Recent Advances in Molybdenum Disulfide and Its Nanocomposites for Energy Applications: Challenges and Development
Abstract
:1. Introduction
Transition Metal Dichalcogenides (TMDs)
2. Structures, Properties and Synthesis of MoS2
2.1. Structure of MoS2
2.2. Properties of MoS2
2.2.1. Electronic Properties
2.2.2. Optical Properties
2.2.3. Mechanical Properties
2.3. Synthesis Methods of MoS2
2.3.1. Top-Down Approaches
- (a)
- Mechanical Exfoliation
- (b)
- Ball Milling
- (c)
- Liquid phase Exfoliation
2.3.2. Bottom-Up Approaches
- (a)
- Chemical Vapor Deposition (CVD)
- (b)
- Physical Vapor Deposition
- (c)
- Wet Chemical Synthesis
3. Energy Applications
3.1. MoS2-Based Nanocomposites in Energy Applications
- Improved conductivity: MoS2 composites offer improved electrical conductivity compared to pure MoS2, making them ideal for use in batteries, fuel cells, and other energy storage and conversion devices;
- Enhanced catalytic activity: MoS2 composites exhibit enhanced catalytic activity, which is useful in energy conversion processes like hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and carbon dioxide reduction reaction (CO2RR);
- Increased stability: MoS2 composites are more stable than pure MoS2 and other transition metal dichalcogenides (TMDs) under extreme conditions, such as high temperatures and corrosive environments. This makes them suitable for use in harsh industrial and energy-related applications;
- Reduced cost: MoS2 is a low-cost material, and its composites can be produced by simple, scalable processes, making them an economical option for energy applications.
3.2. Energy Storage Applications
3.2.1. Li-Ion Batteries
3.2.2. Sodium-Ion Batteries
3.2.3. Supercapacitors
- (a)
- 1T and 2H MoS2 Electrodes for Supercapacitors
- (b)
- MoS2 with Graphene and Carbon-Based Nanocomposites
- (c)
- MoS2 with Metal Oxide/Sulfide-Based Nanocomposites
- (d)
- MoS2 with Conducting polymer-based nanocomposites
- (e)
- MoS2 based Flexible and wearable Supercapacitors
3.3. Energy Conversion Applications
3.3.1. Carbon Dioxide (CO2) Reduction
3.3.2. Solar Cells
3.3.3. Hydrogen Evolution Reactions (HER)
3.3.4. Oxygen Evolution Reactions (OER)
4. Challenges and Future Directions
- Synthesis methods: there is a need for developing simple, cost-effective synthesis methods for large-scale production of MoS2 and its composites, especially those with controlled morphology and structure;
- Stability and durability: it is crucial to investigate the stability and durability of MoS2 and its composites under various environmental and mechanical conditions, which would provide insights into the potential applications of these materials;
- Composites design: developing novel and effective composite designs by incorporating MoS2 with other materials can lead to enhanced properties, such as mechanical strength, electrical conductivity, and wear resistance. However, there is still a need to identify the optimum composition and processing conditions for achieving the desired properties;
- Characterization: there are still gaps in the understanding of the structural and compositional properties of MoS2 and its composites, particularly for those with multiple layers and complex architectures;
- Applications: the full potential of MoS2 and its composites in various applications, including energy storage, catalysis, electronics, and biomedicine, is yet to be explored. It is necessary to investigate the performance and reliability of these materials in real-world applications.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, P.; Xiao, Y.; Li, L.; Li, W.; Tao, W. Biomedical applications of 2D monoelemental materials formed by group VA and VIA: Aconcise review. J. Nanobiotechnol. 2021, 19, 96. [Google Scholar] [CrossRef] [PubMed]
- Piggot, G.; Erickson, P.; Boudet, H.; Hazboun, S. Fossil fuel export as a climate policy problem. In Public Responses to Fossil Fuel Export; Elsevier: Amsterdam, The Netherlands, 2022; pp. 45–54. [Google Scholar]
- Olanipekun, I.O.; Ozkan, O.; Olasehinde-Williams, G. Is renewable energy use lowering resource-related uncertainties? Energy 2023, 271, 126949. [Google Scholar] [CrossRef]
- Algarni, S.; Tirth, V.; Alqahtani, T.; Alshehery, S.; Kshirsagar, P. Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development. Sustain. Energy Technol. Assess. 2023, 56, 103098. [Google Scholar] [CrossRef]
- Zhang, D.; Zheng, M.; Feng, G.; Chang, C. Does an environmental policy bring to green innovation in renewable energy? Renew. Energy 2022, 195, 1113–1124. [Google Scholar] [CrossRef]
- Sayed, E.T.; Olabi, A.G.; Alami, A.H.; Radwan, A.; Mdallal, A.; Rezk, A.; Abdelkareem, M.A. Renewable Energy and Energy Storage Systems. Energies 2023, 16, 1415. [Google Scholar] [CrossRef]
- Guerra, O.J.; Zhang, J.; Eichman, J.; Denholm, P.; Kurtz, J.; Hodge, B.M. The value of seasonal energy storage technologies for the integration of wind and solar power. Energy Environ. Sci. 2020, 13, 1909–1922. [Google Scholar] [CrossRef]
- Behabtu, H.A.; Messagie, M.; Coosemans, T.; Berecibar, M.; Anlay Fante, K.; Kebede, A.A.; Mierlo, J.V. A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration. Sustainability 2020, 12, 10511. [Google Scholar] [CrossRef]
- Kalair, A.; Abas, N.; Saleem, M.S.; Kalair, A.R.; Khan, N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 2021, 3, e135. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Ling, M.; Hencz, L.; Ling, H.Y.; Li, G.; Lin, Z.; Liu, G.; Zhang, S. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chem. Rev. 2018, 118, 8936–8982. [Google Scholar] [CrossRef]
- Riaz, A.; Sarker, M.R.; Saad, M.H.M.; Mohamed, R. Review on Comparison of Different Energy Storage Technologies Used in Micro-Energy Harvesting, WSNs, Low-Cost Microelectronic Devices: Challenges and Recommendations. Sensors 2021, 21, 5041. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.; He, Z. An advance review of solid-state battery: Challenges, progress and prospects. Sustain. Mater. Technol. 2021, 29, e00297. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Covaci, C.; Gontean, A. “Singing” Multilayer Ceramic Capacitors and Mitigation Methods—A Review. Sensors 2022, 22, 3869. [Google Scholar] [CrossRef]
- Musetti, A.; Sadegh Lafmejani, H.; Soldati, A. Control and Design of a Boost-Based Electrolytic Capacitor-Less Single-Phase-Input Drive. Energies 2022, 15, 5929. [Google Scholar] [CrossRef]
- Agrawal, M.; Singh, R.; Ranitović, M.; Kamberovic, Z.; Ekberg, C.; Singh, K.K. Global market trends of tantalum and recycling methods from Waste Tantalum Capacitors: A review. Sustain. Mater. Technol. 2021, 29, e00323. [Google Scholar] [CrossRef]
- Raghavendra, K.V.G.; Vinoth, R.; Zeb, K.; Muralee Gopi, C.V.V.; Sambasivam, S.; Kummara, M.R.; Obaidat, I.M.; Kim, H.J. An intuitive review of supercapacitors with recent progress and novel device applications. J. Energy Storage 2020, 31, 101652. [Google Scholar] [CrossRef]
- Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar]
- Patel, K.; Singhal, T.; Pandey, V.; Sumangala, T.P.; Sreekanth, M.S. Evolution and recent developments of high performance electrode material for supercapacitors: A review. J. Energy Storage 2021, 44, 103366. [Google Scholar] [CrossRef]
- Bokhari, S.W.; Siddique, A.H.; Sherrell, P.C.; Yue, X.; Karumbaiah, K.M.; Wei, S.; Ellis, A.V.; Gao, W. Advances in graphene-based supercapacitor electrodes. Energy Rep. 2020, 6, 2768–2784. [Google Scholar] [CrossRef]
- Özuğur Uysal, B.; Nayır, Ş.; Açba, M.; Çıtır, B.; Durmaz, S.; Koçoğlu, Ş.; Yıldız, E.; Pekcan, Ö. 2D Materials (WS2, MoS2, MoSe2) Enhanced Polyacrylamide Gels for Multifunctional Applications. Gels 2022, 8, 465. [Google Scholar] [CrossRef]
- Derakhshi, M.; Daemi, S.; Shahini, P.; Habibzadeh, A.; Mostafavi, E.; Ashkarran, A.A. Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications. J. Funct. Biomater. 2022, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, J.; Kan, D.; He, J.; Song, M.; Pang, J.; Wei, S.; Chen, K. The Recent Progress of Two-Dimensional Transition Metal Dichalcogenides and Their Phase Transition. Crystals 2022, 12, 1381. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Fang, P.; Zhang, Z.; Zhang, J.Z. Synthesis, Properties, and Optoelectronic Applications of Two-Dimensional MoS2 and MoS2-Based Heterostructures. Chem. Soc. Rev. 2018, 47, 6101–6127. [Google Scholar] [CrossRef]
- Lin, L.; Lei, W.; Zhang, S.; Liu, Y.; Wallace, G.G.; Chen, J. Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Mater. 2019, 19, 408–423. [Google Scholar] [CrossRef]
- Prabhu, P.; Jose, V.; Lee, J. Design Strategies for Development of TMD-Based Heterostructures in Electrochemical Energy Systems. Matter 2020, 2, 526–553. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Li, H.; Yuan, J.; Xia, Y.; Liu, Y.; Sun, A. Recent Advance and Modification Strategies of Transition Metal Dichalcogenides (TMDs) in Aqueous Zinc Ion Batteries. Materials 2022, 15, 2654. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Choi, J.H. Recent progress in 2D hybrid heterostructures from transition metal dichalcogenides and organic layers: Properties and applications in energy and optoelectronics fields. Nanoscale 2022, 14, 10648–10689. [Google Scholar] [CrossRef]
- Mia, A.K.; Meyyappan, M.; Giri, P.K. Two-Dimensional Transition Metal Dichalcogenide Based Biosensors: From Fundamentals to Healthcare Applications. Biosensors 2023, 13, 169. [Google Scholar] [CrossRef]
- Liu, Y.; NO, W.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Chia, X.; Eng, A.Y.S.; Ambrosi, A.; Tan, S.M.; Pumera, M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 2015, 115, 11941–11966. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Wang, H.; Cha, J.J.; Pasta, M.; Koski, K.J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.Y.; Park, S.K.; Chung, Y.H.; Yu, S.H.; Lim, D.H.; Jung, N.; Ham, H.C.; Park, H.Y.; Piao, Y.; Yoo, S.J.; et al. Edge-exposed MoS2nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale 2014, 6, 2131–2136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lai, Z.; Tan, C.; Zhang, H. Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications. Angew. Chem. Int. Ed. 2016, 55, 8816. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Lin, Y.; Wu, J.; Huang, X.; Pei, Z.; Zhou, J.; Wang, G. Two-Dimensional MoS2 for Li−S Batteries: Structural Design and Electronic Modulation. ChemSusChem 2020, 13, 1392–1408. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Huang, S.; Li, Y.; Steinmann, S.N.; Yang, W.; Cao, L. Layer-Dependent Electrocatalysis of MoS2 for Hydrogen Evolution. Nano Lett. 2014, 14, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Isacfranklin, M.; Princy, L.E.; Rathinam, Y.; Kungumadevi, L.; Ravi, G.; Al-Sehemi, A.G.; Velauthapillai, D. Rare Earth-Doped MoS2 for Supercapacitor Application. Energy Fuels 2022, 36, 6476–6482. [Google Scholar] [CrossRef]
- Samy, O.; Zeng, S.; Birowosuto, M.D.; El Moutaouakil, A. A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges. Crystals 2021, 11, 355. [Google Scholar] [CrossRef]
- Wang, T.; Chen, S.; Pang, H.; Xue, H.; Yu, Y. MoS2-Based Nanocomposites for Electrochemical Energy Storage. Adv. Sci. 2017, 4, 1600289. [Google Scholar] [CrossRef]
- Liang, Z.; Zhao, C.; Zhao, W.; Zhang, Y.; Srimuk, P.; Presser, V.; Feng, G. Molecular Understanding of Charge Storage in MoS2 Supercapacitors with Ionic Liquids. Energy Environ. Mater. 2021, 4, 631–637. [Google Scholar] [CrossRef]
- Gupta, U.; Rao, C.N.R. Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy 2017, 41, 49–65. [Google Scholar] [CrossRef]
- Kim, R.; Kim, J.; Do, J.Y.; Seo, M.W.; Kang, M. Carbon Dioxide Photoreduction on the Bi2S3/MoS2 Catalyst. Catalysts 2019, 9, 998. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Yi, J.; She, X.; Liu, Q.; Song, L.; Chen, S.; Yang, Y.; Song, Y.; Vajtai, R.; Lou, J.; et al. 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2018, 220, 379–385. [Google Scholar] [CrossRef]
- Backes, C.; Berner, N.C.; Chen, X.; Lafargue, P.; LaPlace, P.; Freeley, M.; Duesberg, G.S.; Coleman, J.N.; McDonald, A.R. Functionalization of liquid-exfoliated two-dimensional 2H-MoS2. Angew. Chem. Int. Ed. 2015, 54, 2638–2642. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Willatzen, M.; Wang, Z.L. Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures. Nano Energy 2019, 56, 512–515. [Google Scholar] [CrossRef]
- Li, S.; Sun, J.; Guan, J. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chin. J. Catal. 2021, 42, 511–556. [Google Scholar] [CrossRef]
- Ma, Y.; Lu, S.; Dong, X.; Han, G.; Chen, Z.; Liu, Y. Optical parameters of graphene/MoS2 van der Waals heterostructure investigated by spectroscopic ellipsometry. Appl. Surf. Sci. 2022, 599, 153987. [Google Scholar] [CrossRef]
- Singh, A.; Moun, M.; Sharma, M.; Barman, A.; Kapoor, A.K.; Singh, R. NaCl-assisted substrate dependent 2D planar nucleated growth of MoS2. Appl. Surf. Sci. 2021, 538, 148201. [Google Scholar] [CrossRef]
- Yu, H.; Liao, M.; Zhao, W.; Liu, G.; Zhou, X.J.; Wei, Z.; Xu, X.; Liu, K.; Hu, Z.; Deng, K.; et al. Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS2 Continuous Films. ACS Nano 2017, 11, 12001–12007. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, S.; Pan, S.; Tang, B.; Liang, Y.; Zhao, X.; Zhang, Z.; Shi, J.; Huan, Y.; Shi, Y.; et al. Epitaxial Growth of Centimeter-Scale Single-Crystal MoS2 Monolayer on Au(111). ACS Nano 2020, 14, 5036–5045. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, L.; Zhang, K.; Wang, J.; Cheng, F.; Tao, Z.; Chen, J. MoS2Nanoflowers with Expanded Interlayers as High-Performance Anodes for Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2014, 53, 12794–12798. [Google Scholar] [CrossRef]
- Li, W.J.; Shi, E.W.; Ko, J.M.; Chen, Z.Z.; Ogino, H.; Fukuda, T. Hydrothermal synthesis of MoS2 nanowires. J. Cryst. Growth 2003, 250, 418–422. [Google Scholar] [CrossRef]
- Chen, J.; Kuriyama, N.; Yuan, H.; Takeshita, H.T.; Sakai, T. Electrochemical hydrogen storage in MoS2 nanotubes. J. Am. Chem. Soc. 2001, 123, 11813–11814. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826–4830. [Google Scholar] [CrossRef] [PubMed]
- Deokar, G.; Vancsó, P.; Arenal, R.; Ravaux, F.; Casanova-Cháfer, J.; Llobet, E.; Makarova, A.; Vyalikh, D.; Struzzi, C.; Lambin, P.; et al. MoS2–Carbon Nanotube Hybrid Material Growth and Gas Sensing. Adv. Mater. Interfaces 2017, 4, 1700801. [Google Scholar] [CrossRef]
- Chen, X.P.; Xing, G.J.; Xu, L.F.; Lian, H.Q.; Wang, Y. Vertically aligned MoS2 films prepared by RF-magnetron sputtering method as electrocatalysts for hydrogen evolution reactions. Compos. Interfaces 2020, 28, 707–716. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H. Two-dimensional MoS2: Properties, preparation, and applications. J. Mater. 2015, 1, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Ataca, C.; Şahin, H.; Aktürk, E.; Ciraci, S. Mechanical and Electronic Properties of MoS2 Nanoribbons and Their Defects. J. Phys. Chem. C 2011, 115, 3934–3941. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Ahluwalia, P.K. A first principle Comparative study of electronic and optical properties of 1H–MoS2 and 2H–MoS2. Mater. Chem. Phys. 2012, 135, 755–761. [Google Scholar] [CrossRef]
- Johari, P.; Shenoy, V.B. Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains. ACS Nano. 2012, 6, 5449–5456. [Google Scholar] [CrossRef]
- Habib, M.R.; Wang, W.; Khan, A.; Khan, Y.; Obaidulla, S.M.; Pi, X.; Xu, M. Theoretical Study of Interfacial and Electronic Properties of Transition Metal Dichalcogenides and Organic Molecules Based van der Waals Heterostructures. Adv. Theory Simul. 2020, 3, 2000045. [Google Scholar] [CrossRef]
- Venkata Subbaiah, Y.P.; Saji, K.J.; Tiwari, A. Atomically Thin MoS2: A Versatile Nongraphene 2D Material. Adv. Funct. Mater. 2016, 26, 2046–2069. [Google Scholar] [CrossRef]
- Kadantsev, E.S.; Hawrylak, P. Electronic Structure of a Single MoS2 Monolayer. Solid State Commun. 2012, 152, 909–913. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Li, Y. Impact of Doping Concentration on Electronic Properties of Transition Metal-Doped Monolayer Molybdenum Disulfide. IEEE Trans. Electron. Devices 2018, 65, 733–738. [Google Scholar] [CrossRef]
- Williamson, I.; Li, S.; Hernandez, A.C.; Lawson, M.; Chen, Y.; Li, L. Structural, electrical, phonon, and optical properties of Ti- and V-doped two-dimensional MoS2. Chem. Phys. Lett. 2017, 674, 157–163. [Google Scholar] [CrossRef]
- Halim, S.N.M.; Zuikafly, S.N.F.; Taib, M.F.M.; Ahmad, F. First Principles Study on Electronic and Optical Properties of Graphene/MoS2 for Optoelectronic Application. In Proceedings of the 2020 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 28–29 July 2020; pp. 29–32. [Google Scholar]
- Nalwa, H.S. A Review of Molybdenum Disulfide (MoS2) Based Photodetectors: From Ultra-Broadband, Self-Powered to Flexible Devices. RSC Adv. 2020, 10, 30529–30602. [Google Scholar] [CrossRef] [PubMed]
- Aryeetey, F.; Pourianejad, S.; Ayanbajo, O.; Nowlin, K.; Ignatova, T.; Aravamudhan, S. Bandgap recovery of monolayer MoS2 using defect engineering and chemical doping. RSC Adv. 2021, 11, 20893–20898. [Google Scholar] [CrossRef]
- Xia, Z.; Tao, Y.; Pan, Z.; Shen, X. Enhanced photo catalytic performance and stability of 1T MoS2 transformed from 2H MoS2 via Li intercalation. Results Phys. 2019, 12, 2218–2224. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.-Z.; Wei, X.-X.; Guo, D.; Wu, B.; Yu, L.-W.; Wang, X.-R.; Shi, Y. Tuning Photoluminescence Performance of Monolayer MoS2 via H2O2 Aqueous Solution. Chin. Phys. Lett. 2015, 32, 117801. [Google Scholar] [CrossRef]
- Amani, M.; Lien, D.-H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S.R.; Addou, R.; Kc, S.; Dubey, M.; et al. Near-Unity Photoluminescence Quantum Yield in MoS2. Science 2015, 350, 1065–1068. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.; Mathew, S.; Nair, K.M.; O’Dowd, K.; Forouzandeh, P.; Goswami, A.; McGranaghan, G.; Pillai, S.C. 2D MoS2: Structure, mechanisms, and photocatalytic applications. Mater. Today Sustain. 2021, 13, 100073. [Google Scholar] [CrossRef]
- Ghorbani-Asl, M.; Zibouche, N.; Wahiduzzaman, M.; Oliveira, A.F.; Kuc, A.; Heine, T. Electromechanics in MoS2 and WS2: Nanotubes vs. Monolayers. Sci. Rep. 2013, 3, 2961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, R.; Simpson, J.R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X.; Kis, A.; Luo, T.; Hight Walker, A.R.; Xing, H.G. Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy. ACS Nano 2014, 8, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, U.; Kaur, M.; Singh, K.; Kumar, M.; Kumar, A. A synoptic review of MoS2: Synthesis to applications. Superlattices Microstruct. 2019, 128, 274–297. [Google Scholar] [CrossRef]
- Singh, A.; Late, D.J.; Kumar, A.; Patel, S.; Singh, J. 2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects. Appl. Mater. Today 2018, 13, 242–270. [Google Scholar] [CrossRef]
- Palanisamy, R.; Karuppiah, D.; Venkatesan, S.; Mani, S.; Kuppusamy, M.; Marimuthu, S.; Karuppanan, A.; Govindaraju, R.; Marimuthu, S.; Rengapillai, S.; et al. Performance asymmetric supercapacitor fabricated with a novel MoS2/Fe2O3/Graphene composite electrode. Colloids Interface Sci. Commun. 2022, 46, 100573. [Google Scholar] [CrossRef]
- Anbalagan, A.k.; Hu, F.C.; Chan, W.K.; Gandhi, A.C.; Gupta, S.; Chaudhary, M.; Chuang, K.W.; Ramesh, A.K.; Billo, T.; Sabbah, A.; et al. Gamma-Ray Irradiation Induced Ultrahigh Room-Temperature Ferromagnetism in MoS2 Sputtered Few-Layered Thin Films. ACS Nano 2023, 17, 6555–6564. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, J.; Yoo, G.; Park, J.H.; Yeom, G.Y.; Jang, Y.H.; Lee, S. Size-tunable synthesis of monolayer MoS2 nanoparticles and their applications in non-volatile memory devices. Nanoscale 2016, 8, 16995–17003. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Liu, C.; Luo, S.; Wang, L.; Cai, T.; Zeng, Y.; Yuan, J.; Dong, W.; Pei, Y.; et al. MoS2 quantum dots growth induced by S vacancy in ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 2018, 12, 751–758. [Google Scholar] [CrossRef]
- Ottaviano, L.; Palleschi, S.; Perrozzi, F.; D’Olimpio, G.; Priante, F.; Donarelli, M.; Benassi, P.; Nardone, M.; Gonchigsuren, M.; Gombosuren, M.; et al. Mechanical exfoliation and layer number identification of MoS2 revisited. 2D Mater. 2017, 4, 5013. [Google Scholar] [CrossRef]
- Lin, H.; Wang, J.; Luo, Q.; Peng, H.; Luo, C.; Qi, R.; Huang, R.; Travas-Sejdic, J.; Duan, C.G. Rapid and highly efficient chemical exfoliation of layered MoS2 and WS2. J. Alloys Compd. 2017, 699, 222–229. [Google Scholar] [CrossRef]
- Liu, N.; Kim, P.; Kim, J.H.; Ye, J.H.; Kim, S.; Lee, C.J. Large-Area Atomically Thin MoS2 Nanosheets Prepared Using Electrochemical Exfoliation. ACS Nano 2014, 8, 6902–6910. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Arunachalam, V.; Vasudevan, S. Liquid-Phase Exfoliation of MoS2 Nanosheets: The Critical Role of Trace Water. J. Phys. Chem. Lett. 2016, 7, 4884–4890. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, Y.; Xiang, M.; Zeng, H.; Shao, X. Single-layered MoS2 directly grown on rutile TiO2 (110) for enhanced interfacial charge transfer. ACS Nano 2019, 13, 6083–6089. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Xiong, Q.H.; Zhang, H. Rapid and reliable thickness identification of twodimensional nanosheets using optical microscopy. ACS Nano 2013, 7, 10344–10353. [Google Scholar] [CrossRef] [Green Version]
- Gao, E.; Lin, S.Z.; Qin, Z.; Buehler, M.J.; Feng, X.Q.; Xu, Z. Mechanical exfoliation of two-dimensional materials. J. Mech. Phys. Solids 2018, 115, 248–262. [Google Scholar] [CrossRef]
- Rigos, A.F.; Hill, H.M.; Li, Y.L.; Chernikov, A.; Heinz, T.F. Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett. 2015, 15, 5033–5038. [Google Scholar] [CrossRef]
- DiCamillo, K.; Krylyuk, S.; Shi, W.; Davydov, A.; Paranjape, M. Automated Mechanical Exfoliation of MoS2 and MoTe2 Layers for 2D Materials Applications. IEEE Trans. Nanotechnol. 2019, 18. [Google Scholar] [CrossRef]
- Li, H.; Yu, K.; Li, C.; Guo, B.; Lei, X.; Fu, H.; Zhu, Z. Novel dual-petal nanostructured WS2@MoS2 with enhanced photocatalytic performance and a comprehensive first-principles investigation. J. Mater. Chem. A 2015, 3, 20225. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Pazhamalai, P.; Veerasubramani, G.K.; Kim, S.J. Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors. J. Power Sources 2016, 321, 112–119. [Google Scholar] [CrossRef]
- Delogu, F.; Gorrasi, G.; Sorrentino, A. Fabrication of polymer nanocomposites via ball milling: Present status and future perspectives. Prog. Mater. Sci. 2017, 86, 75–126. [Google Scholar] [CrossRef]
- Cantarella, M.; Gorrasi, G.; Mauro, A.D.; Scuderi, M.; Nicotra, G.; Fiorenza, R.; Scirè, S.; Scalisi, M.E.; Brundo, M.V.; Privitera, V.; et al. Mechanical milling: A sustainable route to induce structural transformations in MoS2 for applications in the treatment of contaminated water. Sci. Rep. 2019, 9, 974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Kumar, V.; Devi, R.; Sisodia, A.K.; Jatrana, A.; Singh, R.B.; Dahiya, R.; Mishra, A.K. Sustainable and Scalable Approach for Enhancing the Electrochemical Performance of Molybdenum Disulfide (MoS2). Adv. Mater. Sci. Eng. 2022, 2022, 1288623. [Google Scholar] [CrossRef]
- Shi, D.; Yang, M.; Chang, B.; Ai, Z.; Zhang, K.; Shao, Y.; Wang, S.; Wu, Y.; Hao, X. Ultrasonic-Ball Milling: A Novel Strategy to Prepare Large-Size Ultrathin 2D Materials. Small 2020, 16, 1906734. [Google Scholar] [CrossRef]
- Sahoo, D.; Kumar, B.; Sinha, J.; Ghosh, S.; Roy, S.S.; Kaviraj, B. Cost effective liquid phase exfoliation of MoS2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light. Sci. Rep. 2020, 10, 10759. [Google Scholar] [CrossRef]
- Kumar, R.R.; Habib, M.R.; Khan, A.; Chen, P.C.; Murugesan, T.; Gupta, S.; Anbalagan, A.K.; Tai, N.H.; Lee, C.H.; Lin, H.N. Sulfur Monovacancies in Liquid-Exfoliated MoS2 Nanosheets for NO2 Gas Sensing. ACS Appl. Nano Mater. 2021, 4, 9459–9470. [Google Scholar] [CrossRef]
- Chen, I.-W.P.; Lai, Y.-M.; Liao, W.-S. One-Pot Synthesis of Chlorophyll-Assisted Exfoliated MoS2/WS2 Heterostructures via Liquid-Phase Exfoliation Method for Photocatalytic Hydrogen Production. Nanomaterials 2021, 11, 2436. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Lei, D.; Wang, P. Improving electrocatalytic activity of 2H-MoS2 nanosheets obtained by liquid phase exfoliation: Covalent surface modification versus interlayer interaction. J. Catal. 2020, 391, 424–434. [Google Scholar] [CrossRef]
- Liu, Y.; He, X.; Hanlon, D.; Harvey, A.; Coleman, J.N.; Li, Y. Liquid Phase Exfoliated MoS2 Nanosheets Percolated with Carbon Nanotubes for High Volumetric/Areal Capacity Sodium-Ion Batteries. ACS Nano 2016, 10, 8821–8828. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. High-yield exfoliation of MoS2 (WS2) monolayers towards efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 431, 133286. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Guo, W.; Zhao, M.; Fan, X.; Dong, Y.; Xu, C.; Deng, J.; Fu, Y. Synthesis Methods of Two-Dimensional MoS2: A Brief Review. Crystals 2017, 7, 198. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Liu, Z.; Najmaei, S.; Ajayan, P.M.; Lou, J. Large-areavapor-phase growth and characterization of MoS2 atomic layers on aSiO2 substrate. Small 2012, 8, 966–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrosi, A.; Sofer, Z.; Pumera, M. 2H→1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem Comm. 2015, 51, 8450–8453. [Google Scholar] [CrossRef]
- Voiry, D.; Goswami, A.; Kappera, R.; Silva, C.d.C.C.e.; Kaplan, D.; Fujita, T.; Chen, M.; Asefa, T.; Chhowalla, M. Covalentfunctionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 2015, 7, 45–49. [Google Scholar] [CrossRef]
- Shi, S.; Sun, Z.; Hu, Y.H. Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2. J. Mater. Chem. A 2018, 6, 23932–23977. [Google Scholar] [CrossRef]
- Hong, S.; Krishnamoorthy, A.; Rajak, P.; Tiwari, S.; Misawa, M.; Shimojo, F.; Kalia, R.K.; Nakano, A.; Vashishta, P. Computational synthesis of MoS2 layers by reactive molecular dynamics simulations: Initial sulfidation of MoO3 surfaces. Nano Lett. 2017, 17, 4866–4872. [Google Scholar] [CrossRef]
- Hong, S.; Sheng, C.; Krishnamoorthy, A.; Rajak, P.; Tiwari, S.; Nomura, K.I.; Misawa, M.; Shimojo, F.; Kalia, R.K.; Nakano, A.; et al. Chemical vapor deposition synthesis of MoS2 layers from the direct sulfidation of MoO3 surfaces using reactive molecular dynamics simulations. J. Phys. Chem. C 2018, 122, 7494–7503. [Google Scholar] [CrossRef]
- Park, W.; Park, J.; Jang, J.; Lee, H.; Jeong, H.; Cho, K.; Hong, S.; Lee, T. Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology 2013, 24, 095202. [Google Scholar] [CrossRef]
- Qiu, H.; Pan, L.; Yao, Z.; Li, J.; Shi, Y.; Wang, X. Electrical characterization of back-gated bi-layer MoS2field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 123104. [Google Scholar] [CrossRef]
- Choudhary, N.; Park, J.; Hwang, J.Y.; Choi, W. Growth of large-scale and thickness-modulated MoS2nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 21215–21222. [Google Scholar] [CrossRef] [PubMed]
- Rovira, M.A.D.; Samaniego-Benitez, J.E.; Ramírez-Aparicio, J.; León-Sarabia, E.; Moreno-Bárcenas, A.; Garcia-Garcia, A. Synthesis of MoS2 ribbons with “thorns” by CVD process. Mater. Lett. 2022, 320, 132355. [Google Scholar] [CrossRef]
- Chiawchan, T.; Ramamoorthy, H.; Buapan, K.; Somphonsane, R. CVD Synthesis of Intermediate State-Free, Large-Area and Continuous MoS2 via Single-Step Vapor-Phase Sulfurization of MoO2 Precursor. Nanomaterials 2021, 11, 2642. [Google Scholar] [CrossRef]
- Mawlong, L.P.; Biroju, R.K.; Giri, P.K. Low-Temperature Chemical Vapor Deposition Growth of MoS2Nanodots and Their Raman and Photoluminescence Profiles. Front. Nanotech. 2021, 3, 775732. [Google Scholar] [CrossRef]
- Almohaimeed, Z.M.; Karamat, S.; Akram, R.; Sarwar, S.; Javaid, A.; Oral, A. An Effective Route for the Growth of Multilayer MoS2 by Combining Chemical Vapor Deposition and Wet Chemistry. Adv. Condens. Matter Phys. 2022, 2022, 1687–8108. [Google Scholar] [CrossRef]
- Vishwanath, S.; Liu, X.; Rouvimov, S.; Mende, P.; Azcatl, A.; McDonnell, S.; Wallace, R.; Feenstra, R.; Furdyna, J.; Jena, D.; et al. Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene. 2D Mater. 2015, 2, 024007. [Google Scholar] [CrossRef]
- Qin, X.; Ke, P.; Wang, A.; Kim, K. Microstructure, mechanical and tribological behaviors of MoS2-Ti composite coatings deposited by a hybrid HIPIMS method. Surf. Coat. Technol. 2013, 228, 275–281. [Google Scholar] [CrossRef]
- Muratore, C.; Hu, J.J.; Wang, B.; Haque, M.A.; Bultman, J.E.; Jespersen, M.L.; Shamberger, P.J.; McConney, M.E.; Naguy, R.D.; Voevodin, A.A. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl. Phys. Lett. 2014, 104, 261604. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Mao, N.; Wu, J.; Xu, H.; Wang, C.; Zhang, J.; Xie, L. Growth of MoS2(1–x)Se2x (x = 0.41 − 1) Monolayer Alloys with Controlled Morphology by Physical Vapor Deposition. ACS Nano 2015, 9, 7450–7455. [Google Scholar] [CrossRef]
- Gong, C.; Huang, C.; Miller, J.; Cheng, L.; Hao, Y.; Cobden, D.; Kim, J.; Ruoff, R.S.; Wallace, R.M.; Cho, K.; et al. Metal Contacts on Physical Vapor Deposited Monolayer MoS2. ACS Nano 2013, 7, 11350–11357. [Google Scholar] [CrossRef] [PubMed]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Asim, N.; Ahmadi, S.; Alghoul, M.A.; Hammadi, F.Y.; Saeedfar, K.; Sopian, K. Research and development aspects on chemical preparation techniques of photo anodes for dye sensitized solar cells. Int. J. Photoenergy 2014, 2014, 518156. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Yu, K.; Qi, R.; Zhu, Z. Fabrication and theoretical investigation of MoS2-Co3S4 hybrid hollow structure as electrode material for lithium-ion batteries and supercapacitors. Chem. Eng. J. 2018, 347, 607–617. [Google Scholar] [CrossRef]
- Wen, S.; Liu, Y.; Zhu, F.; Shao, R.; Xu, W. Hierarchical MoS2 nanowires/NiCo2O4 nanosheets supported on Ni foam for highperformance asymmetric supercapacitors. Appl. Surf. Sci. 2018, 428, 616–622. [Google Scholar] [CrossRef]
- Wang, M.; Li, G.; Xu, H.; Qian, Y.; Yang, J. Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl. Mater. Interfaces 2013, 5, 1003–1008. [Google Scholar] [CrossRef]
- Wang, P.P.; Sun, H.; Ji, Y.; Li, W.; Wang, X. Three dimensional assembly of single layered MoS2. Adv. Mater. 2014, 26, 964–969. [Google Scholar] [CrossRef]
- Ramakrishna Matte, H.; Gomathi, A.; Manna, A.K.; Late, D.J.; Datta, R.; Pati, S.K.; Rao, C. MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 2010, 122, 4153–4156. [Google Scholar] [CrossRef]
- Muralikrishna, S.; Manjunath, K.; Samrat, D.; Reddy, V.; Ramakrishnappa, T.; Nagaraju, D.H. Hydrothermal synthesis of 2D MoS2 nanosheets for electrocatalytic hydrogen evolution reaction. RSC Adv. 2015, 5, 89389–89396. [Google Scholar] [CrossRef]
- Fan, L.Q.; Liu, G.J.; Zhang, C.Y.; Wu, J.H.; Wei, Y.L. Facile one-step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor. Int. J. Hydrogen Energy 2015, 40, 10150–10157. [Google Scholar] [CrossRef]
- Ma, L.; Chen, W.X.; Li, H.; Zheng, Y.F.; Xu, Z.D. Ionic liquid-assisted hydrothermal synthesis of MoS2 microspheres. Mater. Lett. 2008, 62, 797–799. [Google Scholar] [CrossRef]
- Nagaraju, G.; Tharamani, C.N.; Chandrappa, G.T.; Livage, J. Hydrothermal synthesis of amorphous MoS2 nanofiber bundles via acidification of ammonium heptamolybdate tetrahydrate. Nanoscale Res. Lett. 2007, 2, 461–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.; Shi, M.; Zhao, S.; Tan, W.; Lin, X.; Wang, H.; Jiang, F. Hydrothermal synthesis of MoS2 with controllable morphologies and its adsorption properties for bisphenol A. J. Saudi Chem. Soc. 2019, 23, 762–773. [Google Scholar] [CrossRef]
- Mulu, M.; Devi, D.R.; Belachew, N.; Basavaiah, K. Hydrothermal green synthesis of MoS2 nanosheets for pollution abatement and antifungal applications. RSC Adv. 2021, 11, 24536–24542. [Google Scholar] [CrossRef] [PubMed]
- Mani, N.P.; Cyriac, J. Green approach to synthesize various MoS2 nanoparticles via hydrothermal process. Bull. Mater. Sci. 2022, 45, 184. [Google Scholar] [CrossRef]
- Cordeiro, N.J.A.; Gaspar, C.; Oliveira, M.J.D.; Nunes, D.; Barquinha, P.; Pereira, L.; Fortunato, E.; Martins, R.; Laureto, E.; Lourenço, S.A. Fast and Low-Cost Synthesis of MoS2 Nanostructures on Paper Substrates for Near-Infrared Photodetectors. Appl. Sci. 2021, 11, 1234. [Google Scholar] [CrossRef]
- Xuan, T.T.; Long, L.N.; Khai, T.V. Effect of reaction temperature and reaction time on the structure and properties of MoS2 synthesized by hydrothermal method. Vietnam. J. Chem. 2020, 58, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Duraisamy, S.; Ganguly, A.; Sharma, P.K.; Benson, J.; Davis, J.; Papakonstantinou, P. One-Step Hydrothermal Synthesis of Phase-Engineered MoS2/MoO3 Electrocatalysts for Hydrogen Evolution Reaction. ACS Appl. Nano Mater. 2021, 4, 2642–2656. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, R.A.; Senthilkumar, B.; Polu, A.R.; Madhavan, J.; Ashokkumar, M. Recent advances in MoS2 nanostructured materials for energy and environmental applications—A review. J. Solid State Chem. 2017, 252, 43–71. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M.d.; Gadore, V. MoS2 based nanocomposites: An excellent material for energy and environmental applications. J. Environ. Chem. Eng. 2021, 9, 105836. [Google Scholar] [CrossRef]
- Saha, D.; Kruse, P.J. Editors’ Choice—Review—Conductive Forms of MoS2 and Their Applications in Energy Storage and Conversion. J. Electrochem. Soc. 2020, 167, 126517. [Google Scholar] [CrossRef]
- Li, X.; Li, T.; Huang, S.; Zhang, J.; Pam, M.E.; Yang, H.Y. Controllable Synthesis of Two-Dimensional Molybdenum Disulfide (MoS2) for Energy-Storage Applications. ChemSusChem 2020, 13, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Luo, J.; Xiang, K.; Zhou, W.; Zhang, C.; Chen, H. High-performance monoclinic WO3 nanospheres with the novel NH4+ diffusion behaviors for aqueous ammonium-ion batteries. Chem. Eng. J. 2023, 458, 141381. [Google Scholar] [CrossRef]
- Li, D.; Guo, H.; Jiang, S.; Zeng, G.; Zhou, W.; Li, Z. Microstructures and electrochemical performances of TiO2-coated Mg–Zr co-doped NCM as a cathode material for lithium-ion batteries with high power and long circular life. New J. Chem. 2021, 45, 19446–19455. [Google Scholar] [CrossRef]
- Zhou, W.; Zeng, G.; Jin, H.; Jiang, S.; Huang, M.; Zhang, C.; Chen, H. Bio-Template Synthesis of V2O3@Carbonized Dictyophora Composites for Advanced Aqueous Zinc-Ion Batteries. Molecules 2023, 28, 2147. [Google Scholar] [CrossRef]
- Yan, Q.; Yu, L.; Jingyi, L.; Cuihua, T.; Han, X.; Yiqiang, W. Research progress of wood-derived energy storage materials. J. For. Eng. 2021, 6, 1–13. [Google Scholar]
- Jiao, Y.; Hafez, A.M.; Cao, D.; Mukhopadhyay, A.; Ma, Y.; Zhu, H. Metallic MoS2 for High Performance Energy Storage and Energy Conversion. Small 2018, 14, 1800640. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Yang, Y.; Lv, W.; Lian, G.; Golberg, D.; Wang, X.; Zhao, X.; Ding, Y. A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature. Nano Energy 2020, 70, 104550. [Google Scholar] [CrossRef]
- Baheri, Y.T.; Maleki, M.; Karimian, H.; Javadpoor, J.; Masoudpanah, S.M. Well-distributed 1T/2H MoS2 nanocrystals in the N-doped nanoporous carbon framework by direct pyrolysis. Sci. Rep. 2023, 13, 7492. [Google Scholar] [CrossRef]
- Li, S.; Liu, P.; Huang, X.; Tang, Y.; Wang, H. Reviving the bulky MoS2 as advanced anode for lithium-ion batteries. J. Mater. Chem. A 2019, 7, 10988–10997. [Google Scholar] [CrossRef]
- Deng, C.; Wanga, H.; Wang, S. Clarifying the lithium storage behavior of MoS2 with in situ electrochemical impedance spectroscopy. J. Mater. Chem. A 2021, 9, 15734–15743. [Google Scholar] [CrossRef]
- Bozheyev, F.; Zhexembekova, A.; Zhumagali, S.; Molkenova, A.; Bakenov, Z. MoS2 nanopowder as anode material for lithium-ion batteries produced by self-propagating high-temperature synthesis. Mater. Today: Proc. 2017, 4, 4567–4571. [Google Scholar]
- George, C.; Morris, A.J.; Modarres, M.H.; De Volder, M. Structural Evolution of Electrochemically Lithiated MoS2 Nanosheets and the Role of Carbon Additive in Li-Ion Batteries. Chem. Mater. 2016, 28, 7304–7310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santhosha, A.L.; Nayak, P.K.; Pollok, K.; Langenhorst, F.; Adelhelm, P. Exfoliated MoS2 as Electrode for All-Solid-State Rechargeable Lithium-Ion Batteries. J. Phys. Chem. C 2019, 123, 12126–12134. [Google Scholar] [CrossRef]
- Yang, F.; Feng, X.; Glans, P.A.; Guo, J. MoS2 for beyond lithium-ion batteries. APL Mater. 2021, 9, 050903. [Google Scholar] [CrossRef]
- Cha1, E.; Kim, D.K.; Choi, W. Advances of 2D MoS2 for High-Energy Lithium Metal Batteries. Front. Energy Res. 2021, 9, 645403. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y.; Ni, J.; Li, L. Molybdenum-based materials for sodium-ion batteries. InfoMat 2021, 3, 339–352. [Google Scholar] [CrossRef]
- Wu, J.; Liu, J.; Cui, J.; Yao, S.; Ihsan-Ul-Haq, M.; Mubarak, N.; Quattrocchi, E.; Ciucci, F.; Kim, J. Dual-Phase MoS2 as a High-Performance Sodium-Ion Battery Anode. J. Mater. Chem. A 2020, 8, 2114–2122. [Google Scholar] [CrossRef]
- Jang, J.; Jung, H.; Oh, S.M.; Heon, J. A comparative study of reaction mechanism of MoS2 negative electrode materials for sodium-ion batteries. J. Alloys Compd. 2021, 876, 160182. [Google Scholar] [CrossRef]
- Song, P.; Di, J.; Kang, L.; Xu, M.; Tang, B.; Xiong, J.; Cui, J.; Zeng, Q.; Zhou, J.; He, Y.; et al. Enhancing the cycling stability of Na-ion batteries by bonding MoS2 on assembled carbon-based materials. Nano Mater. Sci. 2019, 1, 310–317. [Google Scholar] [CrossRef]
- Li, W.; Bashir, T.; Wang, J.; Zhou, S.; Yang, S.; Zhao, J.; Gao, L. Enhanced Sodium-Ion Storage Performance of a 2D MoS2 Anode Material Coated on Carbon Nanotubes. ChemElectroChem 2021, 8, 903–910. [Google Scholar] [CrossRef]
- Ye, W.; Wu, F.; Shi, N.; Zhou, H.; Chi, Q.; Chen, W.; Du, S.; Gao, P.; Li, H.; Xiong, S. Metal–Semiconductor Phase Twinned Hierarchical MoS2 Nanowires with Expanded Interlayers for Sodium-Ion Batteries with Ultralong Cycle Life. Small 2019, 15, 1805405–1805410. [Google Scholar]
- Dai, H.; Tang, M.; Huang, J.; Wang, Z. A Series of Molecule-Intercalated MoS2 as Anode Materials for Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 10870–10877. [Google Scholar] [CrossRef] [PubMed]
- Chothe, U.; Ugale, C.; Kulkarni, M.; Kale, B. Solid-State Synthesis of Layered MoS2 Nanosheets with Graphene for Sodium-Ion Batteries. Crystals 2021, 11, 660. [Google Scholar] [CrossRef]
- Halankar, K.K.; Mandal, B.P.; Tyagi, A.K. Superior electrochemical performance of MoS2 decorated on functionalized carbon nanotubes as anode material for sodium ion battery. Carbon Trends 2021, 5, 100103. [Google Scholar] [CrossRef]
- Naz, R.; Abbas, W.; Liu, Q.; Shafi, S.; Gull, S.; Khan, S.; Rasheed, T.; Song, G.; Gu, J. Covalent functionalization of electrochemically exfoliated 1T-MoS2 nanosheets for high-performance supercapacitor electrode. J. Alloys Compd. 2023, 951, 169944. [Google Scholar] [CrossRef]
- Sun, X.; Pang, Y.; Li, S.; Yu, Y.; Ding, X.; Wang, L.; Zhang, Q. High performance asymmetric supercapacitor based on 3D microsphere-like 1T-MoS2 with high 1T phase content. Ceram. Int. 2022, 48, 21317–21326. [Google Scholar] [CrossRef]
- Zarach, Z.; Szkoda, M.; Trzciński, K.; Łapiński, M.; Trykowski, G.; Nowak, A. The phenomenon of increasing capacitance induced by 1T/2H-MoS2 surface modification with Pt particles—Influence on composition and energy storage mechanism. Electrochim. Acta 2022, 435, 141389. [Google Scholar] [CrossRef]
- Shrivastav, M.; Singh Kushwaha, H.; Dhiman, R. 2H-MoS2 as an electrode material for oxygen reduction reaction and supercapacitor applications. Mater. Today Proc. 2022, in press. [Google Scholar] [CrossRef]
- Arun Kumar, M.; Shanmugavel, C.; Hanagata, N.; Jayavel, R. Simplified detection of the hybridized DNA using a graphene field effect transistor. Sci. Tech. Adv. Mater. 2017, 18, 43–50. [Google Scholar]
- Arun Kumar, M.; Jayavel, R.; Shanmugam, M.; Sengottaiyan, C.; Chinnathambi, S.; Mohankumar, N. A compact sensory platform-based pH sensor using graphene field effect transistor. J. Nanosci. Nanotechnol. 2021, 21, 3299–3305. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.A.; Jayavel, R.; Arivanandhan, M.; Raj, B.; Mohankumar, N. Performance Enhancement and Comparison of Graphene Field Effect Transistor Devices Coated with HMDS Layer. Silicon 2022, 14, 10467–10474. [Google Scholar] [CrossRef]
- Ramakrishnan, K.; Nithya, C.; Karvembu, R. Heterostructure of two different 2D materials based on MoS2 nanoflowers@rGO: An electrode material for sodium-ion capacitors. Nanoscale Adv. 2019, 1, 334–341. [Google Scholar] [CrossRef] [Green Version]
- Zhan, C.; Liu, W.; Hu, M.; Liang, Q.; Yu, X.; Shen, Y.; Lv, R.; Kang, F.; Huang, Z.H. High-performance sodium-ion hybridcapacitors based on an interlayer-expanded MoS2/rGO composite: Surpassing the performance of lithium-ion capacitors in a uniform system. NPG Asia Mater. 2018, 10, 775. [Google Scholar] [CrossRef]
- Ji, H.; Hu, S.; Jiang, Z.; Shi, S.; Hou, W.; Yang, G. Directly scalable preparation of sandwiched MoS2/graphene nanocomposites via ball-milling with excellent electrochemical energy storage performance. Electrochim. Acta 2019, 299, 143–151. [Google Scholar] [CrossRef]
- Quan, T.; Goubard-Bretesche, N.; Hark, E.; Kochovski, Z.; Mei, S.; Pinna, N.; Ballauff, M.; Lu, Y. Highly Dispersible Hexagonal Carbon−MoS2−Carbon Nanoplates with Hollow Sandwich Structures for Supercapacitors. Chem. Eur. J. 2019, 25, 4757–4766. [Google Scholar] [CrossRef]
- Chen, X.; Ding, J.; Jiang, J.; Zhuang, G.; Zhang, Z.; Yang, P. Preparation of a MoS2/carbon nanotube composite as an electrode material for high-performance supercapacitors. RSC Adv. 2018, 8, 29488–29494. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, H.; Mohanan, K.; Cho, S. Facile Synthesis of Biocarbon-Based MoS2 Composite for High-Performance Supercapacitor Application. Nano Lett. 2022, 22, 8161–8167. [Google Scholar] [CrossRef]
- Zhang, Y.; He, T.; Liu, G.; Zu, L.; Yang, J. One-pot mass preparation of MoS2/C aerogels for high-performance supercapacitors and lithium-ion batteries. Nanoscale 2017, 9, 10059–10066. [Google Scholar] [CrossRef]
- Farshadnia, M.; Ensafi, A.; Zarean, M.; Rezaei, B. Design and synthesis of three-dimensional CoNi2S4@MoS2@rGO nanocomposites and its application in electrochemical supercapacitors. J. Alloys Compd. 2022, 906, 164278. [Google Scholar] [CrossRef]
- Fang, L.; Qiu, Y.; Zhai, T.; Wang, F.; Lan, M.; Huang, K.; Jing, Q. Flower-like nanoarchitecture assembled from Bi2S3 nanorod/MoS2 nanosheet heterostructures for high-performance supercapacitor electrodes. Colloids Surf. 2017, 535, 41–48. [Google Scholar] [CrossRef]
- Wang, B.; Hu, R.; Zhang, J.; Huang, Z.; Qiao, H.; Gong, L.; Qi, X. 2D/2D SnS2/MoS2 layered heterojunction for enhanced supercapacitor performance. J. Am. Ceram. 2020, 103, 1088–1096. [Google Scholar] [CrossRef]
- Govindan, R.; Hong, X.; Sathishkumar, P.; Cai, Y.; Gu, F. Construction of metal-organic framework-derived CeO2/C integrated MoS2 hybrid for high-performance asymmetric supercapacitor. Electrochim. Acta 2020, 353, 136502. [Google Scholar] [CrossRef]
- Chiu, S.-K.; Chen, P.-Y.; Louh, R.-F. Electrochemically Deposited MoS2 and MnS Multilayers on Nickel Substrates in Inverse Opal Structure as Supercapacitor Microelectrodes. Micromachines 2023, 14, 361. [Google Scholar] [CrossRef]
- Tue, L.N.M.; Sahoo, S.; Dhakal, G.; Nguyen, V.H.; Lee, J.; Lee, Y.R.; Shim, J.-J. NiCo2S4/MoS2 Nanocomposites for Long-Life High-Performance Hybrid Supercapacitors. Nanomaterials 2023, 13, 689. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, F.; Wang, G.; Ge, K.; Ren, H.; Yan, M.; Wang, Q.; Bi, H. Hybrid MoS2@PANI materials for high-performance supercapacitor electrode. Ionics 2021, 27, 4083–4096. [Google Scholar] [CrossRef]
- Suresh, S.; Sindhu, V. CeO2/PANI/MoS2 composite electrode for symmetric supercapacitor application. J. Indian Chem. Soc. 2022, 99, 100727. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, G.; Lei, J.; Hu, D.; Dou, S.; Gu, H.; Li, H.; Zhang, X. Growth of PANI thin layer on MoS2 nanosheet with high electro-capacitive property for symmetric supercapacitor. J. Alloys Compd. 2019, 798, 227–234. [Google Scholar] [CrossRef]
- Ganesha, H.; Veeresh, S.; Nagaraju, Y.S.; Vandana, M.; Ashokkumar, S.P.; Vijeth, H.; Devendrappa, H. Growth of 3-Dimentional MoS2-PANI nanofiber for high electrochemical performance. Mater. Res. Express 2020, 8, 084001. [Google Scholar] [CrossRef]
- Hu, L.; Wu, H.; La Mantia, F.; Yang, Y.; Cui, Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano 2010, 4, 5843–5848. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J.; Wang, X.; Chen, G.; Chen, D.; Zhou, C.; Shen, G. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011. [Google Scholar] [CrossRef]
- Peng, X.; Peng, L.; Wu, C.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303–3323. [Google Scholar] [CrossRef]
- Chee, W.K.; Lim, H.N.; Zainal, Z.; Huang, N.M.; Harrison, I.; Andou, Y. Flexible Graphene-Based Supercapacitors: A Review. J. Phys. Chem. C 2016, 120, 4153–4172. [Google Scholar] [CrossRef]
- Cherusseri, J.; Choudhary, N.; Kumar, K.S.; Jung, Y.; Thomas, J. Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horiz. 2019, 4, 840–858. [Google Scholar] [CrossRef]
- Wu, X.; Xu, Y.; Hu, Y.; Wu, G.; Cheng, H.; Yu, Q.; Zhang, K.; Chen, W.; Chen, S. Microfluidic-spinning construction of black-phosphorus-hybrid microfibres for non-woven fabrics toward a high energy density flexible supercapacitor. Nat. Commun. 2018, 9, 4573. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Huang, Q.; Niu, L.; Wang, D.; Yan, C.; She, Y.; Zheng, Z. Waterproof, Ultrahigh Areal-Capacitance, Wearable Supercapacitor Fabrics. Adv. Mater. 2017, 29, 1606679. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.; Chang, H.; Fu, F.; Hu, L.; Huang, J.; Wang, S. Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability. J. Power Sources 2016, 327, 438–446. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors based on flexible graphene/polyanilinenanofiber composite films. ACS Nano 2010, 4, 1963–1970. [Google Scholar] [CrossRef]
- Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Coaxial wet-spun yarn supercapacitors for highenergy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, A.; Badhulika, S. Flexible supercapacitors based on 2D materials. Fundam. Supercapacitor Appl. 2d Mater. 2021, 10, 253–310. [Google Scholar]
- Mohan, M.; Shetti, N.P.; Aminabhavi, T.M. Recent developments in MoS2-based flexible supercapacitors. Mater. Today Chem. 2023, 27, 101333. [Google Scholar] [CrossRef]
- Manuraj, M.; Nair, K.K.; Unni, K.N.; Rakhi, R.B. High performance supercapacitors based on MoS2 nanostructures with near commercial mass loading. J. Alloys Compd. 2020, 819, 152963. [Google Scholar] [CrossRef]
- Qian, Y.; Lyu, Z.; Zhang, Q.; Lee, T.H.; Kang, T.K.; Sohn, M.; Shen, L.; Kim, D.H.; Kang, D.J. High-Performance Flexible Energy Storage Devices Based on Graphene Decorated with Flower-Shaped MoS2 Heterostructures. Micromachines 2023, 14, 297. [Google Scholar] [CrossRef]
- Chang, H.; Zhang, L.; Lyu, S.; Wang, S. Flexible and Freestanding MoS2 Nanosheet/Carbon Nanotube/Cellulose Nanofibril Hybrid Aerogel Film for High-Performance All-Solid-State Supercapacitors. ACS Omega 2022, 7, 14390–14399. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liang, X.; Li, G.; Shao, F.; Xia, T.; Xu, S.; Hu, N.; Su, Y.; Yang, Z.; Zhang, Y. Inkjet printed ultrathin MoS2-based electrodes for flexible in-plane microsupercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 39444–39454. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Shi, J.; Du, X.; Cheng, Q.; Xue, R.; Wang, Q.; Wang, M.; Ruan, L.; Zeng, W. Direct laser etching free-standing MXene-MoS2 film for highly flexible micro-supercapacitor. Adv. Mater. Interfaces 2019, 6, 1901160. [Google Scholar] [CrossRef]
- Raman, V.; Rhee, D.; Selvaraj, A.R.; Kim, J.; Prabakar, K.; Kang, J.; Kim, H.K. High performance flexible transparent micro-supercapacitors from nanocomposite electrodes encapsulated with solution processed MoS2 nanosheets. Sci. Technol. Adv. Mater. 2021, 22, 875–884. [Google Scholar] [CrossRef]
- Wu, H.; Guo, Z.; Li, M.; Hu, G.; Tang, T.; Wen, J.; Li, X.; Huang, H. Enhanced pseudocapacitive performance of MoS2 by introduction of both N-GQDs and HCNT for flexible supercapacitors. Electrochim. Acta 2021, 370, 137758. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhai, S.; Huang, M.; Songsiriritthigul, P.; Aung, S.H.; Oo, T.Z.; Luo, M.; Chen, F. 3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics. Energy 2021, 227, 120419. [Google Scholar] [CrossRef]
- Pi, X.; Sun, X.; Wang, R.; Chen, C.; Wu, S.; Zhan, F.; Zhong, J.; Wang, Q.; Ostrikov, K.K. MoS2 nanosheets on plasma-nitrogen-doped carbon cloth for high-performance flexible supercapacitors. J. Colloid Interface Sci. 2023, 629, 227–237. [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, R.; Zhang, R.; Zhang, D.; Sun, C.; Long, Z.; Li, Y. 3D hetero-nanostructured electrode constructed on carbon fiber paper with 2D 1T-MoS2/1D Cu(OH)2 for flexible asymmetric solid-state supercapacitors. J. Power Sources 2022, 523, 231031. [Google Scholar] [CrossRef]
- Sharma, G.K.; Ranjan, B.; Kaur, D. Electrochemical kinetics of 2D-MoS2 sputtered over stainless-steel mesh: Insights into the Na+ ions storage for flexible supercapacitors. Ceram. Int. 2022, 48, 23404–23414. [Google Scholar] [CrossRef]
- Sharma, G.K.; Ranjan, B.; Kaur, D. Estimating Li-ion storage in semiconducting nanocomposite of 2D-MoS2 decorated aluminum nitride nanoflowers for flexible electrodes of supercapacitors. Appl. Phys. Lett. 2022, 121, 013901. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Shu, T.; Yuan, J.; Lu, G.; Lin, B.; Gao, Z.; Wei, F.; Ma, C.; Qi, J.; et al. Two-dimensional hierarchical MoS2 lamella inserted in CoS2 flake as an advanced supercapacitor electrode. J. Energy Storage 2022, 51, 104299. [Google Scholar] [CrossRef]
- Sharma, G.K.; Ranjan, B.; Kaur, D. Two-dimensional MoS2 reinforced with Cu3N nanoflakes prepared via binder less sputtering route for flexible supercapacitor electrodes. Appl. Phys. Lett. 2021, 118, 203901. [Google Scholar] [CrossRef]
- Chen, I.; Chou, Y.; Wang, P. Integration of Ultrathin MoS2/PANI/CNT Composite Paper in Producing All-Solid-State Flexible Supercapacitors with Exceptional Volumetric Energy Density. J. Phys. Chem. C 2019, 123, 17864–17872. [Google Scholar] [CrossRef]
- Wu, W.; Wang, L.; Li, Y.; Zhang, F.; Lin, L.; Niu, S.; Chenet, D.; Zhang, X.; Hao, Y.; Heinz, T.F.; et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kaur, N.; Bhullar, V.; Mahajan, A. MoS2 nanorods anchored reduced graphene oxide nanohybrids for electrochemical energy conversion applications. Physica E Low Dimens. Syst. Nanostruct. 2021, 128, 114589. [Google Scholar] [CrossRef]
- Hiragond, C.B.; Kim, H.; Lee, J.; Sorcar, S.; Erkey, C.; In, S.I. Electrochemical CO2 Reduction to CO Catalyzed by 2D Nanostructures. Catalysts 2020, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Asadi, M.; Kumar, B.; Behranginia, A.; Rosen, B.A.; Baskin, A.; Repnin, N.; Pisasale, D.; Phillips, P.; Zhu, W.; Haasch, R.; et al. Robust Carbon Dioxide Reduction on Molybdenum Disulphide Edges. Nat. Commun. 2014, 5, 4470. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Jamnuch, S.; Majidi, L.; Misal, S.; Ahmadiparidari, A.; Dato, M.A.; Sterbinsky, G.E.; Wu, T.; Salehi-Khojin, A.; Pascal, T.A.; et al. Active States During the Reduction of CO2 by a MoS2 Electrocatalyst. J. Phys. Chem. Lett. 2023, 14, 3222–3229. [Google Scholar] [CrossRef] [PubMed]
- Linghu, Y.; Tong, T.; Li, C.; Wu, C. The catalytic mechanism of CO2 electrochemical reduction over transition metal-modified 1T’-MoS2 monolayers. Appl. Surf. Sci. 2022, 590, 153001. [Google Scholar] [CrossRef]
- Xie, Y.; Li, X.; Wang, Y.; Li, B.; Yang, L.; Zhao, N.; Liu, M.; Wang, X.; Yu, Y.; Liu, J.M. Reaction mechanisms for reduction of CO2 to CO on monolayer MoS2. Appl. Surf. Sci. 2020, 499, 143964. [Google Scholar] [CrossRef]
- Francis, S.A.; Velazquez, J.M.; Ferrer, I.M.; Torelli, D.A.; Guevarra, D.; McDowell, M.T.; Sun, K.; Zhou, X.; Saadi, F.H.; John, J.; et al. Reduction of Aqueous CO2 to 1-Propanol at MoS2 Electrodes. Chem. Mater. 2018, 30, 4902–4908. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Kang, S.; Charles, H.; Lee, C.S. Epitaxial Growth of Flower-Like MoS2 on One-Dimensional Nickel Titanate Nanofibers: A “Sweet Spot” for Efficient Photoreduction of Carbon Dioxide. Front. Chem. 2022, 10, 837915. [Google Scholar] [CrossRef]
- Al-Ghiffari, A.D.; Ludin, N.A.; Davies, M.L.; Yunus, R.M.; Suait, M.S. Systematic review of molybdenum disulfide for solar cell applications: Properties, mechanism and application. Mater. Today Commun. 2022, 32, 104078. [Google Scholar] [CrossRef]
- Tsai, M.; Su, S.; Chang, J.K.; Tsai, D.S.; Chen, C.H.; Wu, C.I.; Li, L.J.; Chen, L.J.; He, J.H. Monolayer MoS2 Heterojunction Solar Cells. ACS Nano 2014, 8, 8317–8322. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xin, L.; Liu, L.; Pang, D.; Jiao, Y.; Cong, R.; Yu, W. Large area MoS2/Si heterojunction-based solar cell through sol-gel method. Mater. Lett. 2019, 238, 13–16. [Google Scholar] [CrossRef]
- Singh, R.; Giri, A.; Pal, M.; Thiyagarajan, K.; Kwak, J.; Lee, J.J.; Jeong, U.; Cho, K. Perovskite solar cells with an MoS2 electron transport layer. J. Mater. Chem. A 2019, 7, 7151–7158. [Google Scholar] [CrossRef]
- Iqbal, T.; Ahsan, S.; Saeed, F.; Sultan, M.S.; AlObaid, A.A.; Warad, I.; Masood, A. Improved Efficiency of MoS2-Au Multilayer Plasmonic-Based Solar Cells: Far- and Near-Field Analysis. Plasmonics 2023, 38, 1–11. [Google Scholar] [CrossRef]
- Sattari, F.; Mirershadi, S. Enhancement of absorption in a CH3NH3PbI3-based photonic crystal in the presence of the monolayer MoS2. Sci. Rep. 2023, 13, 5970. [Google Scholar] [CrossRef]
- Aymukhanov, A.K.; Seisembekova, T.E.; Zeynidenov, A.K.; Ilyasov, B.R.; Alekseev, A.M.; Zhakhanova, A.M. Effect of molybdenum disulfide nanoparticles on the properties of the zinc oxide electron transport layer of an organic solar cell. Mater. Sci. 2023, 20, 20–26. [Google Scholar]
- Luo, Z.; Guo, T.; Wang, C.; Zou, J.; Wang, J.; Dong, W.; Li, J.; Zhang, W.; Zhang, X.; Zheng, W. Enhancing the Efficiency of Perovskite Solar Cells through Interface Engineering with MoS2 Quantum Dots. Nanomaterials 2022, 12, 3079. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Chen, X.; Bao, F.; Liu, Y.; Feng, T.; Dong, H.; Yu, L.; Dong, L. Improved charge extraction and atmospheric stability of all-inorganic Cs2AgBiBr6 perovskite solar cells by MoS2 nanoflakes. Sol. Energy Mater. Sol. Cells. 2022, 246, 111932. [Google Scholar] [CrossRef]
- Sabari Girisun, T.C.; Durairaj, M.; Vijaya, S.; Anandan, S. 1T and 2H phase molybdenum disulfide as a counter electrode for Pt free dye-sensitized solar cells. Mater. Sci. Eng. B 2023, 287, 116123. [Google Scholar] [CrossRef]
- Niu, S.; Cai, J.; Wang, G. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2020, 14, 1985–2002. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, X.; Chen, S.; Ma, T.; Li, Y. Interface Engineering and Anion Engineering of Mo-Based Heterogeneous Electrocatalysts for Hydrogen Evolution Reaction. Energy Environ. Mater. 2021, 6, e12310. [Google Scholar] [CrossRef]
- Li, P.Z.; Chen, N.; Al-Hamry, A.; Sheremet, E.; Lu, R.; Yang, Y.; Kanoun, O.; Baumann, R.R.; Rodriguez, R.D.; Chen, J.J. Inkjet-printed MoS2-based 3D-structured electrocatalysts on Cu films for ultra-efficient hydrogen evolution reaction. Chem. Eng. J. 2023, 457, 141289. [Google Scholar] [CrossRef]
- Liao, J.; Xue, Z.; Sun, H.; Xue, F.; Zhao, Z.; Wang, X.; Dong, W.; Yang, D.; Nie, M. MoS2 supported on Er-MOF as efficient electrocatalysts for hydrogen evolution reaction. J. Alloys Compd. 2022, 898, 162991. [Google Scholar] [CrossRef]
- Swathy, B.S.; Anamika, A.; Asha, A.S. Edge terminated and interlayer expanded pristine MoS2 nanostructures with 1T on 2H phase, for enhanced hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 9579–9592. [Google Scholar]
- Wang, S.; Li, J.; Hu, S.; Kang, H.; Zhao, S.; Xiao, R.; Sui, Y.; Chen, Z.; Peng, S.; Jin, Z.; et al. Morphology Regulation of MoS2 Nanosheet-Based Domain Boundaries for the Hydrogen Evolution Reaction. ACS Appl. Nano Mater. 2022, 5, 2273–2279. [Google Scholar] [CrossRef]
- Xiao, Y.; Yao, J.; Zhang, T.; Ma, X.; Xu, D.; Gao, H. Three-dimensional cross-linked Co-MoS2 catalyst on carbon cloth for efficient hydrogen evolution reaction. Dalton Trans. 2022, 51, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.T.; Linh, D.C.; Nguyen, L.D.; Chang, H.; Patil, S.A.; Shrestha, N.K.; Bui, K.X.; Bui, T.S.; Nguyen, T.N.A.; Tung, N.T.; et al. In-situ formation and integration of graphene into MoS2 interlayer spacing: Expansion of interlayer spacing for superior hydrogen evolution reaction in acidic and alkaline electrolyte. J. Mater. Sci. 2022, 57, 18993–19005. [Google Scholar] [CrossRef]
- Sundara Venkatesh, P.; Kannan, N.; Ganesh Babu, M.; Paulraj, G.; Jeganathan, K. Transition metal doped MoS2 nanosheets for electrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 37256–37263. [Google Scholar] [CrossRef]
- Chen, X.; Sun, J.; Guan, J.; Ji, J.; Zhou, M.; Meng, L.; Chen, M.; Zhou, W.; Liu, Y.; Zhang, X. Enhanced hydrogen evolution reaction performance of MoS2 by dual metal atoms doping. Int. J. Hydrogen Energy 2022, 47, 23191–23200. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, L.; Ma, X.; Wang, J.; Shang, X.; Wang, Z.; Kandawa-Schulz, M.; Song, W.; Wang, Y. A simple method for synthesizing Co, P-codoped MoS2 nanoflowers as electrocatalysts to enhance hydrogen evolution reaction. Ionics 2022, 28, 2337–2347. [Google Scholar] [CrossRef]
- Wei, H.; Tan, A.; Liu, W.; Piao, J.; Wan, K.; Liang, Z.; Xiang, Z.; Fu, Z. Interface Engineering-Induced 1T-MoS2/NiS Heterostructure for Efficient Hydrogen Evolution Reaction. Catalysts 2022, 12, 947. [Google Scholar] [CrossRef]
- German, E.; Gebauer, R. Why are MoS2 monolayers not a good catalyst for the oxygen evolution reaction? Appl. Surf. Sci. 2020, 528, 146591. [Google Scholar] [CrossRef]
- Bao, W.; Li, Y.; Zhang, J.; Ai, T.; Yang, C.; Feng, L. Interface engineering of the NiCo2O4@MoS2/TM heterostructure to realize the efficient alkaline oxygen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 12176–12184. [Google Scholar] [CrossRef]
- Chen, S.; Cao, Z.; Gao, F.; An, H.; Wang, H.; Zhou, Z.; Mi, L.; Li, Y. 1T-MoS2/Co3S4/Ni3S2 nanoarrays with abundant interfaces and defects for overall water splitting. Colloids Surf. 2023, 661, 130930. [Google Scholar] [CrossRef]
- He, W.; Wang, L.; Zhang, H.; Gao, S.; Yu, W.; Yin, D.; Dong, X. SnO2@MoS2 heterostructures grown on nickel foam as highly efficient bifunctional electrocatalyst for overall water splitting in alkaline media. J. Alloys Compd. 2023, 938, 168678. [Google Scholar] [CrossRef]
- Tan, X.; Duan, Z.; Liu, H.; Wu, X.; Cho, Y. Core-shell structured MoS2/Ni9S8 electrocatalysts for high performance hydrogen and oxygen evolution reactions. Mater. Res. Bull. 2022, 146, 111626. [Google Scholar] [CrossRef]
- Rong, M.; Mo, Y.; Zhou, S.; Ma, X.; Wang, S.; Cao, Z.; Zhong, H. Ce and MoS2 dual-doped cobalt aluminum layered double hydroxides for enhanced oxygen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 1644–1655. [Google Scholar] [CrossRef]
- Liu, G.; Ouyang, X.; Wei, X.-L.; Bao, W.-W.; Feng, X.-H.; Zhang, J.-J. Coupling Interface Construction of Ni(OH)2/MoS2 Composite Electrode for Efficient Alkaline Oxygen Evolution Reaction. Catalysts 2022, 12, 966. [Google Scholar] [CrossRef]
- Ran, N.; Song, E.; Wang, Y.; Zhou, Y.; Liu, J. Dynamic coordination transformation of active sites in single-atom MoS2 catalysts for boosted oxygen evolution catalysis. Energy Environ. Sci. 2022, 15, 2071–2083. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, X.; Xu, S.; Yang, G.; Fan, J.; Guo, J.; Cai, W.; Zhao, C. Construction of amorphous CoFeOx(OH)y/MoS2/CP electrode for superior OER performance. Int. J. Hydrogen Energy 2022, 47, 28859–28868. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, X.; Qin, J.; Liu, R. Constructing MoS2/g-C3N4 heterojunction with enhanced oxygen evolution reaction activity: A theoretical insight. Appl. Surf. Sci. 2020, 510, 145489. [Google Scholar] [CrossRef]
- Abd-Elrahim, A.; Chun, D. Nanosized Co3O4–MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium. J. Alloys Compd. 2021, 853, 156946. [Google Scholar] [CrossRef]
- Mu, X.; Zhu, Y.; Gu, X.; Dai, S.; Mao, Q.; Bao, L.; Li, W.; Liu, S.; Bao, J.; Mu, S. Awakening the oxygen evolution activity of MoS2 by oxophilic-metal induced surface reorganization engineering. J. Energy Chem. 2021, 62, 546–551. [Google Scholar] [CrossRef]
- Samy, O.; El Moutaouaki, A. A Review on MoS2 Energy Applications: Recent Developments and Challenges. Energies 2021, 14, 4586. [Google Scholar] [CrossRef]
- Vedhanarayanan, B.; Shi, J.; Lin, J.Y.; Yun, S.; Lin, T.W. Enhanced activity and stability of MoS2 through enriching 1T-phase by covalent functionalization for energy conversion applications. Chem. Eng. J. 2021, 403, 126318. [Google Scholar] [CrossRef]
- Park, S.; Park, J.; Abroshan, H.; Zhang, L.; Kim, J.K.; Zhang, J.; Guo, J.; Siahrostami, S.; Zheng, X. Enhancing Catalytic Activity of MoS2 Basal Plane S-Vacancy by Co Cluster Addition. ACS Energy Lett. 2018, 3, 2685–2693. [Google Scholar] [CrossRef]
- Mohan, M.; Nagaraj, P.; Aminabhavi, T.M. Phase dependent performance of MoS2 for supercapacitor applications. J. Energy Storage 2023, 58, 106321. [Google Scholar] [CrossRef]
- Mouloua, D.; Kotbi, A.; Deokar, G.; Kaja, K.; El Marssi, M.; El Khakani, M.A.; Jouiad, M. Recent Progress in the Synthesis of MoS2 Thin Films for Sensing, Photovoltaic and Plasmonic Applications: A Review. Materials 2021, 14, 3283. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Chatterjee, K. Recent advances in the field of transition metal chalcogenides for biomedical applications. Nanoscale 2018, 10, 16365–16397. [Google Scholar] [CrossRef]
Synthesis Method | Merits | Demerits |
---|---|---|
Mechanical exfoliation | High-quality crystal structure; Same crystal structure as their bulk; Simple method; No chemical reaction involved. | Less yield produced; Substrate assistance is needed; Thickness of the layer was not controllable. |
Ball milling | High yield/Massive production; High surface area; Reaction parameters are controllable. | The inert condition required; Yield has a few-layered thickness. |
Liquid phase exfoliation | High yield/Massive production; Scalable method; Low-cost method. | Toxic organic solvents involved; Yield has a few-layered thickness. |
Chemical vapor deposition | High-quality crystal with purity; Size and thickness are scalable; High surface area films; High deposition rate. | Solid substrate assistance is needed with a vacuum; High operating temperature; Possibility of toxicity of precursors. |
Physical vapor deposition | Atomic-level control of chemical deposition; Safer than CVD. | Low deposition rate; Requirement of annealing time; Line-of-sight deposition. |
Wet chemical synthesis | High yield with low cost; Easy hybridization with other nanomaterials; Controllable size and shape. | Large degree of agglomeration may occur, Difficult to obtain nanoparticles with a single layer. |
Electrodes | Synthesis Method | Specific Capacitance | Retention after Bending/ Twisting | Retention Rate (Cycles) | Energy Density | Power Density | Ref. |
---|---|---|---|---|---|---|---|
MoS2/Gr | Hydrothermal method | 208 F g−1 | NA | 86.5% (10,000) | 65 Wh kg−1 | 0.33 kW kg−1 | [205] |
MoS2/NGQDs/ HCNT@CC | Hydrothermal method | 1893 mF cm−2 | NA | 86% (2500) | 673 μWh cm−2 | 5687 μW cm−2 | [210] |
CC-CNC@ MoS2 | Hydrothermal method | 120.7 mF cm−2 | NA | 88.2% (10,000) | 0.016 mWh cm−2 | 8.3 mW cm−2 | [211] |
MoS2/NCC | Plasma method | 3834.28 mF cm−2 | NA | 83.3% (10,000) | 138.12 µWh cm−2 | 7417.33 µW cm−2 | [212] |
1T-MoS2/ Cu(OH)2@CFP | wet-mold papermaking technology | 1124 mF cm−2 | NA | 90.8% (20,000) | 0.130 mWh cm−2 | 0.375 mW cm−2 | [213] |
MoS2@SSM | DC sputtering method | 214.90 F g−1 | 92% | 88% (3000) | 28.05 Wh kg−1 | 0.26 kW kg−1 | [214] |
MoS2-AlN@SS | binder-free sputtering method | 372.35 F g−1 | 95% | 93% (5000) | 28.05 Wh kg−1 | 0.26 kW kg−1 | [215] |
MoS2@CoS2 | calcination and sulfuration | 950 F g−1 | NA | 94.6% (10,000) | 33.94 Wh kg−1 | 1040 W kg−1 | [216] |
MoS2-Cu3N | Magnetron Sputtering | 215.47 F g−1 | 91% | 90% (2000) | 30 Wh kg−1 | 138 W kg−1 | [217] |
MoS2/PANI/CNT | Sonication method | 245 F cm−3 | NA | 80% (2000) | 0.013 Wh cm−3 | 1.0 W cm−3 | [218] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, K.B.M.; Arun Kumar, M.; Mahalingam, S.; Kim, J.; Atchudan, R. Recent Advances in Molybdenum Disulfide and Its Nanocomposites for Energy Applications: Challenges and Development. Materials 2023, 16, 4471. https://doi.org/10.3390/ma16124471
Ismail KBM, Arun Kumar M, Mahalingam S, Kim J, Atchudan R. Recent Advances in Molybdenum Disulfide and Its Nanocomposites for Energy Applications: Challenges and Development. Materials. 2023; 16(12):4471. https://doi.org/10.3390/ma16124471
Chicago/Turabian StyleIsmail, Kamal Batcha Mohamed, Manoharan Arun Kumar, Shanmugam Mahalingam, Junghwan Kim, and Raji Atchudan. 2023. "Recent Advances in Molybdenum Disulfide and Its Nanocomposites for Energy Applications: Challenges and Development" Materials 16, no. 12: 4471. https://doi.org/10.3390/ma16124471
APA StyleIsmail, K. B. M., Arun Kumar, M., Mahalingam, S., Kim, J., & Atchudan, R. (2023). Recent Advances in Molybdenum Disulfide and Its Nanocomposites for Energy Applications: Challenges and Development. Materials, 16(12), 4471. https://doi.org/10.3390/ma16124471