Growth and Dark Current Analysis of GaSb- and InP-Based Metamorphic In0.8Ga0.2As Photodetectors
Abstract
:1. Introduction
2. Experiments
2.1. Device Configuration
2.2. Characterization of Material Quality
3. Dark Current Analysis of Photodetectors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malchow, D.; Battaglia, J.; Brubaker, R.; Ettenberg, M. High speed short wave infrared (SWIR) imaging and range gating cameras. Proc. SPIE 2007, 6541, 654106. [Google Scholar]
- Sur, R.; Sun, K.; Jeffries, J.B.; Hanson, R.K.; Pummill, R.J.; Waind, T.; Wagner, D.R.; Whitty, K.J. TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier. Appl. Phys. B Lasers Opt. 2014, 116, 33–42. [Google Scholar] [CrossRef]
- Olsen, J.; Ceccato, P.; Proud, S.; Fensholt, R.; Grippa, M.; Mougin, E.; Ardö, J.; Sandholt, I. Relation between Seasonally Detrended Shortwave Infrared Reflectance Data and Land Surface Moisture in Semi-Arid Sahel. Remote Sens. 2013, 5, 2898–2927. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, B.; Jiang, X.; Gu, G.; Li, H.; Wang, X.; Lin, G. Design of a Prism-Grating Wide Spectral Range Transmittance Imaging Spectrometer. Sensors 2023, 23, 5050. [Google Scholar] [CrossRef] [PubMed]
- Gravrand, O.; Rothman, J.; Cervera, C.; Baier, N.; Lobre, C.; Zanatta, J.P.; Boulade, O.; Moreau, V.; Fieque, B. HgCdTe Detectors for Space and Science Imaging: General Issues and Latest Achievements. J. Electron. Mater. 2016, 45, 4532–4541. [Google Scholar] [CrossRef]
- Madejczyk, P.; Manyk, T.; Rutkowski, J. Research on Electro-Optical Characteristics of Infrared Detectors with HgCdTe Operating at Room Temperature. Sensors 2023, 23, 1088. [Google Scholar] [CrossRef]
- Tennant, W.E.; Cockrum, C.A.; Gilpin, J.B.; Kinch, M.A.; Reine, M.B.; Ruth, R.P. Key issues in HgCdTe-based focal plane arrays: An industry perspective. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1992, 10, 1359–1369. [Google Scholar] [CrossRef]
- Shafir, I.; Elias, D.C.; Memram, D.; Sicron, N.; Katz, M. T2SL/InP/T2SL pBp extended SWIR barriode with InGaAs/GaAsSb absorption material lattice matched to InP. Infrared Phys. Technol. 2022, 125, 104217. [Google Scholar] [CrossRef]
- Gil, A.; Phillips, J.; Ettenberg, M.H.; Babikir, N.A. Bandgap Engineering and Short-Wavelength Infrared Detection of InGaAs/GaAsSb Superlattices Lattice-Matched to InP. J. Electron. Mater. 2022, 51, 4703–4713. [Google Scholar] [CrossRef]
- Dehzangi, A.; Haddadi, A.; Chevallier, R.; Zhang, Y.; Razeghi, M. nBn extended short-wavelength infrared focal plane array. Opt. Lett. 2018, 43, 591–594. [Google Scholar] [CrossRef]
- Haddadi, A.; Chevallier, R.; Dehzangi, A.; Razeghi, M. Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier. Appl. Phys. Lett. 2017, 110, 101104. [Google Scholar] [CrossRef]
- Smiri, B.; Arbia, M.B.; Ilkay, D.; Saidi, F.; Othmen, Z.; Dkhil, B.; Ismail, A.; Sezai, E.; Hassen, F.; Maaref, H. Optical and structural properties of In-rich InxGa1-xAs epitaxial layers on (100) InP for SWIR detectors. Mater. Sci. Eng. B 2020, 262, 114769. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, G.; Tian, Z.; Li, A.; Zhu, X.; Kai, W. Wavelength extended InGaAs/InAlAs/InP photodetectors using n-on-p configuration optimized for back illumination. Infrared Phys. Technol. 2009, 52, 52–56. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Gu, Y.; Tian, Z.B.; Wang, K.; Li, A.Z.; Zhu, X.R.; Zheng, Y.L. Performance of gas source MBE-grown wavelength-extended InGaAs photodetectors with different buffer structures. J. Cryst. Growth 2009, 311, 1881–1884. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Gu, Y.; Wang, K.; Li, A.Z.; Li, C. Properties of gas source molecular beam epitaxy grown wavelength extended InGaAs photodetector structures on a linear graded InAlAs buffer. Semicond. Sci. Technol. 2008, 23, 125029. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, G.; Tian, Z.; Li, A.; Zhu, X.; Zheng, Y. Wavelength extended 2.4 μm heterojunction InGaAs photodiodes with InAlAs cap and linearly graded buffer layers suitable for both front and back illuminations. Infrared Phys. Technol. 2008, 51, 316–321. [Google Scholar] [CrossRef]
- Du, B.; Gu, Y.; Zhang, Y.G.; Chen, X.Y.; Xi, S.P.; Ma, Y.J.; Ji, W.Y.; Shi, Y.H.; Li, X.; Gong, H.M. Effects of continuously or step-continuously graded buffer on the performance of wavelength extended InGaAs photodetectors. J. Cryst. Growth 2016, 440, 1–5. [Google Scholar] [CrossRef]
- Chen, X.Y.; Gu, Y.; Zhang, Y.G.; Ma, Y.J.; Du, B.; Zhang, J.; Ji, W.Y.; Shi, Y.H.; Zhu, Y. Growth temperature optimization of GaAs-based In 0.83 Ga 0.17 As on In x Al 1 − x As buffers. J. Cryst. Growth 2018, 488, 51–56. [Google Scholar] [CrossRef]
- Ashley, T.; Elliott, C.T. Operation and properties of narrow-gap semiconductor devices near room temperature using non-equilibrium techniques. Semicond. Sci. Technol. 1991, 6, C99–C105. [Google Scholar] [CrossRef]
- Rakovska, A.; Berger, V.; Marcadet, X.; Vinter, B.; Glastre, G.; Oksenhendler, T.; Kaplan, D. Room temperature InAsSb photovoltaic midinfrared detector. Appl. Phys. Lett. 2000, 77, 397–399. [Google Scholar] [CrossRef]
- Maimon, S.; Wicks, G.W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 2006, 89, 151109. [Google Scholar] [CrossRef]
- Gu, Y.; Zhou, L.; Zhang, Y.; Chen, X.; Li, H. Dark current suppression in metamorphic In 0.83 Ga 0.17 As photodetectors with In 0.66 Ga 0.34 As/InAs superlattice electron barrier. Appl. Phys. Express 2015, 8, 022202. [Google Scholar] [CrossRef]
- Shi, Y.H.; Zhang, Y.G.; Ma, Y.J.; Gu, Y.; Chen, X.Y.; Gong, Q.; Du, B.; Zhang, J.; Zhu, Y. Improved performance of In 0.83 Ga 0.17 As/InP photodetectors through modifying the position of In 0.66 Ga 0.34 As/InAs superlattice electron barrier. Infrared Phys. Technol. 2018, 89, 72–76. [Google Scholar] [CrossRef]
- Du, B.; Gu, Y.; Chen, X.-Y.; Ma, Y.-J.; Shi, Y.-H.; Zhang, J.; Zhang, Y.-G. Improved performance of high indium InGaAs photodetectors with InAlAs barrier. Jpn. J. Appl. Phys. 2018, 57, 060302. [Google Scholar] [CrossRef]
- Groenen, J.; Landa, G.; Carles, R.; Pizani, P.S.; Gendry, M. Tensile and compressive strain relief in InxGa1−xAs epilayers grown on InP probed by Raman scattering. J. Appl. Phys. 1997, 82, 803. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, Y.-G.; Li, A.-Z.; Wang, K.; Li, C.; Li, Y.-Y. Structural and Photoluminescence Properties for Highly Strain-Compensated InGaAs/InAlAs Superlattice. Chin. Phys. Lett. 2009, 26, 077808. [Google Scholar] [CrossRef]
- Iyer, S.; Hegde, S.; Abul-Fadl, A.; Bajaj, K.K.; Mitchel, W. Growth and photoluminescence of GaSb and Ga1-xInxAsySb1-y grown on GaSb substrates by liquid-phase electroepitaxy. Phys. Rev. B 1993, 47, 1329–1339. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhang, Y.G.; Gu, Y.; Ji, X.L.; Xi, S.P.; Du, B.; Ma, Y.J.; Ji, W.Y.; Shi, Y.H.; Li, A.Z. Analysis of dark currents and deep level traps in InP- and GaAs-based In0.83Ga0.17As photodetectors. J. Cryst. Growth 2017, 477, 82–85. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, P.; Wang, T.; Peng, H.; Zhuang, Q.; Zheng, W. Growth and Dark Current Analysis of GaSb- and InP-Based Metamorphic In0.8Ga0.2As Photodetectors. Materials 2023, 16, 4538. https://doi.org/10.3390/ma16134538
Cao P, Wang T, Peng H, Zhuang Q, Zheng W. Growth and Dark Current Analysis of GaSb- and InP-Based Metamorphic In0.8Ga0.2As Photodetectors. Materials. 2023; 16(13):4538. https://doi.org/10.3390/ma16134538
Chicago/Turabian StyleCao, Peng, Tiancai Wang, Hongling Peng, Qiandong Zhuang, and Wanhua Zheng. 2023. "Growth and Dark Current Analysis of GaSb- and InP-Based Metamorphic In0.8Ga0.2As Photodetectors" Materials 16, no. 13: 4538. https://doi.org/10.3390/ma16134538
APA StyleCao, P., Wang, T., Peng, H., Zhuang, Q., & Zheng, W. (2023). Growth and Dark Current Analysis of GaSb- and InP-Based Metamorphic In0.8Ga0.2As Photodetectors. Materials, 16(13), 4538. https://doi.org/10.3390/ma16134538