Dispersal Characteristics Dependence on Mass Ratio for Explosively Driven Dry Powder Particle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dry Powder and Central Charge
2.2. Experimental Setup
2.3. Numerical Simulation Methodology
3. Results and Discussion
3.1. Particle Dispersal Process and Morphology
3.2. Particle Dispersal Maximum Velocity
3.3. Particle Dispersal Radius and Area
3.4. Characteristics of the Dispersed Void
3.5. Particle Dispersal Grayscale Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, L.; Zhao, Q.; Chai, X.; Ma, X.Y. Research on the Regular Between Concentration of superfine powder extinguishing agent explosion scatter and fire-extinguishing ability. Adv. Mater. Res. 2014, 877–888, 1017–1023. [Google Scholar] [CrossRef]
- Bai, C.; Wang, Y.; Li, J.; Chen, M. Influences of the Cloud Shape of Fuel-Air Mixtures on the Overpressure Field. Shock Vib. 2016, 2016, 9748536. [Google Scholar] [CrossRef]
- Apparao, A.; Rao, C.R.; Tewari, S.P. Studies on Formation of Unconfined Detonable Vapor Cloud Using Explosive Means. J. Hazard. Mater. 2013, 254, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Singh, V.P. Extended near-Field Modelling and Droplet Size Distribution for Fuel-Air Explosive Warhead. Def. Sci. J. 2001, 51, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zhang, H.; Pan, X.; Zhang, L.; Hua, M.; Zhang, C.; Zhou, J.; Yan, C.; Jiang, J. Experimental and Numerical Simulation Research on Fire Suppression Efficiency of Dry Powder Mediums Containing Molybdenum Flame Retardant Additive. Process Saf. Environ. Prot. 2022, 159, 294–308. [Google Scholar] [CrossRef]
- Guan, X.; Liu, S. Research on Dispersion Mechanism of Extinguishing Agent Scattered by Grenade Explosion. Adv. Mater. Res. 2014, 900, 738–741. [Google Scholar] [CrossRef]
- Zhang, F.; Findlay, R.; Anderson, J.; Ripley, R. Large Scale Unconfined Gasoline Spray Detonation. In Proceedings of the 24th International Colloquium on the Dynamics of Explosion and Reactive Systems, Taipei, Taiwan, 28 July–2 August 2013. [Google Scholar]
- Wang, Y.; Liu, Y.; Xu, Q.; Li, B.; Xie, L. Effect of Metal Powders on Explosion of Fuel-Air Explosives with Delayed Secondary Igniters. Def. Technol. 2021, 17, 785–791. [Google Scholar] [CrossRef]
- Loiseau, J.; Pontalier, Q.; Milne, A.M.; Goroshin, S.; Frost, D.L. Terminal Velocity of Liquids and Granular Materials Dispersed by a High Explosive. Shock Waves 2018, 28, 473–487. [Google Scholar] [CrossRef]
- Apparao, A.; Rao, C.R. Performance of Unconfined Detonable Fuel Aerosols of Different Height to Diameter Ratios. Propellants Explos. Pyrotech. 2013, 38, 818–824. [Google Scholar] [CrossRef]
- Zhang, F.; Ripley, R.; Yoshinaka, A.; Findlay, C.R.; Anderson, J.; von Rosen, B. Large-scale Spray Detonation and Related Particle Jetting Instability Phenomenon. Shock Waves 2015, 25, 239–254. [Google Scholar] [CrossRef]
- Rodriguez, V.; Saurel, R.; Jourdan, G.; Houas, L. Solid-particle Jet Formation under Shock-wave Acceleration. Phys. Rev. E 2013, 88, 063011. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, V.; Saurel, R.; Jourdan, G.; Houas, L. Impulsive Dispersion of a Granular Layer by A Weak Blast Wave. Shock Waves 2017, 27, 187–198. [Google Scholar] [CrossRef]
- Xiong, X.; Gao, K.; Zhang, J.; Li, B.; Xie, L.; Zhang, D.; Mensah, R.A. Interaction between Shock Wave and Solid Particles: Establishing A Model for the Change of Cloud’s Expansion Rate. Powder Technol. 2021, 381, 632–641. [Google Scholar] [CrossRef]
- Frost, D.L. Heterogeneous/particle-laden blast waves. Shock Waves 2018, 28, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Hou, Q.; Liu, J.; Lian, J.; Lu, W. A Lagrangian Particle Algorithm (SPH) for an Autocatalytic Reaction Model with Multicomponent Reactants. Processes 2019, 7, 421. [Google Scholar] [CrossRef] [Green Version]
- Salis, N.; Franci, A.; Idelsohn, S.; Reali, A.; Manenti, S. Lagrangian Particle-Based Simulation of Waves: A Comparison of SPH and PFEM Approaches. Eng. Comput. 2023. [Google Scholar] [CrossRef]
- Chen, M.; Bai, C.; Li, J. Simulation on Initial Velocity and Structure Dynamic Response for Fuel Dispersion. Chin. J. Energetic Mater. 2015, 23, 323–329. [Google Scholar]
- Feng, Z. Experiment and Numerical Simulation of Critical Diameter of RDX Compound Explosive. Master’s Thesis, North University of China, Taiyuan, China, 2007. [Google Scholar]
- Wang, Z. The Design and Simulation of a New Type of Forest Fire Extinguishing Bomb. Master’s Thesis, North University of China, Taiyuan, China, 2016. [Google Scholar]
- Mansouri, Z.; Boushaki, T. Investigation of Large-Scale Structures of Annular Swirling Jet in a Non-Premixed Burner Using Delayed Detached Eddy Simulation. Int. J. Heat Fluid Flow 2019, 77, 217–231. [Google Scholar] [CrossRef]
- Frost, D.L.; Gregoire, Y.; Goroshin, S.; Zhang, F. Interfacial Instabilities in Explosive Gas-particle Flows. In Proceedings of the 23rd International Colloquium on the Dynamics of Explosion and Reactive Systems, Irvine, CA, USA, 24–29 July 2011. [Google Scholar]
- Gurney, R.W. The Initial Velocities of Fragments from Bombs, Shell and Grenades; Technical Report; Army Ballistic Research Laboratory: Aberdeen, MD, USA, 1943. [Google Scholar]
- Milne, A.M. Gurney Analysis of Porous Shells. Propellants Explos. Pyrotech. 2016, 41, 665–671. [Google Scholar] [CrossRef]
- Frem, D. Estimating the Metal Acceleration Ability of High Explosives. Def. Technol. 2020, 16, 225–231. [Google Scholar] [CrossRef]
- Frem, D. A Mathematical Model for Estimating the Gurney Velocity of Chemical High Explosives. FirePhysChem, 2022; in press. [Google Scholar]
- Qi, Z.; Chunhua, B.; Qingming, L.; Zhongqi, W.; Huimin, L.; Shaoqing, X. Study on near Field Dispersal of Fuel Air Explosive. J. Beijing Inst. Technol. 1999, 8, 113–118. [Google Scholar]
- Gardner, D.R. Near-Field Dispersal Modeling for Liquid Fuel-Air Explosives; Technical Report; Sandia National Laboratory: Kekaha, HI, USA, 1990. [Google Scholar]
- Li, L.; Lu, X.; Ren, X.; Ren, Y.J.; Zhao, S.T.; Yan, X.F. The Mechanism of Liquid Dispersing from a Cylinder Driven by Central Dynamic Shock Loading. Def. Technol. 2020, 17, 1313–1325. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Zhang, D.; Xie, L.; Li, B. Dispersion and Explosion Characteristics of Unconfined Detonable Aerosol and Its Consequence Analysis to Humans and Buildings. Process Saf. Environ. Prot. 2021, 152, 66–82. [Google Scholar] [CrossRef]
- Zhang, Y.; Lou, W.; Wang, H.; Guo, M.; Fu, S. Experimental Research on Dynamic Concentration Distribution for Combustible Dust Based on Ultrasonic-Electric Hybrid Detection. Heat Mass Transf. 2020, 56, 1673–1684. [Google Scholar] [CrossRef]
ρc (g/cm3) | D (m/s) | Pc (GPa) | A (GPa) | B (GPa) | R1 | R2 | ω | E (MJ/kg) |
---|---|---|---|---|---|---|---|---|
1.436 | 7500 | 17.5 | 100.3 | 22.2 | 6.028 | 1.8519 | 0.48 | 9 |
ρ0 (g/cm3) | G (GPa) | KUN (GPa) | a0 | a1 | a2 | PC | VCR | ||
---|---|---|---|---|---|---|---|---|---|
1.8 | 1.601 × 10−2 | 13,280 | 0.0033 | 1.31 × 10−7 | 0.1232 | 0 | 0 | ||
EPS1 | EPS2 | EPS3 | EPS4 | EPS5 | EPS6 | EPS7 | EPS8 | EPS9 | EPS10 |
0 | 0.05 | 0.09 | 0.11 | 0.15 | 0.19 | 0.21 | 0.22 | 0.25 | 0.3 |
P1 (GPa) | P2 (GPa) | P3 (GPa) | P4 (GPa) | P5 (GPa) | P6 (GPa) | P7 (GPa) | P8 (GPa) | P9 (GPa) | P10 (GPa) |
0 | 3.42 | 4.53 | 6.76 | 12.7 | 20.8 | 27.1 | 39.2 | 56.6 | 123 |
No. | Charge Mass C (g) | Dry Power Mass M (g) | Mass Ratio (M/C) | Inner-Radius Rin0 (mm) | Outer-Radius Rout0 (mm) |
---|---|---|---|---|---|
1 | 1.074 | 15.17 | 14.1 | 3.5 | 12.5 |
2 | 1.074 | 30.98 | 28.8 | 3.5 | 17.5 |
3 | 1.074 | 52.05 | 48.5 | 3.5 | 22.5 |
4 | 1.074 | 78.39 | 73.0 | 3.5 | 27.5 |
5 | 1.074 | 110.00 | 102.4 | 3.5 | 32.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, B.; Bai, C.; Zhao, C.; Li, J.; Jia, X. Dispersal Characteristics Dependence on Mass Ratio for Explosively Driven Dry Powder Particle. Materials 2023, 16, 4537. https://doi.org/10.3390/ma16134537
Sun B, Bai C, Zhao C, Li J, Jia X. Dispersal Characteristics Dependence on Mass Ratio for Explosively Driven Dry Powder Particle. Materials. 2023; 16(13):4537. https://doi.org/10.3390/ma16134537
Chicago/Turabian StyleSun, Binfeng, Chunhua Bai, Caihui Zhao, Jianping Li, and Xiaoliang Jia. 2023. "Dispersal Characteristics Dependence on Mass Ratio for Explosively Driven Dry Powder Particle" Materials 16, no. 13: 4537. https://doi.org/10.3390/ma16134537
APA StyleSun, B., Bai, C., Zhao, C., Li, J., & Jia, X. (2023). Dispersal Characteristics Dependence on Mass Ratio for Explosively Driven Dry Powder Particle. Materials, 16(13), 4537. https://doi.org/10.3390/ma16134537