A Micromechanical Analysis to the Viscoplastic Behavior of Sintered Silver Joints under Shear Loading
Abstract
:1. Introduction
2. Constitutive Model Theory
2.1. Finite Element Theoretical Model of Crystal Plasticity
2.2. Inelastic Shear Rate Function
3. Experimental Section
3.1. Preparation of the Mixed Paste
3.2. Preparation of Shear Specimens
4. Determination of Parameters
4.1. Finite Element Model
4.2. Parameters Identification
4.3. Convergence Study
5. Results and Discussion
5.1. Fracture Surface and Void Distribution
5.2. Shear Stress Responses with Different Strain Rates and Temperatures
5.3. Simulation Results of Nano-Silver
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jung, D.H.; Jung, J.P. Review of the wettability of solder with a wetting balance test for recent advanced microelectronic packaging. Crit. Rev. Solid State Mater. Sci. 2019, 44, 324–343. [Google Scholar] [CrossRef]
- Wang, P.; Cai, W.; Fan, J.J. The temperature-dependent fractional evolutional model for sintered nanoscale silver films. Eur. J. Mech. A Solids 2021, 90, 104359. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Arif, Z.U.; Ahmed, W.; Arshad, H. Evaluation of tensile properties of fiber metal laminates under different strain rates. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 236, 556–564. [Google Scholar] [CrossRef]
- Chin, H.S.; Cheong, K.Y.; Ismail, A.B. A review on die attach materials for SiC-based high-temperature power devices. Metall. Mater. Trans. B 2010, 41, 824–832. [Google Scholar] [CrossRef]
- Chen, C.T.; Choe, C.Y.; Zhang, Z.; Kim, D.J.; Suganuma, K. Low-stress design of bonding structure and its thermal shock performance (−50 to 250 °C) in SiC/DBC power die-attached modules. J. Mater. Sci. Mater. Electron. 2018, 29, 14335–14346. [Google Scholar] [CrossRef]
- Li, M.Y.; Xiao, Y.; Zhang, Z.H.; Yu, J. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications. ACS Appl. Mater. Interfaces 2015, 7, 9157–9168. [Google Scholar] [CrossRef]
- Paknejad, S.A.; Mannan, S.H. Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab. 2017, 70, 1–11. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Wang, W.G.; Bai, H.L.; Zou, G.S.; Liu, L.; Peng, P.; Guo, W. Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications. J. Alloys Compd. 2019, 774, 487–494. [Google Scholar] [CrossRef]
- Su, Y.T.; Fu, G.C.; Liu, C.Q.; Zhang, K.; Zhao, L.G.; Liu, C.Y.; Liu, A.; Song, J.N. Thermo-elasto-plastic phase-field modelling of mechanical behaviours of sintered nano-silver with randomly distributed micro-pores. Comput. Methods Appl. Mech. Eng. 2021, 378, 113729. [Google Scholar] [CrossRef]
- Long, H.H.; Zhang, L.; Ma, H.C.; Li, J.H.; Xia, J.Y.; Zhang, Y.N.; Chen, J.Q. Heterogeneous integration system in display (HiSID) for next-generation terminal device. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 731–739. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y. Modeling and Simulation for Microelectronic Packaging Assembly: Manufacturing, Reliability and Testing; Wiley: Singapore, 2011; p. 576. [Google Scholar]
- Qian, Z.; Liu, S. On the life prediction and accelerated testing of solder joints. In Proceedings of the 3rd International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing, Binghamton, NY, USA, 30 September 1998. [Google Scholar]
- Ide, E.; Angata, S.; Hirose, A.; Kobayashi, K.F. Metal–metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 2005, 53, 2385–2393. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Chen, X.; Lu, G.Q.; Wang, L.; Mei, Y.H. High temperature ratcheting behavior of nano-silver paste sintered lap shear joint under cyclic shear force. Microelectron. Reliab. 2013, 53, 174–181. [Google Scholar] [CrossRef]
- Yu, D.J.; Chen, X.; Chen, G.; Lu, G.Q.; Wang, Z.Q. Applying Anand model to low-temperature sintered nanoscale silver paste chip attachment. Mater. Des. 2009, 30, 4574–4579. [Google Scholar] [CrossRef]
- He, G.; Yao, Y.; Yuting, Y. Size effect on the fracture of sintered porous nano-silver joints: Experiments and Weibull analysis. J. Alloys Compd. 2021, 863, 158611. [Google Scholar] [CrossRef]
- Bai, N.; Chen, X.; Gao, H. Simulation of uniaxial tensile properties for lead-free solders with modified Anand model. Mater. Des. 2009, 30, 122–128. [Google Scholar] [CrossRef]
- Long, G.Y.; Zhang, Y.P.; Fan, X.L.; Zhou, H.; Guan, C.L. Deposition of high reflective films on deformable mirror for high power laser system. Opt. Eng. 2020, 59, 057103. [Google Scholar] [CrossRef]
- Heilmann, J.; Nikitin, I.; Zschenderlein, U.; May, D.; Pressel, K.; Wunderle, B. Reliability experiments of sintered silver based interconnections by accelerated isothermal bending tests. Microelectron. Reliab. 2017, 74, 136–146. [Google Scholar] [CrossRef]
- Liu, L.; Yao, Y.; Zeng, T. A micromechanical analysis to the elasto-viscoplastic behavior of solder alloys. Int. J. Solids Struct. 2019, 159, 211–220. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Sheikh, M.F.; Zolfagharian, A.; Bodaghi, M. Biopolymeric sustainable materials and their emerging applications. J. Environ. Chem. Eng. 2022, 10, 108159. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Arif, Z.U. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag. Shelf Life 2022, 33, 100892. [Google Scholar] [CrossRef]
- Xie, M.W.; Chen, G.; Yang, J.; Xu, W.L. Temperature- and rate-dependent deformation behaviors of SAC305 solder using crystal plasticity model. Mech. Mater. 2021, 157, 103834. [Google Scholar] [CrossRef]
- Roters, F.; Eisenlohr, P.; Hantcherli, L.; Tjahjanto, D.D.; Bieler, T.R.; Raabe, D. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 2010, 58, 1152–1211. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, W. Numerical assessment on fatigue damage evolution of materials at crack tip of CT specimen based on CPFEM. Theor. Appl. Fract. Mech. 2020, 109, 102687. [Google Scholar] [CrossRef]
- Wang, H.; Clausen, B.; Tomé, C.N.; Wu, P.D. Studying the effect of stress relaxation and creep on lattice strain evolution of stainless steel under tension. Acta Mater. 2013, 61, 1179–1188. [Google Scholar] [CrossRef]
- Beyerlein, I.J.; Tomé, C.N. A dislocation-based constitutive law for pure Zr including temperature effects. Int. J. Plast. 2008, 24, 867–895. [Google Scholar] [CrossRef]
- Lebensohn, R.A.; Tomé, C.N.; CastaÑeda, P.P. Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos. Mag. 2007, 87, 4287–4322. [Google Scholar] [CrossRef]
- Gong, J.C.; Liu, C.Q.; Conway, P.P.; Silberschmidt, V.V. Micromechanical modelling of SnAgCu solder joint under cyclic loading: Effect of grain orientation. Comput. Mater. Sci. 2007, 39, 187–197. [Google Scholar] [CrossRef]
- Zamiri, A.; Bieler, T.R.; Pourboghrat, F. Anisotropic crystal plasticity finite element modeling of the effect of crystal orientation and solder joint geometry on deformation after temperature change. J. Electron. Mater. 2009, 38, 231–240. [Google Scholar] [CrossRef]
- Darbandi, P.; Bieler, T.R.; Pourboghrat, F.; Lee, T.K. Crystal plasticity finite-element analysis of deformation behavior in multiple-grained lead-free solder joints. J. Electron. Mater. 2013, 42, 201–214. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Ma, K.; Chen, Z.W.; Qian, Z.F.; Lee, N.C. Anisotropic constitutive model coupled with damage for Sn-rich solder: Application to SnAgCuSb solder under tensile conditions. Int. J. Damage Mech. 2021, 31, 582–604. [Google Scholar] [CrossRef]
- Hu, P.; Liu, Y.; Zhu, Y.G.; Ying, L. Crystal plasticity extended models based on thermal mechanism and damage functions: Application to multiscale modeling of aluminum alloy tensile behavior. Int. J. Plast. 2016, 86, 1–25. [Google Scholar] [CrossRef]
- Qian, Z.; Ren, W.; Liu, S. A damage coupling framework of unified viscoplasticity for the fatigue of solder alloys. J. Electron. Packag. 1999, 121, 162–168. [Google Scholar] [CrossRef]
- Hill, R.; Rice, J.R. Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 1972, 20, 401–413. [Google Scholar] [CrossRef]
- Goh, C.H.; Neu, R.W.; McDowell, D.L. Crystallographic plasticity in fretting of Ti–6AL–4V. Int. J. Plast. 2003, 19, 1627–1650. [Google Scholar] [CrossRef]
- Huang, Y.G. Other Report. A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program; Harvard University: Cambridge, UK, 1991. [Google Scholar]
- Liu, X.; Liu, L.; Sun, R.; Li, J.J. Low temperature sintering of MOD assisted Ag paste for die-attach application. Mater. Lett. 2021, 305, 130799. [Google Scholar] [CrossRef]
- Wang, S.Z.; Sun, Y.M.; Sheng, C.; Feng, Z.; Li, R.; Xue, L.H.; Liu, J.; Liu, S. Warpage analysis and prediction of the advanced fan-out technology based on process mechanics. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 2201–2213. [Google Scholar] [CrossRef]
Parameter Number | CPFEM Parameter | Unit | Nomenclature | Value |
---|---|---|---|---|
1 | GPa | Elastic constants | 5.384 | |
2 | GPa | 2.307 | ||
3 | GPa | 1.538 | ||
4 | KJ mol−1 | Activation energy | 14,000 | |
5 | - | Inelastic slip rate | 0.54 | |
6 | - | Dislocation plasticity strain-rate exponent | 3 | |
7 | MPa | Saturation critical resolved stress | 18 | |
8 | MPa | Initial critical resolved stress | 11.5 | |
9 | MPa | Material constants | 20 | |
10 | MPa | Material constants | 15 | |
11 | MPa | Initial hardening rate | 100 | |
12 | - | Ration between self-hardening and latent hardening | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, K.; Liu, X.; Sun, Y.; Song, Y.; Feng, Z.; Zhou, Y.; Liu, S. A Micromechanical Analysis to the Viscoplastic Behavior of Sintered Silver Joints under Shear Loading. Materials 2023, 16, 4472. https://doi.org/10.3390/ma16124472
Ma K, Liu X, Sun Y, Song Y, Feng Z, Zhou Y, Liu S. A Micromechanical Analysis to the Viscoplastic Behavior of Sintered Silver Joints under Shear Loading. Materials. 2023; 16(12):4472. https://doi.org/10.3390/ma16124472
Chicago/Turabian StyleMa, Kun, Xun Liu, Yameng Sun, Yifan Song, Zheng Feng, Yang Zhou, and Sheng Liu. 2023. "A Micromechanical Analysis to the Viscoplastic Behavior of Sintered Silver Joints under Shear Loading" Materials 16, no. 12: 4472. https://doi.org/10.3390/ma16124472
APA StyleMa, K., Liu, X., Sun, Y., Song, Y., Feng, Z., Zhou, Y., & Liu, S. (2023). A Micromechanical Analysis to the Viscoplastic Behavior of Sintered Silver Joints under Shear Loading. Materials, 16(12), 4472. https://doi.org/10.3390/ma16124472