1D Narrow-Bandgap Tin Oxide Materials: Systematic High-Resolution TEM and Raman Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of SnO/SnO2 Nanorods
2.3. Characterization of SnO/SnO2 Nanorods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, V.; Bhaliya, J.; Patel, G.M.; Joshi, P. Room Temperature Chemiresistive Gas Sensing of SnO2 Nanowires: A Review. J. Inorg. Organomet. Polym. Mater. 2022, 32, 741–772. [Google Scholar] [CrossRef]
- Lan, X.; Xiong, X.; Liu, J.; Yuan, B.; Hu, R.; Zhu, M. Insight into Reversible Conversion Reactions in SnO2-Based Anodes for Lithium Storage: A Review. Small 2022, 18, 2201110. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, S.P.; Ren, J.; Murdoch, B.J.; van Embden, J.; Gómez, D.E.; McConville, C.F.; Della Gaspera, E. Nanostructured Electrodes Based on Two-Dimensional SnO2 for Photoelectrochemical Water Splitting. ACS Appl. Energy Mater. 2022, 5, 10359–10365. [Google Scholar] [CrossRef]
- Hyun, J.; Yeom, K.M.; Lee, H.E.; Kim, D.; Lee, H.-S.; Noh, J.H.; Kang, Y. Efficient n-i-p Monolithic Perovskite/Silicon Tandem Solar Cells with Tin Oxide via a Chemical Bath Deposition Method. Energies 2021, 14, 7614. [Google Scholar] [CrossRef]
- Parashar, M.; Shukla, V.K.; Singh, R. Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron. 2020, 31, 3729–3749. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Duan, J.; Du, J.; Yang, X.; Duan, Y.; Zhang, T.; Tang, Q. High-Efficiency All-Inorganic Perovskite Solar Cells Tailored by Scalable Rutile TiO2 Nanorod Arrays with Excellent Stability. ACS Appl. Mater. Interfaces 2021, 13, 12091–12098. [Google Scholar] [CrossRef]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef]
- Tian, J.; Zhao, Z.; Kumar, A.; Boughton, R.I.; Liu, H. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: A review. Chem. Soc. Rev. 2014, 43, 6920–6937. [Google Scholar] [CrossRef]
- Wang, H.; Fan, B.; Luo, Z.; Wu, Q.; Zhou, X.; Wang, F. A unique hierarchical structure: NiCo2O4 nanowire decorated NiO nanosheets as a carbon-free cathode for Li–O2 battery. Catal. Sci. Technol. 2021, 11, 7632–7639. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Liang, J.; Gao, F.; Yin, K.; Dai, P. Hierarchical Heterostructure of ZnO@TiO2 Hollow Spheres for Highly Efficient Photocatalytic Hydrogen Evolution. Nanoscale Res. Lett. 2017, 12, 531. [Google Scholar] [CrossRef] [PubMed]
- Phuong, P.H.; Hoa, H.T.M.; Hung, N.H.; Le Thuy, T.G.; Tran, Q.T.; Tin, T.T.; Dinh, D.A.; Cuong, T.V. Effect of SnO Composition in SnO/SnO2 Nanocomposites on the Photocatalytic Degradation of Malachite Green under Visible Light. ChemistrySelect 2021, 6, 12246–12254. [Google Scholar] [CrossRef]
- Liu, Q.; Zhan, H.; Huang, X.; Song, Y.; He, S.; Li, X.; Wang, C.; Xie, Z. High Visible Light Photocatalytic Activity of SnO2-x Nanocrystals with Rich Oxygen Vacancy. Eur. J. Inorg. Chem. 2021, 2021, 4370–4376. [Google Scholar] [CrossRef]
- Li, M.; Hu, Y.; Xie, S.; Huang, Y.; Tong, Y.; Lu, X. Heterostructured ZnO/SnO2−x nanoparticles for efficient photocatalytic hydrogen production. Chem. Commun. 2014, 50, 4341–4343. [Google Scholar] [CrossRef]
- Qi, Z.; Wang, K.; Jiang, Y.; Zhu, Y.; Chen, X.; Tang, Q.; Ren, Y.; Zheng, C.; Gao, D.; Wang, C. Preparation and characterization of SnO2-x/GO composite photocatalyst and its visible light photocatalytic activity for self-cleaning cotton fabrics. Cellulose 2019, 26, 8919–8937. [Google Scholar] [CrossRef]
- Yu, H.; Yang, T.; Wang, Z.; Li, Z.; Zhao, Q.; Zhang, M. p-N heterostructural sensor with SnO-SnO2 for fast NO2 sensing response properties at room temperature. Sens. Actuators B Chem. 2018, 258, 517–526. [Google Scholar] [CrossRef]
- Chen, X.T.; Wang, K.X.; Zhai, Y.B.; Zhang, H.J.; Wu, X.Y.; Wei, X.; Chen, J.S. A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries. Dalton Trans. 2014, 43, 3137–3143. [Google Scholar] [CrossRef]
- Kamboj, N.; Debnath, B.; Bhardwaj, S.; Paul, T.; Kumar, N.; Ogale, S.; Roy, K.; Dey, R.S. Ultrafine Mix-Phase SnO-SnO2 Nanoparticles Anchored on Reduced Graphene Oxide Boost Reversible Li-Ion Storage Capacity beyond Theoretical Limit. ACS Nano 2022, 16, 15358–15368. [Google Scholar] [CrossRef]
- Shanmugasundaram, A.; Basak, P.; Satyanarayana, L.; Manorama, S.V. Hierarchical SnO/SnO2 nanocomposites: Formation of in situ p–n junctions and enhanced H2 sensing. Sens. Actuators B Chem. 2013, 185, 265–273. [Google Scholar] [CrossRef]
- Cheng, B.; Russell, J.M.; Shi Zhang, L.; Samulski, E.T. Large-Scale, Solution-Phase Growth of Single-Crystalline SnO2 Nanorods. J. Am. Chem. Soc. 2004, 126, 5972–5973. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, X.; Xia, Y. A Solution-Phase, Precursor Route to Polycrystalline SnO2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions. J. Am. Chem. Soc. 2003, 125, 16176–16177. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.-X.; Jiang, L.-Y.; Wan, L.-J.; Li, C.-J.; Guo, Y.-G. Polyethylene glycol-directed SnO2 nanowires for enhanced gas-sensing properties. Nanoscale 2011, 3, 1802–1806. [Google Scholar] [CrossRef]
- Hu, D.; Han, B.; Deng, S.; Feng, Z.; Wang, Y.; Popovic, J.; Nuskol, M.; Wang, Y.; Djerdj, I. Novel Mixed Phase SnO2 Nanorods Assembled with SnO2 Nanocrystals for Enhancing Gas-Sensing Performance toward Isopropanol Gas. J. Phys. Chem. C 2014, 118, 9832–9840. [Google Scholar] [CrossRef]
- Periyasamy, M.; Kar, A. Modulating the properties of SnO2 nanocrystals. Morphological effects on structural, photoluminescence, photocatalytic, electrochemical and gas sensing properties. J. Mater. Chem. C 2020, 8, 4604–4635. [Google Scholar] [CrossRef]
- Rosas-García, V.M.; Rodríguez-Nava, O.; Cuenca-Álvarez, R.; Garrido-Hernandez, A.; García-Hernández, M.; Morales-Ramírez, Á.D.J. Photocatalytic Degradation of Methylene Blue (MB) and Methyl Orange (MO) by the Highly Oxidative Properties of SnO2–Sb2O3 Particles. Mater. Trans. 2022, 63, 1188–1196. [Google Scholar] [CrossRef]
- Kwoka, M.; Ottaviano, L.; Passacantando, M.; Santucci, S.; Czempik, G.; Szuber, J. XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation. Thin Solid Films 2005, 490, 36–42. [Google Scholar] [CrossRef]
- Xia, W.; Wang, H.; Zeng, X.; Han, J.; Zhu, J.; Zhou, M.; Wu, S. High-efficiency photocatalytic activity of type II SnO/Sn3O4 heterostructures via interfacial charge transfer. CrystEngComm 2014, 16, 6841–6847. [Google Scholar] [CrossRef]
- Vázquez-López, A.; Maestre, D.; Ramírez-Castellanos, J.; Cremades, A. In Situ Local Oxidation of SnO Induced by Laser Irradiation: A Stability Study. Nanomaterials 2021, 11, 976. [Google Scholar] [CrossRef] [PubMed]
- Guillén, C.; Herrero, J. P-type SnO thin films prepared by reactive sputtering at high deposition rates. J. Mater. Sci. Technol. 2019, 35, 1706–1711. [Google Scholar] [CrossRef]
Calcination Temperatures | Bandgaps |
---|---|
350 °C | 3.0 eV, 3.5 eV |
400 °C | 3.0 eV, 3.5 eV |
500 °C | 2.9 eV, 3.5 eV |
600 °C | 3.7 eV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manseki, K.; Vafaei, S.; Scott, L.; Hampton, K.; Hattori, N.; Ohira, K.; Prochotsky, K.; Jala, S.; Sugiura, T. 1D Narrow-Bandgap Tin Oxide Materials: Systematic High-Resolution TEM and Raman Analysis. Materials 2023, 16, 4539. https://doi.org/10.3390/ma16134539
Manseki K, Vafaei S, Scott L, Hampton K, Hattori N, Ohira K, Prochotsky K, Jala S, Sugiura T. 1D Narrow-Bandgap Tin Oxide Materials: Systematic High-Resolution TEM and Raman Analysis. Materials. 2023; 16(13):4539. https://doi.org/10.3390/ma16134539
Chicago/Turabian StyleManseki, Kazuhiro, Saeid Vafaei, Loren Scott, Katelyn Hampton, Nagisa Hattori, Kosuke Ohira, Kyle Prochotsky, Stephen Jala, and Takashi Sugiura. 2023. "1D Narrow-Bandgap Tin Oxide Materials: Systematic High-Resolution TEM and Raman Analysis" Materials 16, no. 13: 4539. https://doi.org/10.3390/ma16134539
APA StyleManseki, K., Vafaei, S., Scott, L., Hampton, K., Hattori, N., Ohira, K., Prochotsky, K., Jala, S., & Sugiura, T. (2023). 1D Narrow-Bandgap Tin Oxide Materials: Systematic High-Resolution TEM and Raman Analysis. Materials, 16(13), 4539. https://doi.org/10.3390/ma16134539