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Abstract: The objectives of this study were to compare the effects of various acid solutions com-
bined with ultrasonics as an aid to remove mineral trioxide aggregate (MTA)-based root canal filling
and to assess their effect on the surface topography and microhardness of root canal dentin. Ma-
terials and Method: Fifty human permanent single rooted and single canaled freshly extracted
teeth were decoronated and sectioned apically to prepare the middle third of root sections of 5 mm
length. The canals were prepared in a step-back manner. OrthoMTA was packed throughout the
prepared canals. These root sections were incubated for one week and subsequently randomly
allocated to five groups (n = 10) according to the OrthoMTA removal method: No treatment (NT);
5% glycolic acid + ultrasonics (5% GA+U); 10% glycolic acid + ultrasonics (10% GA+U); 10% cit-
ric acid + ultrasonics (10% CA+U); Distilled water + ultrasonics (DW+U). A 1 mm deep well was
created within the coronal end of the set OrthoMTA. Wells were filled with each respective test
solution and left for 5 min. Thereafter, further removal of OrthoMTA used a specific ultrasonic tip.
Finally, the canals were flushed using 1 mL of the respective test solutions and activated with a
Controlled Memory ultrasonic tip for two cycles of 20 s each followed by flushing with 1 mL of
distilled water and paper point drying of the canals. Then, specimens were longitudinally split
into two halves and examined under a scanning electron microscope (1000×) to assess the residual
OrthoMTA and surface topography of root canal dentin. The Vickers surface microhardness of treated
radicular dentin was measured using the HMV-2 microhardness tester. Result: Data were analysed
using one-way ANOVA followed by Tukey’s post hoc test. Significant differences for residual Or-
thoMTA were observed between (10% GA+U) with (5% GA+U), (10% CA+U), (DW+U) and (NT)
(p value < 0.01). In the context of microhardness, (5% GA+U) and (10% GA+U) showed statistically
significant difference compared to (NT), (10% CA+U) and (DW+U) (p value < 0.01). Conclusion:
10% GA+U was superior to other tested groups in removing OrthoMTA, but it substantially reduced
dentin microhardness.

Keywords: endodontic retreatment; OrthoMTA; citric acid; glycolic acid

1. Introduction

Mineral trioxide aggregate (MTA) has been widely used in endodontics since its
introduction as a root-end filling material for apical surgery [1]. MTA is a hydrophilic
powder that hydrates to form hydrated calcium silica and calcium hydroxide [2]. MTA is
now successfully used in endodontics as direct pulp capping, pulpotomy, apexification,
repair of root perforation and regenerative endodontic procedures, owing to its sealing
ability, antibacterial activity, biocompatibility, osteo-inductive potential and its ability to
bond to the tooth structure, thus providing a monobloc effect [3–6]. Its use has further
expanded as an obturation material in certain demanding situations and as an intra-orifice
barrier above the gutta percha to improve the coronal seal [7–10].

Recently, a newly developed OrthoMTA claims to be as biocompatible as MTA, with
lower content of heavy metals. When used as a root canal filling material, it forms an inter-
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facing layer of hydroxyapatite (Hap) between the OrthoMTA and the canal wall. It thereby
prevents microleakage and induces regeneration of the apical periodontium. [7,11,12]. In
addition, due to its bioactive characteristic and release of calcium ions, OrthoMTA helps
with reducing periapical inflammation [13].

In the event of endodontic treatment failure, the complete removal of old obturating
material is necessary. The residual filling materials may prevent contact with irrigation
solutions as well as medicaments, with the persistent microorganisms hiding beneath, thus
negatively affecting the long-term prognosis of retreatment [14].

Despite having many advantages, there exists a hesitancy to use OrthoMTA as a
root canal filling material due to the challenges faced by clinicians in its removal during
retreatment in the event of treatment failure. Numerous methods, including the use of
rotary files or ultrasonic endodontic tips, have been evaluated in the past for the removal
of MTA or MTA-based sealers [15]. Additionally, certain acidic solutions including 17%
EDTA, 10% citric acid, 37% hydrochloric acid and 5% glycolic acid have also been tested to
dissolve various MTA preparations [16–20]. Despite all the efforts to identify appropriate
methods for MTA removal, there is no established method that is conclusive and found
clinically effective. In addition, the use of strong acidic solutions and mechanical devices to
remove MTA-based material or OrthoMTA may negatively influence the microhardness
and surface topography of the radicular dentin.

Hence, the present study aimed to compare the effects of various acidic solutions
combined with ultrasonics as an aid to remove the OrthoMTA from the root sections and
assess their effect on the surface topography and microhardness of the radicular dentin. The
null hypothesis proposed that test solutions will not aid in the removal of OrthoMTA, would
cause significant damage to the radicular dentin and would reduce the microhardness.

2. Materials and Methods

This study was initiated after obtaining ethical approval from the university’s Ethics
and Research Committee. Fifty human permanent single rooted and single canaled teeth
extracted due to carious, periodontic or orthodontic reasons were procured from the
Institution’s oral health centre according to the Ministry of Health Guidelines for Ethical
Review of Clinical Research or Research Involving Human Subjects (2006). The sample size
was calculated based on mean and standard deviation using G*Power 3.1.9.2. (Heinrich
Heine University, Dusseldorf, Germany; Erdfelder, Faul, & Buchner, 1996), giving the power
of study as 95.34% with a total sample size of 50 (10 per group). The level of significance
was set at 0.05. The procured extracted teeth were cleaned, sterilized and stored in distilled
water until used. All teeth were decoronated and sectioned apically using a diamond
disc (NTI Flex, Kerr Dental, Brea, CA, USA) under continuous water spray to prepare
the middle third of root sections of 5 mm length. The canals of the root sections were
prepared with Gates-Glidden burs (Dentsply Maillefer, Ballaigues, Switzerland) from size
2 (0.70 mm) to size 6 (1.50 mm) in a step-back manner and irrigated with distilled water.
The prepared root canals were irrigated with 5 mL of 3.0% NaOCl (Parcan N, Septodont,
Saint-Maur-des-Fossés, France) and 17% EDTA (Largal Ultra, Septodont, Kuala Lampur,
Malaysia) to remove the smear layer, followed by a final rinsing with distilled water. Apical
ends of the root sections were sealed using cold cure acrylic resin (Vertex Self Curing, Sdn
Bhd, Kuala Lampur, Malaysia), mimicking as an apical barrier to prevent extrusion of
the OrthoMTA. OrthoMTA powder (BioMTA, Seoul, Republic of Korea) was mixed with
distilled water (powder to liquid ratio of 3:1) into a paste consistency according to the
manufacturer’s instructions and packed into the root sections using an OrthoMTA gun and
OrthoMTA plugger (BioMTA, Seoul, Republic of Korea) with a 1.0 mm sized tip and butt
end of a size F3 Protaper Gold absorbent point (Dentsply-Sirona, Charlotte NC, USA) using
minimal pressure. The filled root sections were covered with a damped gauze soaked in
phosphate-buffered saline and stored in an incubator with 100% humidity at 37 ◦C for one
week to allow the complete setting of the OrthoMTA.
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All specimens were randomly allocated to five groups (n = 10) according to the test solu-
tions used for the removal of OrthoMTA. The groups were as follows—(NT): No treatment;
(5% GA+U): 5% glycolic acid + ultrasonics; (10% GA+U): 10% glycolic acid + ultrasonics;
(10% CA+U): 10% citric acid + ultrasonics; (DW+U): distilled water + ultrasonics. A 1 mm
deep well was created using a number one round tungsten carbide bur, size 008 (Komet
Dental, Lemgo, Germany) within the coronal end of the OrthoMTA for each specimen to
secure the acid solution. For each of the five groups, the acid solution filled the prepared
wells for all specimens and was allowed to remain there for 5 min. Thereafter, a 0.5 mm rigid
ball ultrasonic tip (MTA removal Kit, Bio MTA, South Korea) was used to further remove
the OrthoMTA. After the removal of the OrthoMTA, the canals were flushed using 1 mL of
respective acid solutions and the 0.25mm Controlled Memory tip (MTA removal Kit, Bio
MTA, Seoul, Republic of Korea) was activated for two cycles of 20 s each. Finally, all the
canals were flushed with 1 mL of distilled water followed by drying using an absorbent paper
point. Thereafter, each specimen was longitudinally split into two halves and examined under
a scanning electron microscope (1000×) (TM3000 Tabletop Microscope, Hitachi High-Tech
IPC, Kuala Lumpur, Malaysia) to assess the residual OrthoMTA and surface topography of
the root canal dentin. The residual OrthoMTA was scored and tabulated according to the
following criteria [21]: Score 0: 0–25% of residual OrthoMTA covering the dentinal surface;
Score 1: <50% of the dentin surface covered with OrthoMTA; Score 2: 50–75% of the dentin
surface covered with OrthoMTA; Score 3: 75–100% of the dentin surface covered with Or-
thoMTA. The SEM images were assessed by an independent evaluator and the results were
tabulated according to the scoring criteria mentioned earlier.

The Vickers surface microhardness of radicular dentin of all the tested specimens was
measured using the HMV-2 microhardness tester (Shimadzu, Kyoto, Japan) having a square-
based, pyramid-shaped diamond indenter that produced a quadrangular depression with
two equal orthogonal diagonals in the polished surface of the object. The angle between
the opposite faces of the diamond indenter was set to 136 degrees. A microhardness test of
dentin was performed at 0.5 mm, level from the canal lumen with a full load of 980.7 MN
(HV 0.1) for 5 s at room temperature. The Vickers microhardness value was displayed on
the digital readout of the microhardness tester. Two indentations were made on the dentin
surface of each specimen, placed 1 mm or more apart from each other (Figure 1). For better
understanding, a schematic diagram of the entire methodology is shown in Figure 2.
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Figure 2. Schematic flow-chart diagram of the methodology showing the step-by-step procedure.

3. Results

Direct visualization of SEM micrographs suggested that (10% GA+U) resulted in
the least residual OrthoMTA, followed by (5% GA+U), (10% CA+U), (DW+U) and (NT),
respectively.

In group (10% GA+U), the cleanest dentinal surface was appreciable due to the pres-
ence of opened dentinal tubules and sparsely existing residual OrthoMTA particles covering
25% or less of the treated surface. Similar appearances were seen in the micrographs from
(5% GA+U) and (10% CA+U); however, these groups yielded the presence of comparatively
more amounts of residual OrthoMTA. The SEM images from (DW+U) showed a dentin
surface entirely covered with OrthoMTA and partially eroded, accompanied with crack
lines, whereas the (NT) group obviously demonstrated the presence of densely compacted
OrthoMTA (Figure 3A–E).
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Figure 3. (A–E) Groupwise representative SEM images (1000×). (A) (NT) Entire dentin surface
covered with OrthoMTA; (B) (5% GA+U) Substantially cleaned dentin surface visible in the form of
open dentinal tubules along with fewer fragments of residual OrthoMTA visible; (C) (10% GA+U)
Cleanest dentin surface visible with minimal presence of residual OrthoMTA in the form of smaller
fragments; (D) (10% CA+U) Visible open dentin tubules suggestive of removal of OrthoMTA with
presence of gross chunks of residual MTA; (E) (DW+U) Almost entire dentin surface covered with
residual MTA with presence of cracks and irregularities over the residual OrthoMTA surface.
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The mean residual OrthoMTA SEM score were analyzed using ANOVA. All pair-wise
treatment comparisons were performed with a Tukey adjustment for multiplicity using
IBM SPSS version 26 software package (IBM Corp., Armonk, NY, USA). The significance
level was set at p < 0.01.

Groupwise comparison displayed a statistically significant difference between (10%
GA+U) with (5% GA+U), (10% CA+U), (DW+U) and (NT) (p value < 0.01). However, there
was no significant difference observed between (5% GA+U), (10% CA+U) and (DW+U)
(p value > 0.01) (Figure 4).

Materials 2023, 16, x FOR PEER REVIEW 5 of 9 
 

 

(DW+U) and between (5% GA+U) and (10% GA+U) was statistically insignificant (p value 

> 0.01). 

The mean difference values of all groups for SEM and surface microhardness tests 

are presented in Table 1. 

 

Figure 3. (A–E) Groupwise representative SEM images (1000×). (A) (NT) Entire dentin surface cov-

ered with OrthoMTA; (B) (5% GA+U) Substantially cleaned dentin surface visible in the form of 

open dentinal tubules along with fewer fragments of residual OrthoMTA visible; (C) (10% GA+U) 

Cleanest dentin surface visible with minimal presence of residual OrthoMTA in the form of smaller 

fragments; (D) (10% CA+U) Visible open dentin tubules suggestive of removal of OrthoMTA with 

presence of gross chunks of residual MTA; (E) (DW+U) Almost entire dentin surface covered with 

residual MTA with presence of cracks and irregularities over the residual OrthoMTA surface. 

 

Figure 4. Histogram depicting groupwise mean values along with standard deviation, shown as 

error bars. (A) Residual OrthoMTA score. (B) Surface microhardness score. 

Table 1. Table showing the groupwise mean difference values of obtained SEM and surface micro-

hardness tests. 

Confidence Interval Set at 95% 

Dependent Variable (I) Group (J) Group 
Mean Difference  

(I–J) 
Std. Error p Value 

SEM 

NT 

5% GA+U 0.500 0.200 0.109 

10% GA+U 1.400 * 0.200 <0.001 

10% CA+U 0.500 0.200 0.109 

DW+U 0.200 0.200 0.854 

5% GA+U 

NT −0.500 0.200 0.109 

10% GA+U 0.900 * 0.200 <0.001 

10% CA+U 0.000 0.200 1.000 

DW+U −0.300 0.200 0.568 

10% GA+U 

NT −1.400 * 0.200 <0.001 

5% GA+U −0.900 * 0.200 <0.001 

10% CA+U −0.900 * 0.200 <0.001 

DW+U −1.200 * 0.200 <0.001 

Figure 4. Histogram depicting groupwise mean values along with standard deviation, shown as
error bars. (A) Residual OrthoMTA score. (B) Surface microhardness score.

The mean value of the three measurements was calculated to determine the micro-
hardness value for each root section. Differences between the microhardness values of
dentin exposed to different test solutions and the control specimens were analyzed with a
one-way ANOVA followed by Tukey’s post hoc test with IBM SPSS version 26 software
package (IBM Corp., Armonk, NY, USA), with a level of significance set at p = 0.01.

Among these groups, (5% GA+U) and (10% GA+U) showed statistically significant
difference in the dentin microhardness values in comparison to NT, (10% CA+U) and
(DW+U) (p value < 0.01). However, the difference between group (NT), (10% CA+U)
and (DW+U) and between (5% GA+U) and (10% GA+U) was statistically insignificant
(p value > 0.01).

The mean difference values of all groups for SEM and surface microhardness tests are
presented in Table 1.

Table 1. Table showing the groupwise mean difference values of obtained SEM and surface micro-
hardness tests.

Confidence Interval Set at 95%

Dependent Variable (I) Group (J) Group Mean Difference
(I–J) Std. Error p Value

SEM

NT

5% GA+U 0.500 0.200 0.109

10% GA+U 1.400 * 0.200 <0.001

10% CA+U 0.500 0.200 0.109

DW+U 0.200 0.200 0.854

5% GA+U

NT −0.500 0.200 0.109

10% GA+U 0.900 * 0.200 <0.001

10% CA+U 0.000 0.200 1.000

DW+U −0.300 0.200 0.568
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Table 1. Cont.

Confidence Interval Set at 95%

Dependent Variable (I) Group (J) Group Mean Difference
(I–J) Std. Error p Value

10% GA+U

NT −1.400 * 0.200 <0.001

5% GA+U −0.900 * 0.200 <0.001

10% CA+U −0.900 * 0.200 <0.001

DW+U −1.200 * 0.200 <0.001

10% CA+U

NT −0.500 0.200 0.109

5% GA+U 0.000 0.200 1.000

10% GA+U 0.900 * 0.200 <0.001

DW+U −0.300 0.200 0.568

DW+U

NT −0.200 0.200 0.854

5% GA+U 0.300 0.200 0.568

10% GA+U 1.200 * 0.200 <0.001

10% CA+U 0.300 0.200 0.568

Microhardness

NT

5% GA+U 26.20000 * 1.42441 <0.001

10% GA+U 27.75000 * 1.42441 <0.001

10% CA+U 4.77000 * 1.42441 0.014

DW+U 3.21000 1.42441 0.179

5% GA+U

NT −26.20000 * 1.42441 <0.001

10% GA+U 1.55000 1.42441 0.812

10% CA+U −21.43000 * 1.42441 <0.001

DW+U −22.99000 * 1.42441 <0.001

10% GA+U

NT −27.75000 * 1.42441 <0.001

5% GA+U −1.55000 1.42441 0.812

10% CA+U −22.98000 * 1.42441 <0.001

DW+U −24.54000 * 1.42441 <0.001

10% CA+U

NT −4.77000 * 1.42441 0.014

5% GA+U 21.43000 * 1.42441 <0.001

10% GA+U 22.98000 * 1.42441 <0.001

DW+U −1.56000 1.42441 0.808

DW+U

NT −3.21000 1.42441 0.179

5% GA+U 22.99000 * 1.42441 <0.001

10% GA+U 24.54000 * 1.42441 <0.001

10% CA+U 1.56000 1.42441 0.808

* indicates statistically significant difference.

4. Discussion

The least amount of residual OrthoMTA was seen in (10% GA+U) followed by
(5% GA+U), (10% CA+U) and (DW+U), respectively, highlighting the advantage of tested
solutions used as an adjunct. Boutsioukis C. et al. assessed the retreatment possibility of
MTA-based obturation; however, the tested methods were not able to completely remove
the MTA [15]. More recently, Soram Oh et al. evaluated the effect of various acidic solutions
on the OrthoMTA and concluded that a five minute application of 10% CA and 5% GA
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significantly reduced the microhardness of set OrthoMTA and hold lower cellular cyto-
toxicity compared to 17% EDTA; however, exposure to these acids for five minutes may
not be sufficient to weaken the OrthoMTA enough to facilitate its retrieval from the root
canal space [20]. Therefore, elongation of exposure time to ten or twenty minutes would be
beneficial to providing clinical relevance.

Boutsioukis C. et al. [15], Nandini S. et al. [16] and Butt N. et al. [17] have observed
the effect of various acids including 2% carbonic acid, 20% tartaric acid, 37% hydrochloric
acid, 17% EDTA and 10% citric acid on MTA and recommended the use of these acids for
less than ten minutes inside the canals to prevent their deleterious effect on the mechanical
properties of teeth.

Earlier, Kayahan et al. examined the matrix loss of the acid-etched surface of ProRoot
MTA from 37% phosphoric acid [22], and Soram Oh et al. assessed the effect of glycolic
acid and citric acid on the microhardness of OrthoMTA and its dissolution pattern. Glycolic
acid and citric acid, with a pH of 2.11 and 1.59, respectively, dissolve calcium carbonate
and thereby destroy the cubic crystals of acid-etched OrthoMTA [20].

The prolonged exposure to acids may be detrimental to the radicular dentin, and use
of an additional mechanical method with a short duration of exposure to acidic solutions
appears to be less detrimental to the dentin structure in the removal process. Hence, this
study aimed to assess the synergistic effect of a chemical and mechanical method and to
identify the most suitable OrthoMTA removal method where an acid solution weakened
the set OrthoMTA by making it porous while the concurrent use of ultrasonic energy made
it easy to dislodge from the dentinal walls [20].

There has been a long debate on the use of ultrasonics and microcrack propagation, but
a study by Barakat R.M. et al. has found no significant increase in microcrack propagation
after the use of ultrasonics [23]. Madarati A.A. et al. have also recommended the use of
passive ultrasonics and reciprocating instruments in the removal of MTA-based obturating
materials in the event of endodontic retreatment [24].

In the present study, all tested acidic solutions aided by ultrasonics removed Or-
thoMTA from the root sections to a greater extent, however, (10% GA+U) was found to be
most effective. Glycolic acid (GA), also known as hydroxyethanoic acid or hydroxyacetic
acid, is a colourless, odourless and water-soluble substance that has been found to be
effective in enamel and dentin etching. However, there is a lack of consensus about the
use of GA solutions and their different concentrations [5,6]. It is recommended to use
caution with topical applications of 5–10% GA in the beauty industry due to its cytotoxicity
in higher concentrations [25]. Soram Oh et al. found GA to be less cytotoxic in lower
concentrations when compared to EDTA and CA [20]. Hence, higher concentration of GA
should be used cautiously, which is established by the results of our study where 10% GA
substantially reduced the dentin surface microhardness.

In the present study, 10% GA was found to be more effective than CA in removing
OrthoMTA from the root sections. This suggests that GA in higher concentrations can
create more porosities in OrthoMTA and make it more susceptible to be dislodged using
ultrasonics. On the contrary, 10% CA had less negative impact on the dentinal structure
than GA. Findings from the present study are in the agreement with Eldeniz A.U. et al. who
found citric acid to be less effective in reducing dentin microhardness when compared to
EDTA [26]. Marshall Jr. G.W. et al. used atomic force microscopy to study the effect of citric
acid on dentin demineralization, dehydration and rehydration processes [27]. Arslan H.
et al. studied the effect of citric acid irrigation on the fracture resistance of endodontically
treated roots and found it to be safe to use [28].

This study utilized 5 mm sections of roots primarily due to following reasons: firstly,
to standardize the specimen length, and secondly, to mimic the clinical scenario as 4–5 mm
of OrthoMTA is commonly used in the majority of clinical situations. However, 5 mm of a
section can be carefully negotiated using ultrasonics; however, ultrasonics fail to remove
the well-condensed and adapted MTA along the dentin walls, which is often penetrated
within the intricacies of the root canal system. Hence, use of additional irrigating and
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dissolution agents accompanied by mechanical instruments is a vital approach that could
be less destructive and may better preserve the residual dentin.

Further studies are needed to explore the effect of various concentrations of different
acids, pH and exposure times of acidic solutions on OrthoMTA, microhardness and the
strength of the radicular dentin surface. In addition, the effect of using ultrasonics accompa-
nied by acidic solutions on the surface topography of dentin needs to be further examined
using microscopic techniques. Furthermore, the biocompatibility of used acidic solutions
needs to be addressed before the results can be translated to clinical scenarios.

5. Conclusions

Within the scope of this laboratory research, 10% GA combined with ultrasonics
was the most effective method in removing OrthoMTA. However, both 5% and 10% GA
substantially reduced the dentin microhardness. Further studies are needed to validate the
results of this research.
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