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Abstract: Nowadays, metamaterials application enjoys notoriety in fluid decontamination and
pathogen annihilation, which are frequently present in polluted fluids (e.g., water, blood, blood
plasma, air or other gases). The depollution effect is largely enhanced by UVC irradiation. The
novelty of this contribution comes from the significant increase by packing of the total surface of
metamaterials in contact with contaminated fluids. Packed metamaterial samples are subjected to
UVC irradiation, with expected advantages for implant sterilization and long-term prevention of
nosocomial infections over large clinical areas. The novel aspect of the investigation consists of a
combination of big and small elements of the metamaterial to optimize the above effects connected
with fluids and irradiation. The big elements allow the radiation to penetrate deep inside the fluid,
and the small elements optimally disperse this radiation toward deeper regions of the metamaterial.
A packing scheme of smaller, in-between large metamaterial spheres and fibres is proposed for
promoting enhanced depollution against pathogen agents. It is demonstrated that the total surface
of metamaterials in contact with contaminated fluids/surface is significantly increased as a result
of packing. This opens, in our opinion, new auspicious perspectives in the construction of novel
equipment with high sensibility in the detection and decontamination of microorganisms.

Keywords: super-packed metamaterial structures; UVC irradiation; fluids decontamination;
yeast/pathogen colonies

1. Introduction

One major concern in these pandemic times is the implementation of new opportu-
nities to increase the efficiency of the decontamination rate of fluids. Thus, according to
Refs. [1,2] the efficiency of UV irradiation methods for the inactivation of coronavirus could
reach 90%. In order to minimize the equipment size, the same experiments were conducted
with UVC (i.e., within 100–280 nm spectral range) LEDs [3] when the decontamination sur-
face efficiency, the sources’ position (separation distance and exposure angle) was increased
to 99.93% in the first 20 s.

Pathogen photoinactivation efficiency was investigated in Ref. [4] with respect to
UVC dose, separation distance, and angular position on the surface. If the intensity of
UVC radiation decreases, with increasing distance and angle of application, the use of
fibre optics [5] becomes mandatory for directing the radiation towards the infected points
or tissue.

Nowadays for life-threatening pandemics such as COVID-19, the development of
novel, fast and cost-efficient techniques for virus detection [6,7] is required. The possibility
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of using hollow fibres fabricated from transparent materials within the UVC range through
which fluids flow was investigated for this purpose [8–12].

For quick decontamination of large volumes, a new architecture of fluid channels
between the metamaterial elements [13–16] obtained by the insertion of smaller elements of
metamaterial in-between big ones was proposed. This approach opens the supplementary
contact surfaces for UVC radiation with the fluids. The 3D channels for contamination
fluids generated inside packed metamaterials drastically eliminate the friction between the
liquid and metamaterial characteristics [8–12].

To improve the contact surface between the pathogens and UVC radiation, we used
a combination of metamaterial elements such as entire or crushed spheres and fibres
in packing arrangements. Our analyses are focused on the fabrication of a new class
of equipment based on composite metamaterial structures, of nano- to micro-level, via
exploiting the optical contact zone between designed metamaterial elements with various
structural sizes. This combination of thin and thick elements of composite metamaterials
may drastically improve the contact surface with contaminated object fluids/solid surfaces.

To treat surface infections within the region between the implant and cellular tissue,
a new optical system is proposed. To boost the penetration of the UVC radiation into the
fluids, we have tried to minimize the elements of quasi-periodical dispersion structures,
which lead to an increase in the free contamination zone. This could be counteracted by
the evanescent waves’ [17,18] penetration action, which evolves proportionally with the
metamaterial elements’ density multiplied by their total surface. Along with this line,
the best contact surface consists of drastically reduced, entire, or crushed spheres and
optical fibres.

This concept does not nevertheless operate in the case of profound penetration depth
of radiation inside contaminated fluids because of two basic phenomena. The first one
is connected to the intense scattering of the UVC radiation on the surface of the packed
metamaterial elements consisting of entire or crushed spheres and optical fibres of small
diameter. The effective volume of metamaterial penetrated by contaminated fluid will not
be therefore completely decontaminated. The second phenomenon is related to the increase
in fluid resistance when in contact with metamaterial elements of smaller dimensions. Thus,
experiments showed that the reflection increase at the contact between the elements of
metamaterials becomes a major obstacle against the deeper penetration of radiation inside
a metamaterial.

To overcome these apparent contradictions, we resort to composite metamaterials,
consisting of a mix of big and small optical elements in contact with the contaminated fluid.
The big elements allow UVC radiation to cross a large distance inside the contaminated
liquids, while the small ones occupying the free space in between them are able to ensure
the optimum dispersion of radiation in large volumes, as confirmed when using crushed
quartz elements.

The work is organized as follows: a theoretical approach first describes the decontami-
nation based on new composite metamaterials which consist of a mixture of big and small
elements (spheres, optical fibres, and/or crushed elements). Experimental results were next
introduced for quartz elements with different dimensions and geometries in the packing
structures. The agreement between theoretical predictions and experimental results was
confirmed based upon statistical bases.

2. Packing of Metamaterial Elements

The space in between metamaterial (e.g., quartz) elements, spheres, or fibers, can be
filled up with smaller fragments, so that the radiation can be “captured” inside the tube
in order to secure maximum antipathogen activity. Aspects of sphere packing including
evanescent zones were mentioned in Refs. [17–22] while possibilities for modification of
construction systems of connected fibers were discussed in references [23,24], but they
refer to different research and application fields. Our strategy is based on the packing
geometries of composite metamaterial elements. This approach is expected to promote a
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substantial enhancement of both UVC decontamination on the surface in contact with fluids
as well as the decontamination rate. The task is to design and fabricate a new, compact
decontaminator of fluids operating via optical contact between metamaterial elements
with various dimensions. More precisely, the combination of thick and thin elements of
composite metamaterials of either fragments or optical fibers is proposed.

2.1. Entire or Crushed Spheres

The free space in between big quartz spheres can be described by a filling-up factor,
which is a function of the packing structure of metamaterials. The space can be described
with respect to the atomic packing density, Vf = V(1− ρ), where Vf is the free volume
between spheres, V is the total volume and ρ the cell density, which depends on the packing
structure of the metamaterial.

In the case of a hexagonal lattice arrangement, as shown in Figure 1b,c, the density is
ρ = π/3

√
3 = 0.6086, which is superior to tetrahedral lattice packing (Figure 2), for which

ρ = π
√

3/16 = 0.3401. This means that the free volume in the case of tetragonal packing is
higher than in the hexagonal case.
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Our option to analyse the decontamination efficiency of the contact surface between the
metamaterials, as photonic crystals or fibres, was the use of a combination of metamaterial
elements such as entire or crushed spheres and fibres in a packing arrangement, according
to data in Ref. [13]. The fabrication of a suitable material is desired, to both ensure good
penetration of UVC radiation into the metamaterial elements and easy propagation across
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contaminated fluids. One next calculates, on this basis, the effective decontamination
volume, which is proportional to the contact surface between the contaminated fluid and
metamaterials (entire spheres or sphere fragments) in the respective arrangement (packing).

It is generally accepted that the penetration depth, k, inside the free space in-between
spheres, is directly proportional to the radiation wavelength and inversely proportional
to the difference between the refractive indexes of metamaterial, nm and contaminated
fluid n f . κ can be written as: κ ∼ λ/

[
2π
√

n2
m − n2

f

]
. It follows that the effective volume is

Vu = κS where S stands for the contact surface of metamaterial with the contaminated fluid.
This volume is inferior to the free volume in-between spheres, Vf . The relation between
the sphere’s diameter, D, and the total surface of spheres reads as: S = πD2N, where N
stands for the total number of spheres. If one considers Li, where i = (x, y, z) a direction in
space, the volume V = LxLyLz is filled up with, Ni = Li/D which is the number of spheres
in each direction, cumulating a total number of spheres in the cell of N = Nx NyNz. This
number is proportional to the volume: N ∼ V/D3. The effective decontamination volume
around packed spheres is proportional to the penetration depth, κ ∼ λ, and inversely
proportional to the diameter of sphere, Vu ∼ Vλ/D. One notices that the free volume Vf

in-between spheres is Vf i = V(1− ρ)(i−1), in the case of smaller diameter spheres Di−1.
The option to resort to small spheres is, however, not appropriate for the decontam-

ination of fluids. On the one hand, the friction and resistance of the liquid in between
grains increase with the reduction of dimensions. On the other hand, UVC radiation suffers
multiple reflections onto contact surfaces between small spheres. We therefore propose a
packing procedure with structures combining big and small spheres. In this respect, one
should first identify the resonances between the gallery modes of the waves in the case of
the two spheres of different diameters, in Figure 3 denoted (a) and (b), respectively.
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In the case of spheres with a diameter of the order of D3 = D1

(
2−
√

3
)

, the resonance
is reached for practically any dimension of spheres (Figure 4).

It should be noted that the light-blue spheres in Figure 4a are in fact visible at a larger
magnification 150× in Figure 4b showing that the small spheres (dark-blue) fill in the free
spaces in between the large ones (light-blue) (Figure 4b). The hole assembly occupies the
free spaces in between the big red spheres in Figure 4a.

As a result of the filling process, the free space in between the big red spheres dimin-
ishes while the volume of handled contaminated fluid is also decreased but the contact
surface between fluid and evanescent zone is significantly increased.
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The resonance in between micronic systems of different sizes becomes possible when-
ever the light wave is considered standing (inside its own quantum states). To further
expand the contact surface, one may fill up the free space between smaller spheres. The
total surface of ith-species is Si = 4πVf i/Di. Here, Vf i = V(1− ρ)(i−1) stands for the
remanent free volume after inserting spheres with an ith diameter. The di diameter of i-type
spheres is connected to one of the “i− 1” spheres by the relation Di = K−1D−1

i . Here, K−1

is an order parameter less than unity. If one introduces a second type of spheres into the
free space of a cubic lattice, the expression for the total surface is: S = S1 + S2.

Here, S1 = πD2
1 N and S2 = π

(√
3− 1

)2
D2

1 are the surface of the big and small
spheres placed in the two lattices with the same number of nodes, N, in optical contact. One
notes that the small spheres with a diameter of D2 =

(√
3− 1

)
D1 are placed in the center of

the cubes of the big one, but with no direct contact. In this case, K = 1/
(√

3− 1
)

. The total

surface in contact with the contaminated fluid S = πD2
1 N
(

5− 2
√

3
)

increases with 0.56S1

with respect to the metamaterial consisting of the packed spheres of the same diameter.
One can continue to place smaller and smaller spheres inside the cubic structure.

The spheres are introduced across each face of the cube while the packing starts from
the centre of the cube. The distance between small spheres (with a diameter D3) and
big spheres with a diameter D1 were estimated to be D∗3 = D1

(√
2− 1

)
. The distance

D∗3 = D1

(
2−
√

3
)
∼ 0.28D1 is accordingly inferior to the diameter of D3 ∼ 0.4D1. One

can therefore introduce smaller spheres across the cube face with only two optical contacts
with the spheres with diameter D3 = D1−D2 and distance between four big spheres D∗3 . It
is easily observable that the small spheres keep unstable under this packing configuration
and can relax in four points of the free volume in contact with the big spheres.

It is however possible to reach a stable periodic construction if one implements into
the packing configuration a rotation ellipsoid with the big and small axes as follows

(D∗3 , D3) =
(

D1

(
2−
√

3
)

, D1

(
2−
√

3
))

, respectively. The total contact surface with
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fluids substantially increases to S = S1 + S2 + S3 with three small spheres in any elemental
cell, to become S3 = 3πND2

3 = 3πND1

(
7− 4

√
3
)

.
To enhance the decontamination rate, it is therefore desirable to use spheres with a

diameter 5–10 times smaller than the distance between the large spherical ones and evaluate
the total contact surface with contaminated fluids. If one subsequently packed “n” species
of a smaller order into the free space in-between large spheres, an extended total contact
area, Stn, is secured with the contaminated fluid:

Stn = S1 + S2 + · · ·+ Sn (1)

When considering the analytical expression for each species of packing spheres, Equa-
tion (1) becomes reduced to a dependence on the diameter and volume of the total surface
of every type of sphere. Here, S1 = πD2

1 N and S2 = π
(√

3− 1
)
2D2

1 are the surfaces
of the big and small spheres in the two lattices with the same number of nodes, N, in
optical contact.

The number of spheres with the diameter Di was considered proportional to
Ni = Vf t/D3

i which after the Nth—packing is identical to that of the remanent free

volume: Vf i = V(1− ρ)i−1.
It is possible to continue filling the space in-between D2—spheres with elements

having a diameter K time less than D2 ( D3 ∼ 0.2–0.3 mm). A relevant example is illustrated
in Figure 4, where the space in-between large spheres (with a diameter D1 ∼ 2–3 mm) is
filled up with spheres with a diameter 10 times smaller (K = 10 and D2 ∼ 0.2–0.3 mm).
If the space in between blue spheres (Figure 4a) are filled up with purple spheres, the
situation is as that in Figure 4b. A new contact area is reached after every i-filling step of
the order Si = 4πVf t/Di.

Accordingly, the free space becomes smaller than in the (i + 1)th packing step. After
the subsequent packing steps with spheres, the contact surface becomes:

Si = 4πV(1− ρ)i−110n−1/Di (2)

Equation (2) defines the sum of geometric series corresponding to the sphere in
contact with the contaminated fluid, i.e., V(1− ρ)i. The corresponding total area can be
expressed as:

Stn =
4πV(1− qn)

D1(1− q)
(3)

where q = (1− ρ)K. The number of spheres with diameter Di is proportional to
Ni = Vf t/D3

i . Equation (2) quantifies the major contribution of the metamaterial to the
total surface (Equation (3)). This is obtained whenever the geometric progression ratio is
superior to unity, q� 1. The main contribution to the total surface originates therefore from
spheres with the smallest diameter, Dn = 10−(n−1)D1. Accordingly, the total area of the
composite metamaterial drastically increases when decreasing the diameter of the smallest
packing fraction. The analyses were extended to the case when K > 1 and (1− ρ) < 1 to
obtain an unity value of the geometrical progression ratio, q = (1− ρ)K ∼ 1. The quartz
spheres with a Di = Di−1/K diameter hence bring a substantial contribution to the total
area of composite metamaterial in contact with the contaminated fluid.

2.2. Optical Fibres

Similar calculations were carried out in the case of the packing procedure of optical
fibres of identical lengths (L) but different diameters (di) (Figure 5). It was shown that the
square packing of fibres with a diameter d1 allows the filing up of the remaining free space
in between fibres with a smaller diameter, d2 = d1

(√
2− 1

)
, (Figure 5a). The entire fibres

surface increases with the sum of the thick and thin fibres St = S1 + S2. For any type of
fibres, the total surface is equal to the product of the circular perimeter multiplied by the
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number of fragments and corresponding lengths: Si = πdiLNi. The relation between the
diameters d1 and d2 of the thick/thin fibres and the length of the square packing box, Lpb,
is: Lpb = Nxd1. One may assume that Nx =

√
N1, with Nx = Ny because the square box

contains the same number of fibres along x or y directions, N1 = Nx Ny. It follows that
the total surface of packed fibres of the same diameter is S1 = πLpbL

√
Ni. According to

Refs. [9,10,12], the total surface of the packed cylinders corresponding to unused space,
during fluid decontamination is Si ∼ LpbL

√
N1. The corresponding contact surface is

S2 = πLpbL
√

N2

(√
2− 1

)
= S1

(√
2− 1

)
. One obtains, accordingly, in the case of closed

packing of fibres, an increase of total contact surface of the order of 44%.
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The packing procedure can be extended to hexagonal arrangements of thick/thin
fibres inside the decontamination core (Figure 5b). The fibres radius (r = d

2 ) are in this

case, r2 = r1

(
1−

√
3
2

)
, inferior to that in square packing.

The total surface becomes St = S1 + S2 = 2πr1(1−
√

3/2)LN. The decontamination
volume is proportional to this surface multiplied by the penetration depth of UVC radiation.
The decontamination volume is inferior to the free volume in between fibres because of
the large distance among fibres with a diameter of (1–2) mm with respect to the UVC
wavelength. This volume, Vu, is defined by the surface of all fibres and the surface of the
quartz tube, s, multiplied by the radiation penetration depth k. Thus, Vu = (A + s)Lpb. The
free volume in between three fibres with a length of 100 cm and the diameter of 0.1 cm can
be estimated from Vf = L(

√
3 − π/2)r2 = 0.16r2L.

The decontamination rate efficiency of the volume in between fibres inside the cylinder
may therefore be estimated. Our approach resorts to the calculation of the effective volume
in between the three fibres. The volume is equal to the length of the three fibres multiplied
by the radiation penetration depth, κ ∼ λ/2, inside fluid: Vu = πrκL. The contact efficiency
of E f = Vu/Vf ∼ λ/r is therefore small for a wavelength within the range λ~250–280 nm.

The free volume, Vf = V − Vm = π(R2 − Nr2)L is the difference between the total
volume of the big cylinder V = πR2L, with R = 2.5 cm L = 100 cm, and the volume of
packed fibres of Vm = πNr2L.
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3. Materials and Methods

Yeast fungi have been chosen as a relevant biological test agent due to their similarity
and sometimes higher resistance to important pathogens.

Thus, according to [19–21], the yeast fungi resistance under UVC irradiation is close
to that of Candida SP.

The resistance to prokaryote bacteria is also quite high. The application of the pro-
posed method can therefore be safely exported to a large class of pathogens and does not
necessitate dedicated experiments.

We used in experiments yeast colonies 1–30 µm in diameter.
The fluids submitted to irradiation via metamaterials were yeast solutions (pseudo-

hyphae or false hyphae) consisting of interconnected unicellular organisms [25–28]. UVC
radiation with a pick on (240–260) nm, provided by either 6 Hg lamps or a Q-Smart 850
Q-Scan laser source, was directed to a tubular structure of 3.0 cm diameter and 90 cm
length, filled up with either (1) (0.1–0.5) mm quartz spheres, (2) (2–5) mm crushed quartz
particles or (3) 1 mm diameter optical fibre fragments (Figure 6a). The lamp’s decontam-
ination core system was placed inside an aluminum cylinder of (15–20) cm diameter to
protect the environment against UVC irradiation and minimize losses outside the cylinder
(Figure 6b,c).
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quartz (center) and fibre fragments (right); (b) The core submitted to irradiation; (c) Al cylinder for
protection and loss minimization.

The yeast was fermented for 24 h before experiments. The stabilization of fungal
colonies, in respect to their diameter and number, was observed during the whole period.
This was reached for a mean number of fungal colonies, n = 750, with a diameter, d, of
(4–12) µm [29]. The fibers were glued directly to the UVC side access.

The metamaterials used in the reported experiments exhibit a higher resistance to
fluid circulation compared to the unpacked ones.

One should, however, mention that in the case of our closed system (of 0.9 m lengths),
the amount of fluid under UVC radiation stays the same whether circulated once or several
times. That is why the decontamination rate is several times more efficient when using
packed metamaterials.

4. Results

Typical optical images of the initial yeast fungus colonies prior to decontamination are
displayed in Figure 7 after 15–20 min of preparation of the solution: Figure 8 corresponds
to the initial state of the developed fungal colonies after 24 h. The number of colonies per
sample varied from 2 to 14. The size distribution seems to be aleatory, but the number of
colonies decreases with dimension. More precisely, the connection between colony number,
n, and diameter ∆, is given by Equation (4) [30].

W(n, ∆) =
1√

2πσ2
n

exp

[
− (n− n0)

2

2σ2
n

]
× 1√

2πσ2
∆n

exp

[
− (∆n −∆n0)

2

2σ2
∆n

]
(4)
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Figure 8. The decontamination rate after 24 h of fungal colony growth (i). (a) corresponds to repack-
aging spheres with diameters of 1–3 mm; (b) corresponds to crushed metamaterials with dimen-
sions of approximately 0.01 mm–3 mm; (c) corresponds to repacking the core with spherical met-
amaterial of 1 mm–3 mm diameter. The histogram represented on the right side of the figure shows 

Figure 7. The decontamination rate of an earlier stage of preparation of the fungal solution (apr. after
15–20 min), see (i). (a) corresponds to repackaging spheres with diameters of 1–3 mm; (b) corresponds
to crushed metamaterials with dimensions of approximately 0.01 mm–3 mm, and fig; (c) corresponds
to repacking the core with spherical metamaterial of 1 mm–3 mm diameter. After 5 min of stationary
decontamination, we obtain the histogram represented on the right-hand side of the figure. The initial
colony count is 784. After 5 min of decontamination, 56 spherical metamaterials were observed, in
crushed spheres 32 and in repackaged spheres 65.
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Figure 8. The decontamination rate after 24 h of fungal colony growth (i). (a) corresponds to
repackaging spheres with diameters of 1–3 mm; (b) corresponds to crushed metamaterials with
dimensions of approximately 0.01 mm–3 mm; (c) corresponds to repacking the core with spherical
metamaterial of 1 mm–3 mm diameter. The histogram represented on the right side of the figure
shows the decrease in the decontamination rate. The results were obtained in spherical metamaterials
30 colonies, in crushed spheres 18, and in repacked spheres 42.
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Here, W stands for the Gaussian distribution, n0 is the initial number of colonies,
while σ2

∆n
stands for size variation while σn is the numerical variance of yeast colonies for

the same diameter ∆. The average diameter and number of colonies in yeast solutions
submitted to decontamination were experimentally determined, as in Ref. [30]. The values
before decontamination are n0 = 9, σn = 2 and σ∆n = 0.1/dsp, where dsp is the visualized
diameter of the microscope image.

To investigate the role of the filling up of the free space between metamaterial elements
in decontamination, three dedicated experiments were carried out using the setup in
Figure 6. An increase in the decontamination rate is expected with the decrease of the free
space in between metamaterial elements, in accordance with the predictions of the analyses
in the previous section.

Quartz spheres of (1–2) mm (Figure 7), crushed quartz elements (Figure 8) and fibres
of 1 mm diameter, were used to fill up the core tube and compare the performances of the
contact surfaces. (magnification of 500×).

The decontamination stage is presented after 5 min of UVC irradiation (center) versus
1 day of fluid transit without irradiation (right) with respect to the initial status (left).

We observed that after 15–20 min the number of colonies was lower than after 24 h. I
this sense, the size of the colonies has a large dispersion (diverse in diameter). As a rule,
air bubbles prevailed in which the fungal colonies began to grow. After 24 h the number
of colonies reached 800 in decreasing size dispersion. In the last case, the fungal colonies
became more resistant to UVC radiation. In Figure 8, we represent the same experiments
repeated after 24 h, the decontamination time being 5 min.

A significant result is, in our opinion, that after only 5 min of decontamination, a large
part of yeast colonies was inactivated (see central parts of Figures 7 and 8) for all used
metamaterials: quartz spheres, crushed quartz elements, and optical fibers. Moreover, as
visible from the figures, the mixture of crushed quartz elements with dimensions of (0.01–3)
mm demonstrated the highest decontamination rate. This could be related to the smallest
residual separation interval in this case compared to the quartz spheres and optical fibers,
during the laminar flow of the contaminated fluid.

5. Discussion

The efficient decontamination under UVC irradiation opens new perspectives in the
fabrication of innovative equipment with high productivity and tunability for the detection
and elimination of bio/chemical contaminants.

Whenever good contact between the metamaterial elements (spheres, optical fibres
and/or crushed elements) is reached, the light is “confined” and dispersed via evanescent
waves in an extended volume of circulating fluids.

This objective, however, faces with two contradictory demands. Thus, one must allow
for the free circulation of the fluid while the total contact surface should be concomitantly
increased via reducing the dimensions of all metamaterial elements.

On the other hand, the contraction of the metamaterial dimensions’ elements causes
the decrement of the flow speed due to higher friction. It also impedes the deep penetration
of UVC radiation inside the metamaterial due to extended dispersion.

To surpass the apparent limits connected with fluids and irradiation, we propose the
use of a combination of big and small metamaterials. Big elements will allow the radiation
to penetrate the fluid, while small elements optimally disperse the radiation towards deeper
regions of the metamaterial [31,32].

To reach this purpose, the packing of metamaterial elements (quartz spheres, crushed
metamaterial, and optical fibres) is considered.

Depending on the respective metamaterial packing, the design of the decontamination
core proves essential. Thus, taking into consideration the a priori known diameters of big
and small spheres, one may obtain a superior repacked structure similar to the solid-state
ones. Some defects in the repacking procedure may, however, persist, be observed as a
significant modification, and can perhaps play an important role in the repacked structures.
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Test experiments of decontamination were carried out with packed element structures in
the case of yeast, Saccharomyces cerevisiae, solutions because of the large resistance to UVC
irradiation of this compound compared to microbes and viruses. We chose a mean value of
the diameters of fungal colonies (of about 3–4 µm) and the mean value of the number of
colonies at about 800.

We conducted a microanalysis investigation in two steps. One is the micro-biological
analysis that is required to measure the size and number per volume of colonies in one
drop of fungal solution crossing the UVC core, versus a drop that does not enter solution
(see Figures 7 and 8). A second investigation consisted of testing the multi-circulated
products in comparison with samples that do not enter the core. The first experiment was
carried out at a small time interval up to 5 min after the beginning of growing fungal
colonies. The second one was performed after 24 h when the fungal colonies significantly
increased and they began to interact with each other. One should mention here that in fact
the spheres do overlap in this case with each other, and the atom–atom bond distance is
less than the covalent radii of the bonded atom. The experiments have, however, different
descriptions from a statistical point of view. The early (first) one contains fast studies of the
development of fungal colonies. The distribution of colonies relative to their diameters in
the early experiments contains a large dispersion compared to the later one (after 24 h). For
example, in the first case one observed a relative dispersion of δ ∼= 0.3.

After 24 h, the dispersion becomes smaller (δ ∼= 0.15). The numbers of colonies also
fluctuated in earlier experiments (an observed fluctuation relative number was δ ∼= 0.2).
In experiments after 24 h, colonies practically come into contact with each other and the
dispersion is very small δ ∼= 0.1.

These considerations support the experimental results displayed in Figures 7 and 8,
where a visual representation is also given in the form of histograms of the inactivation
procedure after 5 min and one day, respectively.

An evident elimination of yeast colonies was demonstrated after UVC irradiation of
quartz spheres, crushed metamaterial, and optical fibres mediated by multiple reflections
via evanescent waves. The significant reduction of the yeast cell colonies number was
obvious after 5 min only.

One notices a more efficient decontamination rate in the case of crushed metamaterials
as compared to quartz spheres or optical fibres.

The yeast solution was less decontaminated in the presence of the metamaterials con-
sisting of fibres and entire spheres. According to experimental evidence (Figures 7 and 8),
the decontamination is superior for a higher degree of packing in the case of given amounts
of liquid and fungus colonies and exposure time of the liquid to UVC irradiation. In
agreement with the experimental results, the best decontamination rate was reached using
crushed metamaterials.

The yeast solution flows laminarly in between optical fibres so that a lot of fungus
colonies keep out the UVC penetrated zone, which possibly stays at the origin of the smaller
(unsatisfactory) decontamination rate in this case. These results serve, in our opinion,
as a demonstration of the approach introduced in Section 2—“Packing of Metamaterial
Elements”, according to which better packing ensures a superior decontamination rate due
to the enhanced action of evanescent waves coming out of transparent objects crossed by
UVC light.

A large increase in the decontamination rate is therefore expected with the optimum
design and fabrication of repacking structures. Indeed, the decontamination rate is con
trolled by the packing geometry, i.e., by the elements conducting to a better filling of the
free space in between them.

6. Conclusions

An approach is proposed to substantially increase fluid decontamination efficiency
under UVC irradiation by packing together large and small size metamaterials elements.
The total surface of metamaterials in contact with contaminated fluids is, in this case,
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significantly increased, with beneficial effects upon decontamination. Multiple reflections
of UVC radiation between denser packed metamaterial elements significantly improve the
decontamination rate, mainly via evanescent waves.

A connection between optical element packaging, and the viability of the pathogen in
the fluid was investigated and verified by test experiments with yeast solutions because of
their superior resistance to UVC irradiation. Damage to yeast colonies anticipates, therefore,
more consistent effects on relevant microbes and viruses. On this basis, a challenge can be
opened for the design of UVC LED systems for efficient decontamination of fluids using
optical resonances between metamaterial elements of different sizes. The decontamination
of considerable, non-transparent flows of contaminated fluids can thus be ensured by
inexpensive and easy-to-monitor technologies.
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