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Abstract: Foamed lightweight soil (FLS) is a lightweight cementitious material containing a large
number of tiny closed pores and has been widely used as a filler in places such as railways, roads
and airports. However, there has been little research into the resistance of FLS to sulphate attack
in practical engineering applications. The performance of FLS against different sulphate erosion
concentrations was studied to elucidate the engineering characteristics of using large volumes of FLS
as fill material for the road base in the construction of intelligent networked vehicle test sites. The
results showed that the compressive strength of FLS prepared using 30% Portland cement (C), 30%
granulated blast furnace slag (GBFS), 40% fly ash (FA) and a small amount of a concrete antiseptic
agent (CA) as cementitious materials reached 0.8 and 1.9 MPa at 7 and 28 d, respectively, when the
wet density was about 600 kg/m3, which met the design requirements. The FLS prepared via the
above-mentioned cementitious system had a low carbon emission, with a CO2 emission reduction
rate of up to 70%. It also had excellent sulphate attack resistance: the corrosion resistance coefficient
of the cementitious material system reached 0.97, which was considerably better than that of C
(0.83). For an erosion medium environment with SO4

2− concentrations of less than 1000 mg/L
(moderate), 40% GBFS or FA can be used to prepare FLS. When the concentration of SO4

2− is less than
4000 mg/L (severe), 30% C, 30% GBFS and 40% FA can be used as cementitious materials, preferably
in combination with an appropriate amount of CA, to prepare FLS.

Keywords: foamed lightweight soil; road base; sulphate attack resistance; carbon emissions

1. Introduction

In road traffic engineering, uneven settlement is often induced by poorly compacted
or improperly backfilled road foundations, especially in highly filled sections and soft base
sections, which, in turn, seriously affects the quality of road construction [1,2]. In recent
years, foamed lightweight soil (FLS) has replaced conventional fill and has been widely used
in road base treatment, the widening of existing roads, the filling of soft foundation bridge
abutments and the filling of steep sections in mountainous areas [3,4]. Compared with
conventional fill, FLS has significant advantages, such as light weight, higher fluidity, easy
application, high strength after hardening, good integrity, higher durability and low cost.
These advantages greatly reduce the load, soil pressure and thickness of the shallow layer
in road base treatment, thereby improving the quality of the road base construction [5–8].

FLS is a lightweight material containing a large number of small closed pores. These
pores are formed by turning a foaming agent aqueous solution into foam, mixing it evenly
with cement slurry in a certain proportion and pumping the mixture into the construction
site for natural curing [9]. The compressive strength of FLS is usually between 1.0 and
1.5 MPa at 28 d, with a wet density of 600 kg/m3, according to general design specifications.
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The cementitious materials used during the preparation of FLS usually contain large
amounts of fly ash (FA), granulated blast furnace slag (GBFS) or other supplementary
cementitious materials in place of Portland cement (C) [10,11].

Intelligent networked vehicle testing sites are large road-based projects that have been
widely built in recent years. They cover large areas and are generally constructed around
cities, away from downtown areas and usually near seas or lakes. The soil and groundwater
at such sites often contain high concentrations of sulphate. During the construction of
intelligent networked vehicle testing sites, FLS with depths of several metres is usually
used as basement fill, resulting in the usage of up to one million square metres of FLS
(Figure 1). GBFS and FA are usually used to replace C during the preparation of FLS to
improve the durability of FLS in high-sulphate environments and reduce costs [12].
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The replacement of ordinary fill with FLS in construction has been extensively studied.
In a previous study on the application of FLS in the road base during highway widening,
FLS exhibited a higher compressive strength, better water resistance and less settlement
compared with ordinary fill [13–15]. Another study on the use of FLS during road widening
showed that the settlement of the test section filled with FLS was much less than the
allowable settlement value, indicating that FLS is a highly suitable road fill material in
road expansion projects [16]. A study on the application of FLS in soft soil roadbeds for
high-speed railways indicated similar results [17]. A study conducted by Yoichi Watabe and
Takatoshi Noguchi on the relationship between vertical displacement and age after filling
the runway of a Tokyo airport with FLS concluded that FLS is an excellent, economically
beneficial fill material for airport runway roadbeds [18]. Moreover, many studies have
shown that FLS is suitable for reducing the settlement of soft ground and maintaining the
stability of embankments [19,20].

The effects of FLS composition and microstructure on its properties have been in-
vestigated by many researchers as well. Panesar examined the effect of composite and
protein foaming agents on the performance of FLS and concluded that a composite foaming
agent leads to better FLS performance [21]. Several studies on the effects of supplementary
cementitious materials on the workability and mechanical properties of FLS indicated that
the addition of silica fume and FA can improve the compressive strength and fluidity of
FLS [22–24]. Paul J. Tikalshy and other researchers found that the depth of penetration is
the key factor affecting the freeze–thaw resistance of FLS [25]. M.R. Jones and A. McCarthy
compared the properties of FLS prepared with FA and FLS made with sand [26]. The
results showed that the FLS with FA had better performance, especially in terms of fluidity,
compressive strength and sulphate attack resistance.

Due to the late start of research on FLS in China, large-scale promotion and application
are yet to be popularised, while FLS is generally not used for structural support and does
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not need to be studied for properties such as dry density, water absorption or thermal
conductivity like foam concrete [27–29]. Many projects, depending on the geological soil
conditions of the construction site and the surrounding service environment, require real-
time targeted measures for the FLS in service [30,31]. The FLS used in the projects on which
this research is based amount to more than 680,000 and are mostly built on soft ground
such as fishing ponds and river embankments, although there are more than 60,000 infill
piles in the lower part. The quality and durability of the foam lightweight soils play a very
important role in the construction quality of the test site road foundations. However, there
are currently few requirements for durability performance indicators of FLS in Chinese
technical specifications or standards. Most of the research reports and thesis literature are
related to the study of the entry resistance of foam lightweight soil or foam concrete.

In this study, the effects of the use of GBFS, FA and CA on the compressive strength,
sulphate resistance and carbon footprint of FLS were characterised to evaluate the feasibility
of using FLS as the basement fill of intelligent networked vehicle testing sites near coasts,
salt lake areas and inland lakes with groundwater containing high concentrations of
sulphate ions. It is believed that the research in this paper can provide important guidance
and reference value for the future construction and engineering of FLS in high-sulphate
environments.

2. Materials and Methods
2.1. Materials

The main raw materials use in this study were C, FA, GBFS, CA and the foaming agent.
The C is PO 42.5 cement produced by China Conch Cement Co. Ltd. (Wuhu, China);

its chemical composition and basic properties are shown in Tables 1 and 2, respectively.
GBFS is S95-grade ground slag produced by Hubei Jinshenglan Metallurgical Technology
Co. Ltd. (Xianning, China); it has a density of 2800 kg/m3 and a specific surface area of
410 m2/kg, and its chemical composition is presented in Table 1. FA was Class F Grade II
FA produced by Hubei Koneng Environmental Protection Co., Ltd. (Hanchuan Power Plant,
Hanchuan, China); its density is 2200 kg/m3, its fineness (through a 45 µm square-hole
sieve) is 15% and its chemical composition is shown in Table 1. The CA was produced
by Hubei Granular Solid Silica Fume Co., Ltd. (Wuhan, China); its main components are
metakaolin and silica fume, its density is 2100 kg/m3 and its main chemical composition
is presented in Table 1. The particle size distribution for the raw materials is shown in
Figure 2.

Table 1. Chemical compositions of C, GBFS, FA and CA (wt%).

CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Na2O TiO2 LOI

Cement 60.11 20.92 5.76 3.24 1.15 2.86 0.88 0.14 0.31 4.17
Granulated Blast Furnace Slag 39.92 31.23 14.12 0.78 7.34 2.23 0.61 0.72 0.76 −0.29

Fly Ash 0.44 57.64 21.49 6.52 1.77 0.37 3.42 0.12 0.93 6.85
Concrete Antiseptic 0.18 58.63 37.91 0.24 0.58 0.07 0.55 0.25 0.04 0.64

Table 2. Basic properties of P·O 42.5 C.

Density
/(kg/m3)

Specific Surface
Area/(m2/kg)

Soundness of
Cement/mm

Setting Times/min Flexural Strength /MPa Compressive
Strength/MPa

Initial Final 3 d 28 d 3 d 28 d

3100 340 2 170 235 5.6 8.7 28.1 50.4
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The foaming agent is a ready-mixed composite foaming agent, model JY-SRN2, pro-
duced by the Guangdong Shengrui Technology Company (Guangzhou, China).

2.2. Mix Design

According to the design requirements of FLS as a road base fill material, the technical
specifications of the utilised FLS were as follows: freshly mixed FLS flow factor (flow degree)
of 170 ± 10 mm, wet density of 600 ± 30 kg/m3, 7 d compressive strength ≥0.5 MPa and
28 d compressive strength ≥1.0 MPa. The FLS material composition and combinations are
shown in Table 3. Group A had C only, group B had C and GBFS, group C had C and FA,
group D had C, GBFS and FA, and group E had C, GBFS, FA and CA (5% of the mass of C).

Table 3. Compositions of FLS specimens (kg/m3).

No.
Cementitious Material Systems

Water Foam
C GBFS FA CA

A 345 0 0 0 224 33.2
B 207 138 0 0 224 33.0
C 207 0 138 0 224 32.3
D 103.5 103.5 138 0 224 32.1
E 103.5 103.5 138 5.2 224 31.9

The water–binder ratio was 0.65. Every per cubic FLS contains the volume of the
cementitious material and water, with the remainder being the volume of the foam cluster.

2.3. Specimen Preparation
2.3.1. Fabrication of Corrosion Resistance Specimens for Gelling Material Systems

According to GB/T749-2008 [32] (the test method of determining the capability of
cement to resist sulphate erosion), the cementitious material system consisted of C, GBFS,
FA and CA. The mass ratio of cementitious material to standard sand was 1:2.5, and the
water–cement ratio was 0.5. The test mould was made of 10 mm × 10 mm × 60 mm
prismatic specimens, and six specimens were formed in each group. The formed specimens
were removed from their moulds at 24 h and then placed in a humid heat maintenance box
at 50 ◦C for 7 d. In each group, three specimens were immersed in an erosion solution for
28 d (3% sodium sulphate solution; 20 ◦C ambient temperature), and the three remaining
specimens were placed in water at 20 ◦C for 28 d.
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2.3.2. Fabrication of FLS Cube Specimens

First, the foaming agent was diluted with water in a ratio of 1:99 to 100 times the
original. An intelligent mini foaming machine was turned on, and its knob was adjusted to
obtain a foam density of 50 g/L. According to the material ratio in Table 4, a certain amount
of cementitious material was mixed into a slurry in a water–binder ratio of 0.65, and this
slurry was mixed with the corresponding foam cluster to form FLS. The FLS flow factor
and wet density were tested. The mixture was poured into a 100 mm × 100 mm × 100 mm
mould (one mould contains three cubic specimens) such that the height of the slurry was
slightly higher than the test mould. The surface was covered with cling film and let sit
at a temperature of 20 ◦C and humidity of 95% for maintenance (standard maintenance
conditions). After 8 h, the slurry above the mould was scraped off with a scraper, the
cling film was replaced and maintenance was continued until 48 h, when the samples were
demoulded. The demoulded specimens were bagged in plastic and returned to the above
conditioning environment until the appropriate days. The main preparation process is
shown in Figure 3.

Table 4. Coefficients of resistance of cementitious materials to sulphate attacks.

No. A B C D E

Corrosion
resistance
coefficient

0.83 0.89 0.87 0.95 0.97
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2.4. Test Methods
2.4.1. Corrosion Resistance Coefficients of Cementitious Materials

The flexural strength R1 of the specimens immersed in the 3% sodium sulphate solution
for 28 d and the flexural strength R0 of the specimens maintained in water at 20 ◦C for the
same age were tested separately. The coefficient of resistance K of the specimens was

K =
R1

R0
(1)

where K is the coefficient of resistance to corrosion, R1 is the flexural strength of the
specimens immersed in sulphate for 28 d (MPa) and R0 is the flexural strength of the
specimens maintained in water at 20 ◦C for the same age (MPa).
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2.4.2. Flow Factor (Fluidity), Wet Density, Compressive Strength and Resistance to
Sulphate Attacks of FLS

Flow factor of freshly mixed foam: A hollow cylinder with an inner diameter and
height of 80 mm was placed on a glass plate, and the mixed foam was poured into the
cylinder. The cylinder was tapped with the scraper as it was being filled with slurry, and
the top was scraped flat. Then, the cylinder was quickly lifted vertically to allow the slurry
to collapse naturally. It was left to stand for 1 min, and the slurry diameter was measured
with a steel ruler along the maximum diameter direction and the direction perpendicular
to it. The arithmetic mean was taken as the result of this flow factor test.

Wet density of FLS: A 1 L volumetric cylinder was placed on an electronic scale and
cleared. Slurry was poured into the cylinder, the cylinder wall was tapped with the scraper
as it was filled with slurry and excess slurry was scraped off with the scraper. The mass of
the cylinder filled with slurry M was determined, and the wet density of FLS was

ρ =
M
V

(2)

where ρ is the wet density (kg/m3), M is the mass of the slurry filling the cylinder (g) and
V is the volume of the volumetric cylinder (1 L).

Compressive strength of hardened FLS: After the cube block had cured and expired, it
was removed from the curing room, and its side length L was measured with a dial calliper.
It was then placed on a pressure-testing machine (TYE-300D) for pressing. The rate of
pressing load was controlled at 0.1 ± 0.05 kN/s, and the test block breaking load P was
recorded. The compressive strength of hardened FLS was

F =
P
L2 (3)

where F is the compressive strength of the test block (MPa), P is the test block breaking
load (N) and L is the side length of the test block (mm).

Sulphate attack resistance of FLS: The FLS specimens were maintained under standard
conditions for 28 d. One group of comparison specimens was maintained under standard
conditions for another 28 d. The other group was maintained in solutions with different
SO4

2− concentrations for the same length of time. After the appropriate age of maintenance,
the compressive strength of the specimens was measured. Solutions with different SO4

2−

concentrations were prepared using a Na2SO4 chemical reagent with SO4
2− concentrations

of less than 200 mg/L (mild), 200 to less than 1000 mg/L (moderate) and 1000 to less than
4000 mg/L (severe).

3. Results and Discussion
3.1. Resistance of Cementitious Materials to Sulphate Attacks

Table 4 shows the coefficients of resistance to sulphate attacks of the cementitious
materials. Specimen A exhibited the worst resistance, which was mainly due to the large
amount of Ca(OH)2 generated in the system. This large amount of Ca(OH)2 reacted with the
erosion medium (Na2SO4) to produce CaSO4, which then reacted with hydrated calcium
aluminate to produce AFt. This increased the volume of the solid phase and generated
considerable crystallisation pressure, leading to a decrease in compressive strength and
even swelling and cracking or damage. When 40% GFBS (specimen B) or 40% FA (specimen
C) was used instead of C, the sulphate attack resistance was significantly improved due to
the reduced amount of Ca(OH)2 generated in the system, but the effect of GBFS replacement
was better than that of FA replacement. The amount of C in specimen D was only 30%,
and the amount of GBFS and FA reached 70%. Although the compressive and flexural
strengths of specimen D after curing in water were lower than those of specimens A, B and
C, the strengths of specimen D after being immersed in the sulphate solution decreased
less than those of the other specimens, especially specimen E (which contained a small
amount of CA), whose mechanical properties decreased slightly. Thus, the replacement of
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C with FA and GBFS in the cementitious material system could enhance sulphate attack
resistance. Moreover, the smaller the amount of CA mixed with FLS, the more significant
the resistance of FLS to sulphate attacks.

3.2. Physical Properties of FLS

Some performances of the FLS specimens are shown in Table 5. The flow factor of
the freshly mixed FLS was 165–178 mm, and the wet density was 593–608 kg/m3, which
both met the design requirements. After they hardened, specimen A had the highest
compressive strength, whereas specimen C had the lowest compressive strength. Specimen
C had 7 and 28 d compressive strengths of 0.63 and 1.34 MPa, respectively, which fulfilled
the design requirements (7 d compressive strength ≥0.5 MPa and 28 d compressive strength
≥1.0 MPa).

Table 5. Main performances of FLS.

No. A B C D E

Flow factor, mm 170 175 178 175 165
Wet density, kg/m3 601 597 596 593 608

7 d Compressive strength, MPa 1.16 0.95 0.63 0.82 0.87
28 d Compressive strength, MPa 2.18 2.12 1.34 1.90 2.05

It should be emphasised that the quality of the FLS has a great relationship with the
quality of the foam. The pH value of the foaming agent selected in this study is 10.2, which
is alkaline and compatible with cement-based cementitious material systems. It not only
has high dilution times, but also a good foaming effect and is stable for a long time.

From the point of view of practical engineering applications, it is better to adopt the
material composition and proportioning of specimen D or E due to the small amount of C,
which can reduce production costs and decrease the temperature rise inside the bulk FLS,
thereby helping prevent the FLS surface from cracking.

3.3. Low Carbon Emission of FLS

For every 1 t of cement produced, about 0.7 t of CO2 is emitted into the atmosphere and
about 100 kW/h of electricity is consumed. In accordance with the material composition
and ratios of specimen A, at least 241.5 kg of CO2 would be emitted per cubic metre of
FLS; specimen B or C, about 144.9 kg; and specimen D or E, only 72.5 kg, as shown in
Table 6. Hence, for the same FLS that met the design requirements, specimen D or E could
reduce CO2 emissions by 169 kg/m3 compared with specimen A (a reduction of 70%) while
eliminating 200 kg of solid waste, such as slag and FA, and reducing raw material costs
by more than 20%. For the construction of a large intelligent networked vehicle test site, a
typical roadbed needs to be filled with at least 500,000 m3 of FLS, where at least 80,000 t of
CO2 emissions can be eliminated by using the preparation of specimen D or E.

Table 6. CO2 emissions from cement manufacture in specimens.

No. A B C D E

Amount of cement, kg 345 207 207 103.5 103.5
CO2 emissions of cement

manufacturing, kg 241.5 144.9 144.9 72.5 72.5

CO2 reduction rate, % / 40% 40% 70% 70%

3.4. Resistance of FLS to Sulphate Attacks

The specimens were divided into two groups after being maintained under standard
conditions to investigate the resistance of FLS to sulphate attacks. Over another 28 d, one
group of comparison samples continued under standard conditions, whereas the other
group was immersed in solutions with different SO4

2− concentrations. The changes in
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the compressive strengths of the specimens immersed in solutions with different SO4
2−

concentrations are shown in Table 6.
As seen in Table 7, the compressive strengths of the specimens immersed in the

200 mg/L SO4
2− solution remained unchanged and, in some cases, even increased slightly

compared with those of the specimens under standard curing conditions (56 d, temperature
of 20 ◦C, humidity of 95%). The results were mainly determined by the FLS microstructure,
as shown in Figure 4. Macroscopic spherical pores and hardened slurry accounted for
75–80% and 20–25% of the whole volume. These pores had varying diameters and were
closed and not connected to each other. The pore wall wrapped around the pores (hardened
slurry) was the main source of strength. Because the water–binder ratio was large (0.65), this
part of the hardened slurry also contained micron-sized capillaries and nano-sized gel pores.
It was found that the pore structures of sample A and B were poor, but their compressive
strength of 56 d was higher. The pore size distribution of sample C and sample D did not
differ much, but their compressive strengths differed significantly. The main reason for the
above two phenomena was the different pore wall structures (hardened slurry).

Table 7. Compressive strength of specimens immersed in solutions with different SO4
2− concentrations.

No. A B C D E

56d compressive strength (contrast
specimens), MPa 2.36 2.72 1.78 2.41 2.58

56d compressive strength
(experimental specimens), MPa

200 mg/L 2.39 2.73 1.77 2.41 2.60
1000 mg/L 2.08 2.55 1.62 2.29 2.53
4000 mg/L 1.80 2.35 1.47 2.23 2.47
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the hardened slurry. Consequently, the hardened slurry became denser and therefore
appeared to increase rather than decrease in strength. The trend curves of the changes in
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the compressive strengths of all specimens after erosion by different SO4
2− concentrations

are shown in Figure 5.
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However, as the SO4
2− concentration increased, the compressive strengths of the

specimens decreased. The compressive strength of specimen A decreased significantly
when the SO4

2− concentration increased from 200 to 4000 mg/L. The compressive strength
decreased by 11.9% and 23.7%, respectively, which were the largest decreases among all of
the specimens, mainly because the Ca(OH)2 generated in C reacted with a large amount of
SO4

2− to produce delayed AFt, which resulted in expansion and reduced the compressive
strength. Had the immersion been prolonged further, the strength would have decreased
even more and collapse could have occurred. When GBFS or FA was used to partially
replace C, the compressive strengths of the specimens decreased as well. Nonetheless,
the decrease tended to be significantly slower; the compressive strengths of specimens B
and C in the 4000 mg/L solution decreased by 13.6% and 17.4%, respectively. Therefore,
the admixture of GBFS or FA did improve resistance to sulphate corrosion. Under the
same erosion condition (SO4

2− concentration of 4000 mg/L), the compressive strength
of specimen D, which contained less C, GBFS and FA, decreased by only 7.5%. These
experimental data showed that after sulphate attacking, the compressive strength of sample
A decreased the most and sample D decreased the least, which was related to the pore size
distribution as well as its own material composition. Specimen E’s compressive strength
decreased by only 4.3%, but its resistance to sulphate erosion was more significant. The
main reasons for the excellent resistance of specimen E to sulphate erosion were as follows:
The low C dosage in the cementitious material system resulted in a small amount of
corrosion-prone Ca(OH)2 generated by the reaction. By contrast, CA consisted of large
amounts of partial kaolinite and silica fume; they contained large quantities of active SiO2
and Al2O3, which were conducive to the generation of hydrated calcium silicate (C–S–H). In
addition, the specific surface areas of kaolinite and silica fume were large, and they filled the
pores of the porous pore wall slurry, which was also beneficial for strength improvement.

The above analyses show that pure C should not be utilised as a cementitious material
when using FLS as an underground fill material in seaside, salt lakes or groundwater
containing high concentrations of sulphate ions. For an erosion medium environment
with SO4

2− concentrations of less than 1000 mg/L (moderate), GBFS or FA can be used to
replace part of C. For SO4

2− concentrations of less than 4000 mg/L (severe), less C should
be used, and large quantities of GBFS and FA should be adopted as cementitious materials,
preferably mixed with an appropriate amount of CA. At present, there is more research on
the strength and durability of concrete predicted by machine learning [33–37]. It is believed



Materials 2023, 16, 4604 10 of 12

that in future study, artificial intelligence algorithms will also have good prospects in the
field of the FLS prediction of strength and durability.

4. Conclusions

(1) FLS prepared using 30% C, 30% GBFS, 40% FA and a small amount of CA as a cemen-
titious material has excellent resistance to sulphate erosion, low carbon emission and
a corrosion resistance coefficient reaching 0.97. Compared with FLS prepared using
pure cement, it can reduce CO2 by 70% and has obvious low carbon characteristics.

(2) FLS with a flow factor of about 170 mm and a wet density of about 600 kg/m3 can be
prepared using 30% C, 30% GBFS, 40% FA, a water–binder ratio of 0.65 and a foam
density of 50 kg/m3. Its compressive strengths at 7 and 28 d reached 0.8 and 1.9 MPa,
respectively. After sulphate attacking, its compressive strength decreased the least,
which is related to its pore size distribution and its own material composition.

(3) For areas where the groundwater contains high concentrations of sulphate ions, pure
C should not be utilised as a cementitious material to prepare FLS. For an erosion
medium environment with SO4

2− concentrations of less than 1000 mg/L (moderate),
GBFS or FA can be used to partially replace C. For SO4

2− concentrations of under
4000 mg/L (severe), only a small quantity of C should be used, and large amounts of
GBFS and FA should be added as cementitious materials, preferably in combination
with an appropriate amount of CA.
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