =
8U2(x)

k2xU2
1(x)

[
D2

1(x)
D2(x)

][
M2

1(x)
M2(x)

]
(12)

β2(x) = γ(x) =
32U3(x)

k4x2U3
1(x)

[
D3

1(x)
D3(x)

][
M3

1(x)
M3(x)

]
(13)

If the diffraction and attenuation corrections are neglected, Equations (12) and (13)
will be reduced to the definitions of nonlinearity parameters based on the pure plane
wave solutions.

3. Elements of Absolute Nonlinearity Parameter Measurement
3.1. Receiver Calibration Measurement

In harmonic generation measurement, the output signal received from the receiving
transducer is measured in the form of electrical voltage. However, the nonlinearity parame-
ters in Equations (12) and (13) are defined in terms of displacement. The purpose of receiver
calibration is to obtain the transfer function Hr(ω) that converts the current output Iout(ω)
to the displacement output U(ω). There exist reciprocity-based calibration methods [23–25]
where a piezoelectric transducer is mounted on the receive side of a sample in a pulse-echo
configuration, and the voltage and current are measured at the input and output ports
of the transducer. The calibration method used in this study is a simplified version of
the existing method [23], which requires only the current measurements at the input and
output ports of the receiving transducer. The diffraction and attenuation corrections should
also be performed for accurate determination of Hr(ω). Receiver calibration is performed
on each specimen, and the receiver pressurization remains the same during the entire test of
that specimen. A detailed derivation of the receiver transfer function and the experimental
procedure are described elsewhere [19].
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3.2. Harmonic Generation Measurement

After the receiver calibration measurement is completed, a finite amplitude through a
transmission test is conducted for harmonic generation measurement. The transmitting
transducer (T) is a single-crystal lithium niobate (LiN) of 5 MHz center frequency and
9.5 mm diameter, while the receiving transducer (R) is a broadband commercial transducer
of the same diameter. The two transducers are aligned coaxially through the solid sample
for maximum output signal capture. A series of calibration measurements and harmonic
generation measurements are performed on aluminum samples of various thicknesses.

The samples used in this study are commercially available aluminum alloy 6061-T6.
Six different samples in thickness were prepared for the nonlinearity parameter measure-
ments: 2, 4, 6, 8, 10, and 12 cm. Each piece was obtained by cutting in the shape of a
rectangular parallelepiped from a large-sized circular bar. The size of the cross section is a
square of 4 cm × 4 cm. The top and bottom surfaces, where the transducers are installed,
were further processed to be flat and parallel to each other.

Figure 1 shows the block diagram of harmonic generation measurement. A high-power
toneburst pulser (RPR-4000, RITEC, Warwick, RI, USA) is used to produce a high-voltage,
20-cycle toneburst tuned to the fundamental frequency (5 MHz) that is applied to the
transmitter via a 50 Ohm high-power feedthrough and a high-power stepped attenuator.
The receiver side is comprised of the receiving probe coupled to a 50 Ohm load via a current
probe (Tektronix CT-2, Tektronix, Wilsonville, OR, USA) with the through-transmitted
toneburst signal captured on a digital storage oscilloscope (WaveSurfer 3024, Teledyne
LeCroy, Chestnut Ridge, NY, USA). The current probe used in this study provides 1 mV per
1 milliamp when terminated in 50 Ohm. Nine different input voltages (from 0 to 40 power
levels in 5 level step) are applied from the high-power pulser. These input power levels
correspond to approximately 30–300 Vpeak at the transmitter.
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finite amplitude, through-transmission method.

3.3. Measurement of Harmonic Displacement Amplitude

The receiving transducer is first calibrated using the simplified self-reciprocity tech-
nique [19], which can minimize the errors induced by impedance mismatch. The purpose
of receiver calibration is to find the transfer function that converts the output current to
the absolute displacement. The measured current signal in the subsequent harmonic gen-
eration experiment is convolved with the transfer function in the frequency domain, and
the fundamental, second harmonic, and third harmonic components are separately inverse
Fourier transformed to obtain the absolute displacement amplitude of each component
in the time domain. The measured displacement amplitudes are then used to calculate
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the absolute nonlinearity parameter according to Equations (12) and (13). Experiments
are performed to determine β and β2 of each sample using the fundamental and higher
harmonic displacement amplitudes extracted from the same output signal acquired at each
input power level.

3.4. Diffraction and Attenuation Corrections

The original definition of the nonlinearity parameter is based on the plane wave
displacement solutions for the one-dimensional nonlinear wave equation. In most nonlinear
ultrasound experiments, however, the sound beam is generated by a finite-size transducer,
and it is not purely a plane wave. Therefore, one needs to adjust the amplitudes of the actual
acoustic fields to their plane wave values before they are used to determine the nonlinearity
parameter. This is the effect referred to as the diffraction correction and introduced in the
measured displacement amplitudes in Equations (9)–(11).

Diffraction correction is defined as the amplitude of the actual wave divided by that of
the plane wave with both wave amplitudes received at the same propagation distance in a
nonattenuating medium. Diffraction effects generally depend on the size of the transmitter
and receiver, frequency, and propagation distance. An exact integral expression exists for
the linear field when both transmitter and receiver sizes are the same [26,27]. The diffraction
corrections for both fundamental and higher harmonic waves have been developed and can
be efficiently used in a wide range of transmitter–receiver geometries [21]. The variation of
diffraction correction as a function of propagation distance is shown in [21].

The amplitude of a wave propagating in a medium is also affected by attenuation,
the loss of wave energy due to scattering and absorption, which generally depends on the
frequency of the propagating wave. Since the measured wave amplitude deviates from
that of a pure plane wave, the attenuation correction is also required in the measured
displacement in Equations (9)–(11). The attenuation corrections for the fundamental and
higher harmonic waves can be derived from the solutions of the one-dimensional Westervelt
equation or Burger’s equation. They are explicitly given in [21] as a function of the
attenuation coefficients and propagation distance.

3.5. Check of Source Nonlinearity and Correction

In a nonlinear ultrasonic measurement system, a low-frequency bandpass filter is
frequently employed in the input stage to pass the fundamental wave and suppress the
higher harmonic frequency components. In this study, this type of filter was not used to
check the existence of the source nonlinearity related to the second and third harmonics.

It is known that a higher input voltage is required for the proper generation of the
third harmonic amplitude in the test specimen along with sensitive broadband reception
of the output signal [21]. An increase in the noise floor may occur as the input source
level increases. This is another issue that can affect the measurement accuracy of the cubic
nonlinearity parameter β2. Therefore, it is important to check for the presence of source
nonlinearity and make an appropriate correction.

In this study, we decided to use a lithium niobate (LiN) crystal instead of a transmitter
in the form of a transducer in order to minimize source nonlinearity for the second har-
monic and increase the efficiency of generating the third harmonic inside the specimen.
In harmonic generation experiments, there are two main causes of source nonlinearity
with respect to the third harmonic wave. First, it can be caused by the harmonics of the
measurement system component such as a high-power amplifier. The generated harmonic
will propagate as a fundamental wave with three times the fundamental frequency 3 f0.
Second, when a finite amplitude narrowband toneburst with a fundamental frequency
f 0 is applied to the transmitter, a noticeable 3f 0 component can be generated due to the
odd harmonic resonance of the bare crystal at or close to 3f 0. This also propagates as the
linear wave of frequency 3f 0. These two waves will be added up to the nonlinear third
harmonic wave generated in the specimen, sometimes giving an excessively large value of
third harmonic amplitude or the resulting cubic nonlinearity parameter.
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Recently, phononic crystals or metamaterial surfaces have been proposed as frequency-
filtering devices that could significantly decrease or eliminate unwanted harmonic waves
by designing their bandgap structures at the desired frequency [28–31]. When such devices
are inserted between the transmitting transducer and the specimen of interest, the designed
bandgap should allow the fundamental frequency wave to propagate the specimen while
inhibiting propagation at the second and/or third harmonic frequency before the incident
wave enters the specimen.

In this study, the existence of source nonlinearity will be identified through the analysis
of measured output signals, and the accuracy of the measured nonlinearity parameter
will be improved through appropriate corrections of source nonlinearity. The detailed
procedure for this correction and their effects on the nonlinearity parameter determination
are discussed in the next section.

3.6. Comments on Contact Method of Nonlinear Ultrasound Testing

In contact nonlinear ultrasound testing, the contact and interface conditions between
the specimen and the transducer can have a significant impact on the measured harmonic
amplitudes. The contact and interface conditions may include the surface roughness of
the specimen [28], the type/amount/contact holding time of the couplant [29], and the
intensity of the contact pressure. In the case of transmission measurement, it is necessary
to consider both the transmission side and the reception side. When measuring absolute
nonlinearity parameters, it is necessary to ensure that the calibration measurement state of
the receiver remains the same during the harmonic generation measurements. The first
author of this paper conducted research on nonlinear ultrasound tests for many years and
established a nonlinearity parameter measurement technology with excellent accuracy and
repeatability. Some of them were used in this study as described below.

In order to minimize the effect of surface roughness, it is necessary to maintain the
same surface roughness on each specimen as much as possible. The prepared specimens
were machined so that the upper and lower surfaces were parallel. The surface roughness
of each specimen was maintained at the same level as possible using a metal abrasive. A
thin layer of couplant is applied to the transducer surface, and the transducer is maintained
in a pressurized state with a constant pressure using a pressurization device. Experimental
data are acquired after the pressed couplant reaches a steady state. This time usually takes
several minutes. A specially designed pressurization fixture is used so that the receiver and
transmitter are pressed separately. The pressurization state of the receiver during the cali-
bration measurement remains the same throughout the harmonic generation measurement.
A pin spring-type fixing and pressurization device is devised and used for the pressuriza-
tion of the piezoelectric elements such as the bare crystals in the transmission side. Using
this set of contact and boundary conditions, the quadratic nonlinearity parameter can be
measured with less than 5% uncertainty, while the cubic nonlinearity parameter can be
measured with less than 10% uncertainty.

4. Results and Discussion
4.1. Diffraction Correction and Attenuation Correction

Figure 2 shows the variation of the diffraction correction as a function of the propa-
gation distance Di, i = 1, 2, 3, which was calculated from Equations (24)–(26) of Ref [21].
The acoustic parameters used in the calculation are given in the figure caption. The effect
of diffraction correction on nonlinearity parameter determination is investigated later.



Materials 2023, 16, 4453 8 of 16Materials 2023, 16, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 2. Calculated diffraction corrections for fundamental (D1), second harmonic (D2), and third 

harmonic (D3) waves: Frequency = 5 MHz, transmitter and receiver diameters = 0.5 inch, material = 

Al 6061 (L-wave velocity= 6450 m/s). 

Referring to Equations (21)–(23) in Ref [21], making attenuation corrections requires 

the information on the attenuation coefficients 𝛼1, 𝛼2, 𝑎𝑛𝑑 𝛼3 at the fundamental, second, 

and third harmonic frequencies, respectively. In the previous study [19], the attenuation 

coefficients 𝛼1 = 4.6 Np m⁄  and 𝛼2 = 13.8 Np m⁄  for Al 6061 were extracted by applying 

a nonlinear least squares data fitting method without independent measurements of these 

coefficients. It was found that the frequency-dependent attenuation holds in the form of 

0

m

f f = with 𝛼0 = 0.36 and m = 1.585. This power law frequency-dependent attenu-

ation provides 𝛼3 = 26.24 𝑁𝑝/𝑚 at the third harmonic frequency. Figure 3 shows the var-

iation of three attenuation corrections 𝑀𝑖 , 𝑖 = 1, 2, 3 as a function of propagation distance. 

 

Figure 3. Calculated attenuation corrections for fundamental (M1), second harmonic (M2), and third 

harmonic (M3) waves when the fundamental frequency is 5 MHz. 

4.2. Receiver Transfer Function 

The receiver transfer function of each specimen was measured in the broadband 

pulse-echo testing configuration using the simplified calibration procedure described pre-

viously. Figure 4 shows the receiver transfer functions obtained for all six specimens after 

the diffraction and attenuation corrections were performed. The magnitude spectrum of 

the receiver transfer function |𝐻𝑟(𝜔)| shows a bandwidth broad enough to cover the fun-

damental and higher harmonic frequencies from 5 to 18 MHz. Since the magnitude spec-

trum is also given as a function of the plane wave term exp (i𝑘𝑧), where z is the propaga-

tion distance, it shows a dependence on the sample thickness or propagation distance. At 

a given frequency, the spectral values become smaller as the sample thickness increases. 

Each transfer function will be used to convert the electrical output signal of the harmonic 

generation measurement into the absolute displacement signal from which displacement 

amplitudes are found to calculate the nonlinearity parameters. 

0      2      4      6      8     10     12

Distance (cm)

1

0.9

0.8

0.7

D
1

0      2      4      6      8     10     12

Distance (cm)

1

0.9

0.8

0.7

0.6

D
2

0      2      4      6      8     10     12

Distance (cm)

1

0.9

0.8

0.7

0.6

0.5

D
3

Figure 2. Calculated diffraction corrections for fundamental (D1), second harmonic (D2), and
third harmonic (D3) waves: Frequency = 5 MHz, transmitter and receiver diameters = 0.5 inch,
material = Al 6061 (L-wave velocity= 6450 m/s).

Referring to Equations (21)–(23) in Ref [21], making attenuation corrections requires
the information on the attenuation coefficients α1, α2, and α3 at the fundamental, second,
and third harmonic frequencies, respectively. In the previous study [19], the attenuation
coefficients α1 = 4.6 Np/m and α2 = 13.8 Np/m for Al 6061 were extracted by applying a
nonlinear least squares data fitting method without independent measurements of these
coefficients. It was found that the frequency-dependent attenuation holds in the form of
α f = α0 f m with α0 = 0.36 and m = 1.585. This power law frequency-dependent attenuation
provides α3 = 26.24 Np/m at the third harmonic frequency. Figure 3 shows the variation
of three attenuation corrections Mi, i = 1, 2, 3 as a function of propagation distance.
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Figure 3. Calculated attenuation corrections for fundamental (M1), second harmonic (M2), and third
harmonic (M3) waves when the fundamental frequency is 5 MHz.

4.2. Receiver Transfer Function

The receiver transfer function of each specimen was measured in the broadband
pulse-echo testing configuration using the simplified calibration procedure described
previously. Figure 4 shows the receiver transfer functions obtained for all six specimens
after the diffraction and attenuation corrections were performed. The magnitude spectrum
of the receiver transfer function |Hr(ω)| shows a bandwidth broad enough to cover the
fundamental and higher harmonic frequencies from 5 to 18 MHz. Since the magnitude
spectrum is also given as a function of the plane wave term exp(ikz), where z is the
propagation distance, it shows a dependence on the sample thickness or propagation
distance. At a given frequency, the spectral values become smaller as the sample thickness
increases. Each transfer function will be used to convert the electrical output signal of
the harmonic generation measurement into the absolute displacement signal from which
displacement amplitudes are found to calculate the nonlinearity parameters.
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Figure 4. Receiver transfer functions obtained for all six specimens. Diffraction and attenuation
effects were appropriately corrected.

4.3. Received Waveform and Frequency Spectrum

Right after the receiver calibration measurement, the harmonic generation measure-
ment was performed using the finite amplitude through the transmission method. The
purpose of this experiment was to obtain the displacement amplitudes of the fundamental
and higher harmonic waves from which the nonlinearity parameters β and β2 of each sam-
ple were determined. Figure 5a,b shows typical examples of the current output signal and
its Fourier spectrum acquired from the 8 cm thick sample. In addition to the fundamental
component at f = 5 MHz, the second and third harmonic components are clearly observed
at 2f = 10 MHz and 3f = 15 MHz, respectively.
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Figure 5. Typical results of (a) Current output signal and (b) Magnitude spectrum at two different
input power levels measured on the 8 cm sample.

4.4. Calculation of Absolute Displacement

The frequency components of the output current, Figure 5b, is obtained by Fourier
transforming the measured current signal, Figure 5a, and then convolved with the receiver
transfer function Hr(ω) to calculate the frequency domain displacement spectrum. To
extract the first three harmonic displacement components, three rectangular windows
are used, and each windowed spectrum is inverse Fourier transformed to obtain the
time domain displacement signal. A rectangular window with the frequency range of
4–6 MHz was used for the fundamental wave, while the frequency ranges of 9–11 MHz
and 14–16 MHz were used for the second and third harmonic waves.

Figure 6 shows the extracted displacement waveforms for the first three harmonic
waves. The average peak-to-pick displacement amplitudes U1, U2, and U3 are acquired
from each of these figures and used in the subsequent calculation of β and β2.
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4.5. Effects of Diffraction and Attenuation Corrections on β and β2

Figure 7a,b shows the results of β and β2 determination, respectively, before and
after the corrections for diffraction and attenuation are performed. Here, β and β2 were
measured from the amplitudes of the second and third harmonic waves, respectively, using
the same output signal. The effect of source nonlinearity correction is not considered here
and is discussed separately in the next section. The uncorrected β shows a decreasing and
then increasing behavior with increasing sample thickness. It can be observed that the
attenuation and diffraction corrections shift large and small values of β that deviate from
the mean closer to the mean value of 6.03. The mean value of β after the corrections is
found to be 5.76. This behavior agrees well with the previous β measurement results [19].
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Figure 7. Measured nonlinearity parameters and effects of diffraction and attenuation corrections on
(a) β results and (b) β2 results.

The effect of the diffraction and attenuation corrections on the cubic nonlinearity
parameter β2 is similarly shown in Figure 7b. The uncorrected β2 shows relatively uniform
values between 6 cm and 12 cm in sample thickness and increases suddenly from these
values at sample thicknesses shorter than 6 cm. The reason for this large deviation at a
short distance is basically the source nonlinearity included in the third harmonic and the
generation of an insufficient third harmonic component from the specimen due to the short
propagation distance. This problem can be improved to some extent by removing the
source nonlinearity in the β2 calculation, as is demonstrated later. The influence of the
diffraction and attenuation corrections is basically small in the uniform β2 region and tends
to increase as the sample thickness becomes shorter. The mean value of the corrected β2 in
the 6 cm to 12 cm region is 40.66, which is approximately 1.2 times larger than the square of
the corrected β.

The uncorrected and corrected β2 results start to show a gradual and then sudden
increasing behavior at the sample thickness of 6 cm and shorter, as shown in Figure 7b. This
is due to the noise floor of the measurement system and the low third harmonic generation
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at short sample thicknesses. However, in the case of β measured from the second-harmonic
generation, this trend did not occur due to the second harmonic amplitudes being generated
greater than the noise floor even for the shortest 2 cm thick sample, as shown in Figure 7a.
Through repeated measurements, we were able to measure β with less than 5% uncertainty
and β2 with less than 10% uncertainty. The error bars were not marked in the accompanying
figures here.

The β2 measurement from the third harmonic amplitude is more challenging in many
ways than the β measurement from the second harmonic amplitude due to the need for
a more accurate measurement of the acoustic parameters, such as sample thickness, fun-
damental wave displacement, and acoustic velocity, because these variables are squared,
cubed, and quadrupled in the β2 formula. The same phenomenon occurs in the diffraction
and attenuation corrections for the fundamental wave. Therefore, the measurement accu-
racy of these parameters generally has a more serious effect on the measured value of β2.
Considering the high sensitivity of experimental variables, an error of the β2 measurement
that is approximately twice as large as that of the β measurement can be acceptable.

4.6. Comparison of Cubic Nonlinearity Paramter β2 and Square of Quadratic Nonlinearity
Parameter β ∗ β

It is interesting to compare the directly measured β2 using the third harmonic ampli-
tude with the square of β, β ∗ β, measured from the second harmonic amplitude. The initial
and corrected results of these parameters are presented in Figure 8a,b, respectively, for com-
parison. It can be observed in Figure 8a that the initial results from two sets of measurement
show a similar behavior for sample thicknesses larger than 6 cm. The largest difference in
this region is approximately 20.4%, occurring at a 6 cm sample thickness, and the difference
becomes smaller as the sample thickness increases. The β2 and β ∗ β results after being
corrected for diffraction and attenuation are presented in Figure 8b. Since the effect of the
diffraction and attenuation corrections on β2 is basically small, the agreement between
these two values does not improve and remains almost the same. Another major reason
is the significant amount of source nonlinearity contained in the amplitude of the third
harmonic. We will show later a much better agreement between β2 and β ∗ β over a wider
range of sample thicknesses and input power levels by removing the source nonlinearity.
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4.7. Source Nonlinearity Check and Correction

When the displacement amplitudes are available at the fundamental and second
harmonic frequencies, an appropriate check for source nonlinearity is to plot the second
harmonic amplitude (U2) as a function of the square of the fundamental amplitude (U2

1 ) at
the different input levels used in the measurement. This kind of plot provides insight into
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the system and sample response. At the higher amplitudes, the response should be linear if
the sample behaves as a classically nonlinear solid. When this plot is linearly extrapolated,
the y-intercept indicates the noise floor of the measurement system and/or the source
nonlinearity involved in the measurement of the second harmonic amplitude [19]. Similarly,
the third harmonic amplitude (U3) as a function of the cube of the fundamental amplitude
(U3

1 ) at different input levels can be plotted to check the existence of the noise floor and/or
source nonlinearity included in the measurement of the third harmonic amplitude.

Figure 9a,b shows the typical plot of U2
1 vs. U2 and U3

1 vs. U3, respectively, for the 8 cm
sample at the nine input power levels used. The best-fit straight line is also shown in each
figure, and there exists a good linearity between these data. Since the y-intercept almost
passes through the origin in Figure 9a, the source nonlinearity, which might be contained in
the second harmonic amplitude, can be ignored. This means that the measurement system
used here exhibits a relatively low noise floor, and a very small amount of extraneous
second harmonic was produced. However, the y-intercept in Figure 9b is well above
the origin, indicating that a significant amount of source nonlinearity is contained in the
third harmonic amplitude. The cause of this source nonlinearity can be explained as
follows. When a finite amplitude narrowband toneburst with a fundamental frequency
f 0 is applied to the transmitter, a noticeable 3f 0 component is generated due to the odd-
numbered resonance of the transmitter. This also propagates as the linear wave of frequency
3f 0. This wave will be added up to the nonlinear third harmonic wave generated in the
solid specimen, sometimes giving an excessively large third harmonic amplitude or cubic
nonlinearity parameter.
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A plot, as shown in Figure 9, was prepared for each specimen, and the y-intercept
was obtained by fitting the curve with a straight line to confirm the existence of source
nonlinearity for the second and third harmonic amplitudes. If a source nonlinearity is found
to exist, this source nonlinearity should be subtracted from the corresponding harmonic
amplitude. Then, diffraction and attenuation corrections are performed according to
Equations (12) and (13) to obtain all corrected β and β2.

Since the effects of the diffraction and attenuation corrections on these parameters
were discussed in the previous section, only the effect of the source nonlinearity correction
will be discussed here. No source nonlinearity correction will be performed for the second
harmonic amplitude because the source nonlinearity was not included in U2, as shown in
Figure 9a. Therefore, the value of the corrected β will be the same as the value obtained
earlier in Figures 7a and 8a. The effect of the source nonlinearity correction for U3 on the
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cubic nonlinearity parameter β2 and its relationship with the square of β of the quadratic
nonlinearity parameter will be examined.

The corrections applied here are diffraction, attenuation, and source nonlinearity
corrections. Only the diffraction and attenuation corrections were performed for β, while
all three corrections were performed for β2. First, Figure 10a compares β2 with three
different corrections as a function of sample thickness—no corrections, diffraction (D), and
attenuation (M) corrections, and all corrections including the source nonlinearity correction.
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Figure 10. Comparison of all corrected β2 with corrected β ∗ β: As a function of (a) sample thickness
and (b) input power level.

The diffraction and attenuation corrections shift the initial uncorrected value of β2

to slightly lower or slightly higher values depending on the sample thickness, but the
amount of corrections are very small, especially in the 6 cm to 12 cm region. In contrast,
the addition of source nonlinearity correction lowers the value of β2 much more over all
sample thicknesses, and the amount of reduction increases as the sample thickness becomes
thinner. Due to the source nonlinearity correction, the cubic nonlinearity parameter β2 now
agrees better with the square of the quadratic nonlinearity parameter β ∗ β down to the
4 cm thickness.

With the help of source nonlinearity correction, the value of β2 now extends to be
valid down to the 4 cm thickness, and the approximate relationship β2 ≈ β ∗ β appears to
be maintained in the interval where β2 and β ∗ β are both valid. Based on the measurement
data for AL 6061 covered in this study, these two parameters differ by approximately 8.05%
when calculated using the average values in this effective interval. The average β2 and β ∗ β
of the five samples ranging from 4 cm to 12 cm thickness are 30.33 and 32.77, respectively.
On the other hand, if the mean value of

√
β2 is compared with the mean value of the

directly measured β, the difference is less than 4%.
Figure 10b shows the behavior of all corrected β2 as a function of the input power

level and compares with the square of the corrected β, β ∗ β. These results were obtained
from the measurement on the 4 cm thick sample. Other samples are expected to exhibit
similar behavior. The effect of the diffraction and attenuation corrections is small, and the
uncorrected and corrected β2 have extremely large values and are getting worse at the
lower power levels compared to the corrected β ∗ β.

The source nonlinearity correction greatly reduces both the uncorrected and corrected
β2 values, and this correction effect becomes much more evident as the power level goes
lower. Now, β2 shows relatively uniform values down to a power level of approximately 15
and agrees well with the value of the square of the quadratic nonlinearity parameter β ∗ β.

The measurement results of β2 shown in Figure 10 clearly demonstrate that confirming
the existence of source nonlinearity in the measured third harmonic amplitude and properly
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correcting it are very important for the accurate and reliable analysis of third harmonic
generation measurement results.

In nonlinear ultrasonic measurement, it is basically necessary to check the presence
of source nonlinearity in the received output signal. In particular, when a piezoelectric
transducer is used to generate odd-numbered harmonics of a fundamental wave such as the
3rd order it is essential to check and remove the source nonlinearity since some degree of
source nonlinearity cannot be avoided. The source nonlinearity suppression or elimination
methods currently proposed in nonlinear ultrasound measurement include the acoustic
modeling-based approach, the harmonic cancellation method, and metamaterial-based
bandgap filtering. Jeong et al. [30] and Song et al. [31] were able to extract the source
nonlinearity included in the measured second harmonic amplitude by comparing the
simulated nonlinear longitudinal wave fields with the experimental data. Torello et al. [32]
used a similar acoustic modeling approach to remove the source nonlinearity contained in
the measured nonlinear surface wave fields. Tang and Clement [33] reported a harmonic
cancellation technique by using a switched-mode power converter without an additional
output filter. More recently, the metamaterial-based acoustic filter was designed and applied
in the form of superlattices [34], metasurface [35], waveguide rods [36], and additively
manufactured phononic materials [37]. These methods require modeling of nonlinear
ultrasound beam fields and additional hardware to the experimental setup. Compared to
these methods, the source nonlinearity correction method used in this study is convenient
to apply and has a clear advantage because it is performed through a little processing of
experimental data measured in the input voltage range used for harmonic generation.

5. Conclusions

In this work, the effect of source nonlinearity corrections on the measurement of
the cubic nonlinearity parameter β2 is presented for aluminum specimens of various
thicknesses at various input power levels. By correcting the source nonlinearity contained
in the third harmonic amplitude and further verifying the approximate relationship of
β2 ≈ β ∗ β, it was shown that the cubic nonlinearity parameter could be reliably determined
even at thinner samples and lower input voltages. Based on our current nonlinearity
measurement results, we believe that, if the cubic nonlinearity parameter β2 is measured
correctly together with the source nonlinearity correction, we can obtain the quadratic
nonlinearity parameter β from the measured β2 within a 5–10% difference.

When a piezoelectric transmitter is used in a nonlinear ultrasonic measurement system,
the occurrence of source nonlinearity that is associated with third harmonic generation
appears to be unavoidable. Therefore, it is essential to eliminate the source nonlinearity in
the calculation of cubic nonlinearity parameters. We proposed a method for confirming the
existence of source nonlinearity in the measured third harmonic amplitude and correcting it.
Compared to the existing methods for source nonlinearity suppression or elimination, the
source nonlinearity correction method proposed in this study is convenient to apply and
has a clear advantage because it is performed through a little processing of experimental
data measured in the input voltage range used for harmonic generation.
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