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Abstract: Reinforced concrete (RC) is the result of a combination of steel reinforcing rods (which
have high tensile) and concrete (which has high compressive strength). Additionally, the prediction
of long-term deformations of RC flexural structures and the magnitude of the influence of the
relevant material and geometric parameters are important for evaluating their serviceability and
safety throughout their life cycles. Empirical methods for predicting the long-term deformation of
RC structures are limited due to the difficulty of considering all the influencing factors. In this study,
four popular surrogate models, i.e., polynomial chaos expansion (PCE), support vector regression
(SVR), Kriging, and radial basis function (RBF), are used to predict the long-term deformation of
RC structures. The surrogate models were developed and evaluated using RC simply supported
beam examples, and experimental datasets were collected for comparison with common machine
learning models (back propagation neural network (BP), multilayer perceptron (MLP), decision tree
(DT) and linear regression (LR)). The models were tested using the statistical metrics R2, RAAE,
RMAE, RMSE, VAF, PI, A10−index and U95. The results show that all four proposed models can
effectively predict the deformation of RC structures, with PCE and SVR having the best accuracy,
followed by the Kriging model and RBF. Moreover, the prediction accuracy of the surrogate model
is much lower than that of the empirical method and the machine learning model in terms of the
RMSE. Furthermore, a global sensitivity analysis of the material and geometric parameters affecting
structural deflection using PCE is proposed. It was found that the geometric parameters are more
influential than the material parameters. Additionally, there is a coupling effect between material
and geometric parameters that works together to influence the long-term deflection of RC structures.

Keywords: deflection prediction; reinforced concrete structures; global sensitivity analysis; surrogate
models

1. Introduction

Reinforced concrete (RC) structures are widely used as the primary components of
civil engineering structures due to their high strength and durability. Long-term deflection
is a major concern for civil engineers when designing RC structural elements and assessing
their long-term serviceability [1–4]. The deflection of RC structures may increase over time
due to internal factors such as creep and shrinkage effects of the concrete and external
factors such as continuous loading, elastic deformation associated with service loads and
environmental influences [5]. During the service life of RC structures, local strains within
component cross-sections can reach values several times greater than the initial elastic
strain; this can cause undesired usability problems in structural elements with excessive
deflections or crack widths, even in structures that meet code requirements. Excessive
deflections can shorten the service life of RC structural elements [2] and have significant
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economic consequences [6]. Thus, accurate estimates of long-term deflection are essential
for the structurally sound design of large-span, small-diameter RC beams [7].

Some empirical approaches have been proposed by researchers to address the above
needs [2,8–12]. Design code methods based on mathematical formulae, including those
from the American Concrete Institute (ACI) 318 [13] and Eurocode 2 [14], are highly
regarded and widely used by structural engineers in structural design practice. For example,
Gribniak et al. [3] presented detailed information regarding different design codes, namely,
Eurocode 2, ACI 318, ACI 435 and the new Russian code SP 52-101, and analysed the
long-term deflection of RC members using these codes. Some researchers have made
improvements to empirical approaches to improve their applicability [2,15–22]. However,
there are several problems with these methods. First, the simplified long-term deflection
equations exclude key geometric and material factors of RC members [17], limiting their
applicability to only simple RC members designed with the same form and working
conditions [19]. Second, deflection deviations are overestimated to ensure safe predictions,
and variations in load strength have a significant effect on accuracy. Finally, these methods
are only applicable for estimating the instantaneous deflection of RC structural beams [18].
However, even with the recent inclusion of geometric parameters in design code equations,
the estimation accuracy remains low because these relationships are expressed in a simple
linear form [2,21]. As a result, there are some limitations in predicting the deflection of RC
structures.

Machine learning, as a subfield of artificial intelligence, has been used to facilitate im-
provements and innovations in design-related problems in civil engineering [23]. Examples
include automatic identification of concrete spalling [24], predicting the mechanical strength
of RC materials [25], determining the punching and shear load capacity of RC slabs [26],
predicting concrete strength [27–29], predicting the bonding capacity of fibre-reinforced
polymer (FRP) to concrete interfaces [30], and forecasting the MR of modified base materials
subject to wet–dry cycles [31]. Al-Zwainy, Zaki, Al-saadi and Ibraheem [32] were the first to
investigate the application of artificial neural networks (ANNs) in predicting the mechani-
cal properties of RC beams, and more recently, Pham, Ngo and Nguyen [33] reviewed the
performance of various data-driven machine learning models, including ANNs, support
vector regression (SVR) and integrated models, for predicting the long-term deflection of
RC beams.

In addition, surrogate models (also known as metamodels) have received extensive
attention from researchers and practitioners and are mathematical or numerical approxima-
tions of complex models generated by mapping from a small number of random inputs
to the corresponding model outputs. During the last few years, many surrogate mod-
els have been developed in the field of civil engineering, such as polynomial response
surfaces (PRS) [34], multi-variable adaptive regression spline (MARS) [35], radial basis
functions (RBF) [36], Kriging models [37]/Gaussian processes [38], support vector regres-
sion (SVR) [7], polynomial chaos expansion (PCE) [39] and alternative ensembles [40].
However, surrogate models are currently devoted mainly to structural finite element model
updating [41], structural damage identification [42] and structural reliability analysis [39].
Surprisingly, few studies have examined the feasibility of applying surrogate models to the
prediction of long-term deflection in RC beams despite the availability of rich and practical
data samples in the literature.

Global sensitivity analysis (GSA) is designed to explore the relationship between
model inputs and outputs and is used to provide quantitative indices of the effect of
different input variables on the model response of interest [43–45]. There are two main
ways of calculating global sensitivity indicators: Monte-Carlo-based and surrogate-based
methods. The former requires a large number of samples to assess reliable results [46],
while the latter requires only a small number of samples to construct an accurate surrogate
model to quickly derive the global sensitivity indices. Sudret [47] analytically derived the
PCE-based global sensitivity indices formulae, and Cheng et al. [48] and Wu et al. [49]
analytically derived global sensitivity indices formulae using SVR and RBF, respectively.
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In recent years, the application of global sensitivity analysis in the field of finite element
model updating and damage identification for civil engineering structures has received
much attention [50–52]. Surprisingly, global sensitivity analysis techniques to assess the
long-term deflection affecting RC beams have not been developed or studied.

Motivated by the above analysis, this paper presents the use of surrogate models for
long-term deflection prediction of RC flexible members, compares the accuracy of global
sensitivity indices calculated using PCE, SVR and RBF through numerical examples, and
proposes the use of PCE for global sensitivity analysis of factors affecting the deflection of
RC flexible members, which help predict the long-term deflection of RC beams in advance.
The method presented in this paper will provide civil engineers with a set of data-driven
tools to assess the long-term availability and safety of structures.

In this study, a data-driven modelling approach for long-term deflection prediction
of concrete structures using surrogate models is proposed. In particular, four well-known
surrogate models are used to predict the long-term deflection of RC flexural structures,
namely PCE, SVR, Kriging and RBF. All surrogate models offer good transparency because
they can generate explicit mathematical formulations that better describe the physical
relationships between inputs and outputs. Additionally, the use of a PCE-based global
sensitivity analysis of the factors influencing the long-term deflection of concrete structures
is presented, which may help designers and civil engineers predict the long-term deflection
of RC beams in advance.

The remainder of this article is organised as follows. Section 2 presents the theoretical
basis of surrogate models. A global sensitivity analysis is presented in Section 3. A finite
element analysis of a RC simply supported beam and the collected long-term deflection
dataset of RC members are analysed in Section 4. The concluding remarks and outlines
of future works are summarised in Section 5. For clarity, the abbreviations in the text are
listed in full in abbreviations.

2. Theoretical Bases of Surrogate Model

Mainstream surrogate models can be divided into regression fitting (e.g., PCE and
SVR), interpolation fitting (e.g., Kriging and RBF), and a combination of both [39]. Regres-
sion fitting does not cross the training samples in the modelling process, and there is fitting
error. This method can filter out noise and experimental errors in training samples and is
suitable for analytical problems with some computational noise and errors. Interpolation
fitting passes through all training samples during the fitting process without fitting errors.
Moreover, this approach is suitable for analytical problems with small or zero error. Popular
surrogate model methods in the engineering field include PCE, LSSVR, Kriging and RBF.
The specific characteristics of various methods are analysed as follows.

2.1. PCE

PCE is an explicit representation of the stochastic model response as a series of normal
multivariate polynomials [53]. First introduced into stochastic mechanics by Ghanem and
Spanos, the theory of chiastic chaos [54] was later extended by Xiu and Karniadakis [55] to
different types of statistical distributions (e.g., uniform, β and γ distributions), as shown
in Table 1. Typically, two methods are used to solve for PCE coefficients: intrusive and
non-intrusive. Intrusive methods require modifications to the solution scheme of the
deterministic control equations of the model [56], while non-intrusive methods, such
as projection [57] and regression [47,58], calculate the PC coefficients by repeating the
simulation over a limited number of input and output samples.

The output of the physical model or system of interest can be expressed as a black-
box function y = F (x) of its associated variables, and this functional relationship can be
expressed in the form of a polynomial chaos expansion as follows:

y = F (x) = ∑
α∈Nn

βαψα(x) (1)
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where α = (α1, . . . , αn), (αi ≥ 0) is an n-dimensional indicator, βα is the unknown coeffi-
cient to be determined, and ψα denotes the tensor product of orthogonal polynomials in a
single variable.

ψα(x) =
n

∏
i=1

ψ
(i)
αi (xi) (2)

As shown in Table 1, different univariate orthogonal polynomial bases for polynomial
chaos expansion can be chosen for different types of data distributions. For example, for
the input variables of Gaussian distribution type, the Hermite polynomial basis can be
chosen; for the input variables of a uniform distribution, the Legendre polynomial basis
can be chosen.

Table 1. Common types of orthogonal polynomials and their associated support.

Types Polynomial Support

Gaussian Hermite (−∞, ∞)
Uniform Legendre [a, b]
Beta Jacobi [a, b]
Gamma Laguerre [0, ∞)
Poisson Charlier {0, 1, 2, · · ·}
Binomial Krawtchouk {0, 1, 2, · · · , n}
Negative binomial Meixner {0, 1, 2, · · ·}
Hypergeometric Hahn {0, 1, 2, · · · , n}

In practical engineering applications, in order to save computational resources, the
PCE in Equation (1) is usually truncated. This maintains its total order |α| = ∑n

i=1 αi while
not exceeding a given polynomial of order p, i.e.,

y ' Fp(x) = ∑
α∈Ap,n

βαψα(x),Ap,n = {α ∈ Nn : |α| ≤ p} (3)

Equation (3) is called the p-order full polynomial chaos expansion of the model
response y. The relationship between the total number of unknown coefficients P and the
maximum order p and dimension n of the input variables is as follows:

P =

(
n + p

p

)
=

(n + p)!
n!p!

(4)

From Equation (4), the number of truncated PCE bases increases exponentially as the
dimensionality of the analysed problem and the increasing order of PCE, which greatly
increases the computational cost. A large number of experimental cases show that only
a small number of bases in the truncated PCE have an impact on the output response.
Therefore, let A be a nonempty finite subset of Nn, and the sparse PCE can be defined by
the following equation:

FA(x) = ∑
α∈A

βαψα(x) (5)

In Equation (5), the set A is referred to as the truncated set. A truncated PCE is called
sparse if the sparsity index IS satisfies the following conditions:

IS =
card(A)

card(Apmax ,n)
� 1,pmax = max

α∈A
(|α|) (6)
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where pmax corresponds to the order of the truncated PCE in Equation (5). In addition,
the order of any indicator α in A and the order of the coupling effect of the variables are
defined by the following equations, respectively:

pα = |α| =
n

∑
i=1

αi, ηα =
n

∑
i=1

1αi > 0 (7)

where 1αi > 0 = 1 if αi > 0 and 0, otherwise.
A popular way of obtaining the PCE coefficients is by constructing the objective

function min
β∈RP

E(β) = ‖β‖1 + λ‖ψβ− y‖2
2 from Equation (5) and solving it using a greedy

algorithm. A comprehensive comparison of the accuracy and efficiency of orthogonal
matching pursuit (OMP), least angle regression (LAR) and Bregman-iterative greedy coor-
dinate descent (BGCD) in solving sparse PCE was made by Zhang et al. [59]. In this paper,
the BGCD algorithm will be used to solve the PCE coefficients. As soon as a sparse PCE
model for the deformation of the RC structure is established, the global sensitivity index
can be obtained directly by post-processing the PCE coefficients.

2.2. SVR

SVM is a new machine learning algorithm based on statistical learning theory de-
veloped by Vapnik et al. [60]. The SVM method adopts the principle of structural risk
minimisation and integrates techniques such as convex quadratic programming, maximum
interval hyperplane classification and Mercer kernel clustering, which can find the optimal
compromise between the complexity of the model and the learning ability. The optimal
compromise between model complexity and learning ability can avoid the problem of
overfitting and falling into a local optimum in the learning process. SVM is essentially
a quadratic programming problem with linear constraints and has a high training com-
plexity. However, when the sample data are too large, SVM becomes very complex and
time-consuming in solving quadratic programming problems. To overcome this problem,
Suykens et al. improved the SVM model [61] by replacing the inequality constraint with an
equation constraint to minimise the squared term of the error. This eventually transforms
the problem into solving a set of linear equations and improves the computational efficiency
and accuracy; this method is called the least squares support vector machine. When the
least squares SVM is used for regression prediction and modelling, we call it SVR.

SVR is suitable for nonlinear model prediction and achieving solution sparsity, and
has a wide range of application prospects. A regression function of SVR is defined as:

y(x) = βTϕ(x) + b (8)

where b is the bias term, β denotes the regression coefficient vector and ϕ(x) denotes the
nonlinear mapping function that can map the original low-dimensional design variables
to a high-dimensional space. The model construction can be converted into solving the
optimisation problem, i.e.,

Min
β,e J(β, e) =

1
2

βT β +
1
2

γ
m

∑
i=1

e2
i (9)

The constraint is defined as:

yi = βTϕ(xi) + b + ei, i = 1, 2, . . . , m (10)

where b and ei are the penalty factor and error variable, respectively.
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By introducing Lagrange multipliers α, the optimisation problem with constraints is
transformed as follows:

L(β, b, e, α) =
1
2

βT β +
1
2

γ
m

∑
i=1

e2
i −

m

∑
i=1

αi

[
βTϕ(xi) + b + ei − yi

]
(11)

Using the above to find the partial derivatives of the parameters β, b, e and α respec-
tively, we obtain:

∂L
∂β = 0⇒ β =

m
∑

i=1
αiϕ(xi)

∂L
∂b = 0⇒

m
∑

i=1
αi = 0

∂L
∂e = 0⇒ αi = γei, i = 1, 2, . . . , m

∂L
∂α = 0⇒ βTϕ(xi) + b + ei − yi = 0, i = 1, 2, . . . , m

(12)

By solving the above equation and eliminating the parameters β and ei, the following
system of linear equations is obtained[

0 IT

I Λ + 1
γ I

][
b
α

]
=

[
0
y

]
(13)

where 
y = [y1, y2, . . . , ym]

T

I = [1, 1, . . . , 1]T

α = [α1, α2, . . . , αm]
T

Λi,j = ϕ(xi)
Tϕ
(
xj
) , i, j = 1, 2, . . . , m (14)

Low-dimensional input variables can be mapped to a high-dimensional space with
the following expression φ

(
xi, xj

)
:

φ
(
xi, xj

)
= ϕ(xi)

Tϕ
(
xj
)
, i, j = 1, 2, . . . , m (15)

Finally, the regression function of SVR is

y(x) =
m

∑
i=1

βiφ(x, xi) + b (16)

The commonly used kernel functions for constructing SVR are shown in Table 2. In
this paper, we choose a radial basis kernel function with a hyperparameter σ to construct
the SVR. The hyperparameter σ is obtained by cross-validation [61].

Table 2. Some commonly used kernel functions for SVR.

Kernel Description

Linear kernel φ
(

xi, xj

)
= xT

i xj

Polynomial kernel φ
(

xi, xj

)
=
(

xT
i xj + t

)d
, t ≥ 0

Radial basis kernel φ
(

xi, xj

)
= e−‖xi−xj‖2/2σ2

2.3. Kriging

As a semi-parametric model based on statistical prediction of stochastic processes,
Kriging provides a linear unbiased, minimum variance estimate of the unknown response
values in the design space by fitting a functional relationship between the sample points
and the response values in the design space. Kriging was first proposed by the South
African geologist Krige in 1951 when he was studying the distribution pattern of mineral
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reserves and was first used by Sacks [62] in the optimal design of structures. Kriging was
first used in structural design optimisation by Simpson et al. [63,64].

Kriging consists of a parametric model and a non-parametric stochastic process jointly.
For a set of m N-dimensional sample points, let the set consisting of sample points be
X = {x1, x2, . . . , xm}T whose corresponding response is Y = { f (x1), f (x2), . . . , f (xm)}T .
Then the relationship between them can be expressed by the Kriging surrogate model as

y(x) = fT(x)β + z(x) (17)

The first part of the equation is a linear regression of the data as shown in Equation (17),
providing a global approximation to the fit, usually consisting of p polynomials. The
second part is a random process with a non-independent but identically distributed normal
distribution, providing a local approximation to the fit as follows:

fT(x)β = β1 f1(x) + β2 f2(x) + . . . + βp fp(x) (18)

For a stochastic process z(x) that is a Gaussian smooth stochastic process with non-zero
covariance and subject to a normal distribution N

(
0, σ2), its covariance matrix is generally

expressed as
E
[
z(xi), z

(
xj
)]

= σ2R
(
θ, xi, xj

)
(19)

where θ is the correlation function parameter and R
(
θ, xi, xj

)
is the spatial correlation

function of any two sample points xi, xj in the sample points, which plays a dominant
role in the fitting accuracy of the model and is commonly used in the form of a Gaussian
correlation model.

R
[
z(xi), z

(
xj
)]

= exp

(
−

n

∑
k=1

θk

∣∣∣xk
i − xk

j

∣∣∣2) (20)

where
∣∣∣xk

i − xk
j

∣∣∣2 is the square of the distance between the two sample points in the kth
dimension, n represents the total number of output parameters, and θk is the decay rate
controlling the correlation in different dimensions. The correlation function matrix between
each sample point in a sample set of m sample points is

R =

R(x1, x1) · · · R(x1, xm)
...

. . .
...

R(xm, x1) · · · R(xm, xm)

 (21)

In the above mathematical model, the likelihood function for the occurrence of the
true response at the sample point can be obtained as

L =
1

(2πσ2)
n/2|R|1/2

exp

(
− (Y− Fβ)TR−1(Y− Fβ)

2σ2

)
(22)

where F is a matrix of f (x) vector values at each sample point.
According to the maximum likelihood rule, it can be found that:

β̂ =
(
FTR−1F

)−1FTR−1Y
σ̂2 = (Y− Fβ)TR−1(Y− Fβ)/m

(23)

Furthermore, the logarithmic form of the great likelihood function is presented as:

ln(L) ≈ −n
2

ln
(

σ̂2
)
− 1

2
ln|R| (24)
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The optimal solution is obtained using an optimisation algorithm, i.e., the decay rate θk
in different dimensions can be determined. This method allows Kriging to be constructed.
Using Kriging for unknown sample points x0 predictions can be expressed as follows:

ŷ(x0) = f T(x0)β̂ + rT(x0)R−1(Y− Fβ) (25)

where rT(x0) is the vector of correlation functions between the unknown points and each
sample point, i.e.:

rT(x0) = [R(x0, x1), . . . , R(x0, xn)] (26)

2.4. RBF

RBF is a radially symmetric function, which is an interpolation method with the
advantages of simplicity of form, adaptability and accuracy. It is confirmed that radial basis
functions are the only best form of approximation for unknown functions by the equivalent
definition of Micchelli’s theorem [65]. Frank [66] interpolated a large amount of scattered
data using various interpolation methods and verified that interpolation methods based on
radial basis functions were the most effective.

Suppose the function y = f (x) is an N-dimensional real-valued function, and m
sample points are selected using the experimental design method, and the set of these
sample points is denoted as: X = {x1, x2, . . . , xm}T ; the set of response values y =

{ f (x1), f (x2), . . . , f (xm)}T for each sample point is obtained by the function. Then the
radial basis function

∼
y(x) is used to fit a function y of the following form.

∼
y(x) =

m

∑
i=1

λiφ(‖x− xi‖) (27)

where λi represents the coefficient to be determined before the ith basis function and ‖x− xi‖
represents the Euclidean norm between the prediction point x and the sample point xi. For

an N-dimensional design space ‖x− xi‖ =
√(

x1 − xi
1
)2

+
(
x2 − xi

2
)2

+ . . . +
(
xn − xi

n
)2, φ

represents the radial basis form of the radial basis, and the form of the basis function
usually used is shown in Table 3, such that r = ‖x− xi‖.

Table 3. Some commonly used basis functions for RBF.

Types Expressions

Multiquadric basis (MQ) φ(r) =
√

r2 + c2

Inverse multiquadric basis (IMQ) φ(r) = 1/
√

r2 + c2

Gaussian basis (G) φ(r) = e−r2/c2

Thin plate spline (TPS) φ(r) = r2ln(r + c)

By taking the m sample points and response values into Equation (27), we obtain:
λ1φ

(
r11)+ λ2φ

(
r12)+ . . . + λnφ

(
r1n) = f (x1)

. . .
λ1φ

(
rm1)+ λ2φ

(
rm2)+ . . . + λnφ(rmn) = f (xm)

(28)

The above equation has a total of m equations and n unknowns. For ease of presenta-
tion, we write Equation (28) in matrix form as follows.

Aλ = y (29)
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where A=

φ
(
r11) · · · φ

(
r1n)

...
. . .

...
φ
(
rm1) · · · φ(rmn)

, λ = {λ1, λ2, . . . , λm}T , y = { f (x1), f (x2), . . . , f (xm)}T .

Once a set of sample points and response values are given, the coefficient λ to be determined
can be found according to the least squares method.

Equation (27) shows that RBF describes the complex implicit functional relationship
between the structural response and the structural parameters through a linear combination
of basis functions. As the number of parameters to be corrected increases, the number of
sample points required to solve for the coefficients to be determined is linearly related to
the number of parameters to be corrected. Thus, compared to PCE, Kriging and SVR, RBF
has the advantage of saving computational costs when fitting unknown problems.

3. Global Sensitivity Analysis
3.1. Sobol’ Decomposition

Let us consider a mathematical model with an n×m input x consisting of m samples
of n variables and an m× 1 output y:

y = f (x), x ∈ Kn (30)

where the input variables are defined on the n-dimensional unit cube Kn:

Kn = {x : 0 ≤ xi ≤ 1, i = 1, . . . , n} (31)

The Sobol’ decomposition decomposes f (x) into summation terms with increasing
dimensionality [44]:

f (x1, . . . , xn) = f0 +
n

∑
i=1

fi(xi) + ∑
1≤i<j≤n

fij(xi, xj) + . . . + f1,2,...,n(x1, . . . , xn) (32)

where the constant f0 is the mean value of the function, i.e.:

f0 =
∫

Kn
f (x)dx, dx = dx1, . . . , dxn (33)

The sum in Equation (32) contains the number of summands equal to ∑n
j=1

(
n
j

)
=

2n − 1. Each summand fi1,...,is
(
xi1 , . . . , xis

)
has zero integration over any of its independent

variables and the summand terms are orthogonal to each other [43], as follows:∫ 1

0
fi1,...,is

(
xi1 , . . . , xis

)
dxik = 0 f or 1 ≤ k ≤ s (34)

∫
Kn fi1,...,is

(
xi1 , . . . , xis

)
f j1,...,jt

(
xj1 , . . . , xjt

)
dx = 0

f or{i1, . . . , is 6= j1, . . . , jt}
(35)

According to the above properties, the decomposition in Equation (32) is unique as
long as f (x) is integrable over Kn. Furthermore, the summands in the decomposition can be
derived analytically. In fact, the univariate terms and the bivariate terms are represented as:

fi(xi) =
∫

Kn−1
f (x)dx∼i − f0 (36)

fij(xi, xi) =
∫

Kn−2
f (x)dx∼ij − fi(xi)− f j

(
xj
)
− f0 (37)

where
∫

Kn−1 dx∼i means integration over all variables except xi, and
∫

Kn−2 dx∼{ij} means
integration over all parameters except xi and xj. Following this construction, any summand
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fi1,...,is
(

xi1 , . . . , xis
)

can be written as the difference between a multidimensional integral
and a lower-order summation term.

Now consider the input parameter X = {X1, . . . , Xn} as an independent random
variable uniformly distributed in [0, 1]. The model response Y = f(X) is a random variable
whose total variance D is expressed as:

D = Var[ f (X)] =
∫

Kn
f 2(X)dX− f 2

0 (38)

By integrating the square of Equation (32) and using Equation (35), the total variance
in Equation (38) can be decomposed as follows:

D =
n

∑
i=1

Di + ∑
1≤i<j≤n

Dij + . . . + D1,2,...,n (39)

where the partial variance appearing in the above expansion is as follows:

Di1,...,is =
∫

Ks f 2
i1,...,is

(
xi1 , . . . , xis

)
dxi1 , . . . , dxis ,

1 ≤ i1 < . . . < is ≤ n, s = 1, . . . , n
(40)

The Sobol’ indices are defined as follows:

Si1,...,is = Di1,...,is /D (41)

By definition, in combination with Equation (39), it is easy to obtain:

n

∑
i=1

Si + ∑
1≤i<j≤n

Sij + . . . + S1,2,...,n = 1 (42)

Thus, each index Si1,...,is is a sensitivity measure describing how much of the total
variance is due to uncertainty in the set of input parameters {i1, . . . , is}. The first-order
indices Si give the effect of each parameter acting individually on the output, while the
second-order indices Sij indicate the coupling effect of variable xi and variable xj on the
output, and the higher-order indices describe the effect of a possible mixture of parameters
on the output.

The total sensitivity indicators STi are defined in order to evaluate the total effect of
an input variable [43]. They are defined as the sum of all partial sensitivity indices Si1,...,is
containing parameter i:

STi = ∑
ϕi

Si1,...,is , ϕi = {(i1, . . . , is) : ∃k, 1 ≤ k ≤ s, ik = i} (43)

3.2. Global Sensitivity Analysis Based on Monte Carlo Simulation

The traditional method of solving the global sensitivity indices is Monte Carlo simula-
tion (MCS). Based on Equations (33) and (39), the following estimates of mean, total and
partial variance can be derived using the NMC sample:

f̂0 =
1

NMC

NMC

∑
m=1

f (xm) (44)

D̂ =
1

NMC

NMC

∑
m=1

f 2(xm)− f̂ 2
0 (45)

D̂i =
1

NMC

NMC

∑
m=1

f
(

x(1)
(∼i)m, x(1)m

)
f
(

x(2)
(∼i)m, x(1)m

)
− f̂ 2

0 (46)
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where
xm = (x1m, x2m, . . . , xnm)

x(∼i)m =
(

x1m, x2m, . . . , x(i−1)m, x(i+1)m, . . . , xnm

) (47)

In addition, the superscripts (1) and (2) in Equation (46) indicate that two different
samples are generated and mixed. A similar expression allows for a one-time estimation of
the total sensitivity indices STi :

ŜTi = 1− D̂∼i/D̂ (48)

D̂∼i =
1

Nsim

Nsim

∑
m=1

f
(

x(1)
(∼i)m, x(1)m

)
f
(

x(1)
(∼i)m, x(2)m

)
− f̂ 2

0 (49)

As described above, global sensitivity analysis does not require any assumptions
about the model (e.g., linearity or monotonicity). In practice, analysts usually calculate
first-order and total sensitivity indices and sometimes second-order indices. However, the
calculation of sensitivity indicators based on the MCS method requires the evaluation of
2n integrals, which is not practically feasible unless n is low. In addition, recent work has
been devoted to further reducing the computational cost of evaluating Sobol’ indices; see
also [46]. However, the computational cost of evaluating all indices through MCS remains
an issue.

3.3. Global Sensitivity Analysis Based on PCE

Defining a multidimensional indicator Li1,...,is :

Li1,...,is =

{
α ∈ A :

αk > 0 k ∈ (i1, . . . , is), ∀k = 1, . . . , n
αk = 0 k /∈ (i1, . . . , is), ∀k = 1, . . . , n

}
(50)

PCE in Equation (5) can then be rewritten as:

fA(x) = β0 +
n
∑

i=1
∑

α∈Li

βαψα(xi) + ∑
1≤i1<i2≤n

∑
α∈Li1,i2

βαψα
(
xi1 , xi2

)
+ . . .

+ ∑
1≤i1<···<is≤n

∑
α∈Li1,...,is

βαψα
(

xi1 , . . . , xis
)
+ · · ·+ ∑

α∈L1,...,n

βαψα(x)
(51)

Due to the orthogonality of the PC basis, the mean, total variance and partial variance
of the response can be easily derived from Equation (51) as:

−
y = E( f (x)) = β0,

DA = ∑
α∈A\{0}

β2
αE
[
ψ2

α

(
xi1 , . . . , xis

)]
,

DAi1,...,is = ∑
α∈Li1,...,is

β2
α

[
ψ2

α

(
xi1 , . . . , xis

)] (52)

The global sensitivity indices SAi1,...,is and ST,A
i based on PCE obtained from the above

equations are expressed as:

SAi1,...,is =
DAi1,...,is

DA
, ST,A

i = ∑
α:αi>0

SAα (53)

From the above equations, by modelling the PCE of the response of interest, the
global sensitivity indices can be calculated analytically from the coefficients of PCE, which
significantly reduces computational costs.

Wu et al. [49] and Cheng et al. [48] derived methods for calculating global sensitivity
metrics based on RBF and SVR, respectively. Let us consider the Ishigami function of
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high nonlinearity and non-monotonicity, which is widely used for benchmarking in global
sensitivity analysis:

Y = sin X1 + a sin2 X2 + bX4
3 sin X1 (54)

where a = 7, b = 0.1 and input variables Xi(i = 1,2,3) are uniformly distributed over
[−π, π]. The sensitivity indices of the model response can be calculated analytically as
in [67]. Here, they are approximated by postprocessing PCE, RBF and Kriging of the model
response according to [48,49,59].

From Table 4, the sensitivity indices of the parameters can be calculated more ac-
curately using PCE, SVR and RBF for the same number of model evaluations, with the
sensitivity indices calculated by PCE being the closest to the theoretical values. There-
fore, PCE was subsequently used for the global sensitivity analysis of variables affecting
long-term deflection.

Table 4. Sensitivity analysis results for Ishigami function.

Sensitivity
Indices

Analytical
Results PCE Error

(%) SVR Error
(%) RBF Error

(%) MCS Error
(%)

S1 0.31 0.31 0.06 0.31 0.2 0.32 2.2 0.35 0.25
S2 0.44 0.44 0.02 0.45 0.9 0.38 14.4 0.44 0.34
S3 0 0 0 0 - 0.00 - 0.00 -
S13 0.24 0.24 0.04 0.24 1.4 0.22 8.3 0.24 0.04
ST

1 0.57 0.56 1.71 0.55 3.5 0.58 2.2 0.56 0.30
ST

2 0.44 0.44 0.02 0.45 0.9 0.50 12.5 0.44 0.06
ST

3 0.24 0.24 0.04 0.24 1.4 0.28 15.6 0.24 0.04

Model evaluations 65 65 65 1.0× 106

4. Numerical and Experimental Validations

In this section, we first establish a finite element model of the RC simply supported
beam to verify the feasibility of surrogate models with regard to their deflection prediction.
Second, the accuracy of different surrogate models in calculating the global sensitivity
indices is investigated through a numerical algorithm, and the main variables affecting
the maximum deflection of RC simply supported beams are identified through global
sensitivity analysis of the geometric and material variables affecting their deflection. Finally,
long-term deflection prediction and global sensitivity analysis of RC flexural members are
carried out with the collected experimental dataset to further validate the feasibility of
surrogate models for application in the field of civil engineering structures.

Figure 1 illustrates the process of prediction and global sensitivity analysis of deflec-
tions in RC flexural structures using surrogate models such as PCE, SVR, KRG, and RBF.
This process consists of three main steps. In step 1, the dataset is normalised. In step 2, the
data are randomly separated into training and testing sets. The training sets are used to
train the surrogate model, and the testing sets are used to evaluate models. Step 3 is global
sensitivity analysis of the factors affecting the deflection of the RC flexural structure. All
experiments were conducted on a desktop computer with a Windows 10 operating system
and equipped with an Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz and 16 GB DDR4 RAM
2666 MHz.
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4.1. Predictive Accuracy Measures

In this paper, we use the coefficient of determination R2, relative average absolute error
(RAAE), relative maximum absolute error (RMAE) and root mean square error (RMSE)
as evaluation criteria for prediction performance, and these metrics are widely used in
the accuracy assessment of surrogate models [68–70], the variance accounted factor (VAF),
performance index (PI), A10−index and uncertainty analysis (U95), which are defined as
follows:

R2 = 1−
∑nt

i=1

[
f (xi)− f̂ (xi)

]2

∑nt
i=1

[
f (xi)−

−
f
]2 (55)

RAAE =
∑nt

i=1

∣∣∣ f (xi)− f̂ (xi)
∣∣∣

nt× std
(56)

RMAE =
max1≤i≤nt

∣∣∣ f (xi)− f̂ (xi)
∣∣∣

std
(57)

RMSE =

√√√√∑nt
i=1

[
f (xi)− f̂ (xi)

]2

nt
(58)

VAF =

1−
var
(

f (xi)− f̂ (xi)
)

var( f (xi))

× 100 (59)

PI =
1∣∣∣∣−f ∣∣∣∣

RMSE√
R2 + 1

(60)
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A10−index =
m10

nt
(61)

U95 =
1.96
nt

√√√√ nt

∑
i=1

[
f (xi)−

−
f
]2

+
nt

∑
i=1

[
f (xi)− f̂ (xi)

]2
(62)

where f (xi) and f̂ (xi) are the observed and simulated values, respectively,
−
f is the mean

of the observed values and nt is the number of samples. Additionally, m10 is the number
of records with a ratio of measured to predicted value between 0.9 and 1.1. The closer
the value of R2 and A10−index are to 1, the better the agreement between the actual and
predicted values, when the smaller MAAE, RMAE and RMSE and larger VAF show more
trustable statistical impressions.

4.2. RC Simply Supported Beam
4.2.1. Description of RC Simply Supported Beam Parameters

In this subsection, a RC simply supported beam structure is analysed. The structure
and section reinforcement arrangement are shown in Figure 2. The concrete strength grade
is C30, and the elastic modulus of concrete and reinforcement are Ec and Es, respectively.
The width and height of the beam section are assumed to be B and H, respectively, the
thickness of the concrete protection layer is denoted as a, and the span length of the
structure is L. There is a load (denoted as F) applied to the midpoint of the structure. The
distribution parameters of all 9 input variables are listed in Table 5. The output Y is the
midpoint deflection of the RC beam. Additionally, the relationship between two parameters
can be calculated using the Parson correlation coefficient (PCC) as:

ρX,Y =
cov(X, Y)

σXσY
(63)

where σX and σY are the standard deviations of X and Y, respectively, and cov(X, Y) is the
covariance between X and Y. As shown in Figure 3, high values of positive or negative
coefficients affect the accuracy of the model and make it difficult to explain the effect of the
input parameters on the target parameters. It can be seen that the correlation between Y
and H as well as L and B is very high and that the PCC between the other variables is quite
small.

Table 5. Statistical details of input variables and values for a RC simply supported beam.

No. Variable Description Distribution Mean C.O.V.

1 B Section width (mm) Normal 150 0.1
2 H Total depth (mm) Normal 300 0.1
3 a Thickness of concrete cover Normal 30 0.1
4 L Span length (mm) Normal 2000 0.1

5 Ec
Elasticity modulus of concrete
(MPa) Normal 24,000 0.1

6 Es
Elastic modulus of the
reinforcement (MPa) Normal 200,000 0.1

7 d1 Radius of the tensile bar (mm) Normal 16 0.1

8 d2
Radius of the stirrup and
compression bar (mm) Normal 8 0.1

9 F Load (KN) Normal 80 0.15
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Figure 3. PCC between the variables of a RC simply supported beam.

As shown in Figure 4a,b, we established the finite element model (FEM) of a RC simply
supported beam in ANSYS 15.0. The FEM analysis was performed by fixing all 9 input
variables at their mean values, and the results are shown in Figure 4c. It can be seen that
the largest vertical displacements occur in the middle of the simply supported beam. The
maximum vertical displacement of the structure is taken as the output of the model and is
denoted as Y. The parameters and optimal parameters of the four surrogate models are
shown in Table 6.
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Table 6. The parameters of the surrogate models and the optimal parameters for the RC simply
supported beam.

Surrogate Models Expression Optimal Value

PCE Polynomial of order p 3
SVR Tuning parameter σ 6.2766
Kriging Initial correlation coefficient θ 1.6
RBF Type of basis function TPS

4.2.2. Results and Discussion

In this numerical example, 100 sample points selected using a Sobol’ quasi-random
sequence were used to establish surrogate models. The Sobol’ quasi-random sequence in
Ref. [71] with a MALAB implementation called UQLAB is available at http://www.uqlab.
com (accessed on 15 May 2023).

Four performance evaluation metrics, namely R2, RMAR, RMSE and A10-index, were
determined for the above models, and the results for the training and test data are shown
in Figures 5a and 5b, respectively. For the training data, Kriging is the optimal model, and
for the test data, PCE is the optimal model. Figure 6 further shows the overall ranking of
the efficiency of each model in the form of an intuitive stacked graph. Considering both the
training and test data, PCE and Kriging are the best, with SVR having the lowest accuracy.
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As shown in Table 7, The models were scored from 1 to 4 based on each of the seven
indices; then, the scores were summed to assign a total score for each model. As the
interpolation-type surrogate models can be able to accurately pass all sample points on
the train set, Kriging and RBF have the highest modelling accuracy on the training sets,
followed by PCE and SVR. However, the fit-type surrogate models perform better on
the testing sets. PCE has the highest prediction accuracy (R2 = 0.9907, RAAE = 0.0535,
RMAE = 0.5194, RMSE = 0.0115), followed by Kriging, RBF and SVR. It is noticed that the
RMSE prediction accuracies of all 4 surrogate models are below 0.0150.

Table 7. The results of surrogate model accuracies for the RC simply supported beam example.

Criteria
Training Testing

PCE SVR Kriging RBF PCE SVR Kriging RBF

R2 1 0.9996 1 1 0.9907 0.9846 0.9891 0.9850
Score 2 1 3 3 4 1 3 2

RAAE 0.0048 0.0158 8.65 × 10−16 1.59 × 10−15 0.0535 0.0576 0.0574 0.0746
Score 2 1 4 3 4 2 3 1

RMAE 0.0213 0.0694 3.44 × 10−15 7.40 × 10−15 0.5194 0.7656 0.5890 0.5580
Score 2 1 4 3 4 1 2 3

RMSE 0.0007 0.0023 1.15 × 10−16 2.23 × 10−16 0.0115 0.0148 0.0124 0.0146
Score 2 1 4 3 4 1 3 2

VAF 99.9952 100 100 100 99.0663 98.1545 98.9257 98.5140
Score 1 2 2 2 4 1 3 2

PI 0.0016 0.0049 2.56 × 10−16 4.94 × 10−16 0.0249 0.0353 0.0269 0.0316
Score 2 1 2 3 4 1 3 2

A10-Index 1 1 1 1 0.9400 0.9600 0.9200 0.9000
Score 1 1 1 1 3 4 2 1

Total score 12 8 20 18 27 11 19 13

Figure 7 illustrates the actual-versus-prediction values of the maximum deflection
of a RC simply supported beam obtained via PCE, SVR, Kriging and RBF on the same
training data and testing data. The closer the data point to the line of best fit, the more
accurate the prediction. It can be seen that all 4 surrogate models give particularly good
results when predicting the actual deflection values, especially when predicting lower
actual deflections; these data are almost always on the line of best fit. The maximum
deflection values predicted by the surrogate model for RC beams can reliably support the
design process for RC elements. The results of the uncertainty analysis are shown in Table 4.
Table 8 shows that for both the training data and test data, all four surrogate models have
low U95 values.

Table 8. Comparisons of the performance results for U95 uncertainty for the RC simply supported
beam example.

Model PCE SVR Kriging RBF

Training data 0.0206 0.0206 0.0206 0.0206
Testing data 0.0331 0.0333 0.0332 0.0332

Average 0.0269 0.0269 0.0269 0.0269

Figure 8a–d show the error distributions for the training and testing datasets for the
PCE, SVR, Kriging and RBF models. It can be seen that most of the error distributions occur
around zero, which leads to high accuracy of the models. All models developed produce
more spot distribution around the zero point in the form of a Gaussian bell shape. The
Taylor diagram of the surrogate models of a RC simply supported beam is presented in
Figure 9. It is seen from these graphs that, despite the excellent performance of all models in
high precision, PCE has the best performance in predicting both training and testing data.
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Figure 8. The residual analysis on the training dataset and testing dataset for the RC simply supported
beam example.
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example: (a) training dataset, (b) testing dataset.

4.2.3. Global Sensitivity Analysis of RC Simply Supported Beam

All global sensitivity indices are obtained by post-processing the coefficients of PCE.
The results of the MCS method are also listed in Table 7 for comparison and it can be
seen that PCE can provide accurate results of all the sensitivity indices with 100 model
evaluations.

As shown in Table 9, for the first-order sensitivity indices, it can be seen that the
RC simply supported beam section width H has the greatest effect on deflection with
SH = 0.4016, followed by the span length L and load F with SL = 0.3608 and SF = 0.1040,
respectively. Interestingly, first-order sensitivity indices for the diameter of the tensile rein-
forcement d2 and the thickness of the concrete protective layer a are both 0.0000 with four
decimal places retained, which does not mean that they do not have effects on deflection.
The total sensitivity indices show that both the diameter of the tensile reinforcement d2
and the thickness of the concrete protective layer a have effects on deflection in coupling
with other variables. The sum of the first-order sensitivity indices is 0.9433, indicating
that the variables acting alone have a dominant effect on deflection, and the sum of the
first- and second-order sensitivity indices is 0.9911, close to 1, indicating that there is little
higher-order coupling between the variables.

Another interesting result of the global sensitivity analysis is the second-order global
sensitivity indices results shown in Figure 10. The x-axis and y-axis are the indices of
the variables and the colour denotes the sensitivity indices. The white area indicates no
coupling between pairs of variables, and the darker the colour, the greater the value of
the second-order sensitivity indices for the pair of variables. It can be seen that in the
variable pairs (H, L), (H, F) and (L, F) have very high values, which in fact are correlated.
Therefore, the proposed method can also be used as a correlation evaluation tool for the
uncertain parameters in the structure.

In summary, this numerical example of an RC simply supported beam demonstrates
that all four surrogate models are efficient and accurate in engineering applications. At the
same time, this example validates the validity and accuracy of global sensitivity analysis
based on PCE in practical engineering applications.
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Table 9. Results of global sensitivity analysis of input variables affecting the deflection of the RC
simply supported beams.

First-Order Sensitivity Indices Total Sensitivity Indices

PCE MCS PCE MCS

SB 0.0383 0.0383 ST
B 0.0425 0.0425

SH 0.4016 0.4015 ST
H 0.4401 0.4405

Sa 0.0000 0.0000 ST
a 0.0009 0.0009

SL 0.3608 0.3605 ST
L 0.4012 0.4013

SEc 0.0001 0.0001 ST
Ec

0.0023 0.0023
SEs 0.0385 0.0385 ST

Es
0.0461 0.0461

Sd1
0.0001 0.0001 ST

d1
0.0006 0.0006

Sd2 0.0000 0.0000 ST
d2

0.0018 0.0018
SF 0.1040 0.1037 ST

F 0.1302 0.1301

Model
evaluations 100 106 × 10

(average)
- 100 106 × 10

(average)

∑ Si 0.9433 ∑ Si + Sij 0.9911
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4.3. Experiments of Long-Term Deflection of RC Flexural Members

To illustrate the effectiveness of surrogate models on the application of civil engineer-
ing problems, the prediction and global sensitivity analysis for long-term deflection tests
on RC flexural members is presented in this section.

4.3.1. Data Collection and Pre-Processing

We analysed the data collected from 191 experiments that were summarised and
documented by Espion [72] from 29 different research programs. The experimental dataset
consists of 181 samples that detail the long-term deflections of RC simply supported beams
and slabs with a variety of geometries, load levels and distributions, concrete strengths,
reinforcement ratios and environmental conditions. To better evaluate efficiency, the
performance of the surrogate models was compared with that of other machine learning
models that have been frequently used for solving practical problems related to civil
engineering, including back propagation neural networks (BP), decision tree (DT) and
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linear regression (LR). The hyperparameter settings for BP, DT, LR and the surrogate
models were either proposed by previous studies, such as LR by Pham et al. [33], or were
the default values for surrogate models.

Table 10 reports the descriptions of 16 input variables and the ultimate long-term
defections. The input variables were geometric parameters including (section width (b),
total depth (h), area of tensile reinforcement (As), and experimental parameters (distance
from ultimate compression fibre to centre of mass of tensile reinforcement (d), tensile
reinforcement ratio (As/bd), relative humidity (RH), concrete strength at age t′ ( f ’

c), span
length (l), span-to-depth ratio (l/h), loading age (ti), maximum moment at a constant load
(Md) consisting of the beam’s own weight and a uniform load applied at the same age,
maximum moment at an additional continuous load (Mq) consisting of a concentrated load
and a uniform load applied at different ages), factors entering into the elastic deflection
equation depending on the static system and load distribution (Kd Kq), instantaneous or
immediate measured deflection a(i) under Md + Mq, and age t. The response was total
measured deflection a(t) of the concrete flexural structure at age t.

Table 10. Descriptions of dataset for RC flexural members.

No. Variables Attribute

1 b Section width (upper or compressed fibre) (mm)
2 h Total depth (mm)
3 As Area of tensile reinforcement (mm2)

4 d Distance from the extreme compression fibre to centroid of tension
reinforcement (mm)

5 As/bd Tensile reinforcement ratio ρ

6 RH Relative humidity (given or assumed) (%)
7 f ’

c Concrete strength at age t′ (N/mm2)
8 l Span length (mm)
9 l/h Span/depth ratio
10 ti Age at loading (days)

11 Md

Maximum bending moment due to dead load constituted by the beam’s
own weight and by the uniform sustained loading if applied at the same
age (N·m)

12 Kd
Factors entering elastic deflection formulae by the beam’s own weight
and by the uniform sustained loading if applied at the same age

13 Mq

Maximum moment due to additional sustained loading constituted by
concentrated loading or by uniform loading if applied at a different age
than the dead load (N·m)

14 Kq

Factors entering elastic deflection formulae due to additional sustained
loading constituted by concentrated loading or by uniform loading if
applied at a different age than the dead load

15 a(i) Instantaneous or immediate measured deflection under Md + Mq (mm)
16 t Age (days)
17 a(t) Total measured deflection at age t under Md + Mq (mm)

Figure 11 shows the histograms of 17 variables with minima, maxima, mean and
standard deviation in the final dataset. Most variables, except element Kd, Kq, are well-
distributed and suitable for the modelling. As shown in Figure 12, correlations existed
except for RH and B and with RH and Kq (0.00), with H and d having the highest correlation
(0.99), followed by a(t) with a(i) and l/h at 0.94 and 0.82, respectively. The relationship
between the response and the input variables can be expressed as:

a(t) = f
(

b, h, A, d,
As

bd
, RH, f ’

c, l,
l
h

, ti, Md, Kd, Mq, Kq, a(i), t
)

(64)

To better evaluate efficiency, the performance of the surrogate models was compared
with that of other machine learning models that have been frequently used for solving
practical problems related to civil engineering, including back propagation neural networks



Materials 2023, 16, 4671 22 of 33

(BP), decision tree (DT) and linear regression (LR). The hyperparameter settings for BP,
DT, LR and the surrogate models were either proposed by previous studies, such as LR by
Pham et al. [33], or were the default values for surrogate models.

The dataset consisting of 197 samples was randomly partitioned into two subsets: the
training set with 178 samples (90% of the total dataset) and the test set with the remaining 19
samples (10%). To mitigate the negative effects of attributes with large values, the selected
dataset was normalised. As one-time data partitioning is likely to lead to bias, in this study,
10 experiments were conducted using 10 random data partitions, and the comparative
surrogate models were run on these data subsets accordingly. Therefore, comparisons of
surrogate models were evaluated based on the mean and standard deviation values of the
results of the 10 experiments. The parameters and optimal parameters of the four surrogate
models are shown in Table 11.

Table 11. The parameters of the surrogate models and the optimal parameters.

Surrogate Models Expression Optimal Value

PCE Polynomial of order p 5
SVR Tuning parameter σ 3.2036
Kriging Initial correlation coefficient θ 97.37
RBF Type of basis function MQ

Materials 2023, 16, x FOR PEER REVIEW 24 of 35 
 

 

Table 11. The parameters of the surrogate models and the optimal parameters. 

Surrogate Models Expression Optimal Value 
PCE Polynomial of order 𝑝 5 
SVR Tuning parameter 𝜎 3.2036 
Kriging Initial correlation coefficient 𝜃 97.37 
RBF Type of basis function MQ 

 
Figure 11. Histograms of the 17 variables in the final dataset (sample count: 197); statistical infor-
mation such as minimum, maximum, mean, std. are also shown on the histograms. 

Figure 11. Histograms of the 17 variables in the final dataset (sample count: 197); statistical informa-
tion such as minimum, maximum, mean, std. are also shown on the histograms.



Materials 2023, 16, 4671 23 of 33

Materials 2023, 16, x FOR PEER REVIEW 25 of 35 
 

 

 

Figure 12. PCC between the variables of the final dataset. 

4.3.2. Results and Discussion 

Since the experimental data are discrete in nature and contain different levels of 

noise, a single division of training data and testing data may use some “bad” data as the 

training data to train the models, resulting in too bad an accuracy of the model on the 

testing data, so this paper used 10-times attempts to divide training data and testing data 

to achieve good model training results. The evaluation metrics, namely R2, RAAE, RMAE, 

RMSE, VAF, PI and A10-Index, were calculated from the test data to assess the predictive 

accuracy of surrogate models in predicting the long-term deflection of RC structures. 

Table 12 lists the values of the metrics calculated by the above models. 

Four performance evaluation metrics were identified for the surrogate models, 

namely R2, RMAR, RMSE and A10-index, and the results for the experimental datasets 

are shown in Figure 13a,b. For the training data, Kriging was the best model, while for the 

test data, SVR was the best model. Figure 14 further shows the overall ranking of the 

efficiency of each model in the form of an intuitive stacked graph. Considering both the 

training and test data, Kriging is the best, with SVR and PCE having the lowest accuracy. 

Figure 12. PCC between the variables of the final dataset.

4.3.2. Results and Discussion

Since the experimental data are discrete in nature and contain different levels of noise,
a single division of training data and testing data may use some “bad” data as the training
data to train the models, resulting in too bad an accuracy of the model on the testing data,
so this paper used 10-times attempts to divide training data and testing data to achieve
good model training results. The evaluation metrics, namely R2, RAAE, RMAE, RMSE,
VAF, PI and A10-Index, were calculated from the test data to assess the predictive accuracy
of surrogate models in predicting the long-term deflection of RC structures. Table 12 lists
the values of the metrics calculated by the above models.

Table 12. Results of surrogate model prediction performance.

Criteria
Training Testing

PCE SVR Kriging RBF PCE SVR Kriging RBF

R2 0.9948 0.9761 1 1 0.9717 0.9765 0.9587 0.8975
Score 2 1 3 3 3 4 2 1

RAAE 0.0367 0.0896 3.10 × 10−13 4.98 × 10−10 0.1064 0.0965 0.1401 0.2072
Score 2 1 4 3 3 4 2 1

RMAE 0.3898 0.9814 1.11 × 10−11 2.28 × 10−9 0.5242 0.4463 0.5583 0.8783
Score 2 1 4 3 3 4 2 1

RMSE 0.0251 0.0533 4.59 × 10−13 2.20 × 10−10 0.0572 0.0555 0.0772 0.1144
Score 2 1 4 3 3 4 2 1

VAF 99.6713 97.6675 100.0000 100.0000 92.9864 93.9251 94.3046 95.2610
Score 2 1 3 3 1 2 3 4

PI 0.0418 0.0391 0.0378 0.0364 0.0365 0.0340 0.0330 0.0317
Score 1 2 3 4 1 2 3 4

A10-Index 0.9382 0.8483 1.0000 1.0000 0.7895 0.7368 0.7368 0.7895
Score 2 1 3 3 2 1 1 2

Total score 13 8 24 22 16 21 15 14

Four performance evaluation metrics were identified for the surrogate models, namely
R2, RMAR, RMSE and A10-index, and the results for the experimental datasets are shown
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in Figure 13a,b. For the training data, Kriging was the best model, while for the test data,
SVR was the best model. Figure 14 further shows the overall ranking of the efficiency of
each model in the form of an intuitive stacked graph. Considering both the training and
test data, Kriging is the best, with SVR and PCE having the lowest accuracy.
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Figure 14. Intuitive presentation of accumulated ranking of developed models on the final dataset.

As shown in Table 12, when the training sets were brought into surrogate models for
prediction, both Kriging and RBF were able to reconstruct the training sets accurately due
to the fact that Kriging and RBF are interpolated surrogate models. When the testing data
were brought into the surrogate model for prediction, the prediction accuracy of the fitted
surrogate models PCE and SVR was higher than that of Kriging and RBF. The prediction
accuracy of SVR is the highest, with evaluation indices of R2

mean = 0.9765, R2
std = 0.0080,

RAAEmean = 0.0965, RAAEstd = 0.0141, RMAEmean = 0.4463, RMAEstd = 0.1167,
RMSEmean = 0.0555, RMSEstd = 0.0175.

Figure 15 shows the actual versus predicted values of the maximum deflection of RC
simply supported beams obtained via PCE, SVR, Kriging and RBF on the training data
and testing data. The closer the data points are to the line of best fit, the more accurate the
predicted values are. It can be seen that although RBF has the lowest prediction accuracy,
R2 = 0.8975 is able to reach nearly 0.9000. PCE, SVR and Kriging all give good results
when predicting the actual deflection values, especially when predicting the lower actual
deflection, and the data at these points are almost always on the line of best fit. The
maximum deflection values predicted by the surrogate models for RC beams can reliably
support the design process for RC members. The results of the uncertainty analysis are
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shown in Table 13. Table 13 shows that for both the training data and test data, all four
surrogate models have low U95 values, with the RBF having the lowest (0.0749).
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Figure 15. The regression analysis on the training dataset and testing dataset between experimental
data (horizontal axis) and surrogate models’ predictions (vertical axis). (a) PCE, (b) SVR, (c) Kriging
and (d) RBF.

Table 13. Comparisons of the performance results for U95 uncertainty.

Model PCE SVR Kriging RBF

Training data 0.0525 0.0531 0.0525 0.0525
Testing data 0.0981 0.0976 0.0975 0.0973

Average 0.0753 0.0753 0.0750 0.0749

Figure 16a–d show the error distributions for the training and testing datasets for the
PCE, SVR, Kriging and RBF models. It can be seen that, consistently with the conclusion
for the RC simply supported beam, most of the errors produce a more patchy distribution
around the zero point in the form of a Gaussian bell shape. Figure 17 shows Taylor plots
of the surrogate models for the experimental data. It can be seen from these plots that
RBF and Kriging have the best performance for the training data and SVR has the best
performance for the test data.



Materials 2023, 16, 4671 26 of 33

Materials 2023, 16, x FOR PEER REVIEW 28 of 35 
 

 

Figure 15. The regression analysis on the training dataset and testing dataset between experimental 
data (horizontal axis) and surrogate models’ predictions (vertical axis). (a) PCE, (b) SVR, (c) Kriging 
and (d) RBF. 

Figure 16a–d show the error distributions for the training and testing datasets for the 
PCE, SVR, Kriging and RBF models. It can be seen that, consistently with the conclusion 
for the RC simply supported beam, most of the errors produce a more patchy distribution 
around the zero point in the form of a Gaussian bell shape. Figure 17 shows Taylor plots 
of the surrogate models for the experimental data. It can be seen from these plots that RBF 
and Kriging have the best performance for the training data and SVR has the best perfor-
mance for the test data. 

Figure 18 presents comparisons of the RMSE values that were obtained from the sur-
rogate models, LR model and empirical methods. The surrogate model has much smaller 
RMSE values than the ACI 318-83 building code and the CEB model code MC78. The 
RMSE values are also very competitive with the PSO-XGBoost model [73]. Therefore, sur-
rogate models are effective tools for civil engineers or designers in predicting the long-
term deflections of RC flexural members. 

 
Figure 16. The residual analysis on the experimental data.  

Table 13. Comparisons of the performance results for U95 uncertainty. 

Model PCE SVR Kriging RBF 
Training data 0.0525 0.0531 0.0525 0.0525 
Testing data 0.0981 0.0976 0.0975 0.0973 
Average 0.0753 0.0753 0.0750 0.0749 

 

Figure 16. The residual analysis on the experimental data.

Materials 2023, 16, x FOR PEER REVIEW 29 of 35 
 

 

  
(a) (b) 

Figure 17. Comparison of model performances in Taylor diagram on the experimental data: (a) 
training dataset, (b) testing dataset. 

 
Figure 18. The performance comparison between surrogate model models with LR models and the 
empirical methods on the experimental data. 

In order to verify whether the surrogate model is truly better than other models in 
predicting the long-term deformation of RC beams, a statistical measure of a one-tailed t-
test statistical measure is performed. RMSE is tested as it is a common error metric for 
comparing models. The test is carried out on the RMSE values obtained in the test set with 
an equal number of samples and unequal variance. The calculated results with a confi-
dence level of 95% (α = 0.05) are presented in Table 14. For all cases except RBF vs. BP 
where α is larger than the calculated 𝑝 value, it indicates that the surrogate model sig-
nificantly outperformed the other models in terms of RMSE values of the long-term de-
fection prediction of reinforced-concrete beams. 

  

St
an

da
rd

 D
ev

ia
tio

n

elat ion Coef f icient

RMSD

St
an

da
rd

 D
ev

ia
tio

n

elat ion Coef f icient

RMSD

Figure 17. Comparison of model performances in Taylor diagram on the experimental data: (a) train-
ing dataset, (b) testing dataset.

Figure 18 presents comparisons of the RMSE values that were obtained from the
surrogate models, LR model and empirical methods. The surrogate model has much
smaller RMSE values than the ACI 318-83 building code and the CEB model code MC78.
The RMSE values are also very competitive with the PSO-XGBoost model [73]. Therefore,
surrogate models are effective tools for civil engineers or designers in predicting the long-
term deflections of RC flexural members.
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Figure 18. The performance comparison between surrogate model models with LR models and the
empirical methods on the experimental data.

In order to verify whether the surrogate model is truly better than other models in
predicting the long-term deformation of RC beams, a statistical measure of a one-tailed
t-test statistical measure is performed. RMSE is tested as it is a common error metric for
comparing models. The test is carried out on the RMSE values obtained in the test set
with an equal number of samples and unequal variance. The calculated results with a
confidence level of 95% (α = 0.05) are presented in Table 14. For all cases except RBF
vs. BP where α is larger than the calculated p value, it indicates that the surrogate model
significantly outperformed the other models in terms of RMSE values of the long-term
defection prediction of reinforced-concrete beams.

Table 14. Calculated p values of the one-tailed t test measure.

Pairwise Comparison of RMSE Results p Value Test Result

PCE vs. BP 0.0002 Reject H0
PCE vs. DT 0.0000 Reject H0
PCE vs. LR 0.0001 Reject H0
SVR vs. BP 0.0001 Reject H0
SVR vs. DT 0.0000 Reject H0
SVR vs. LR 0.0001 Reject H0
RBF vs. BP 0.5335 Accept H0
RBF vs. DT 0.0000 Reject H0
RBF vs. LR 0.0002 Reject H0

Notes: H0: null hypothesis, RMSEsurrogate models − RMSEother models ≤ 0; H1: alternative hypothesis,
RMSEsurrogate models − RMSEother models > 0.

The same conclusion is visually reflected in Figure 19, which shows the box plot of
RMSE and R2 values yielded by comparative models. Although the LR model exhibits a
high R2, there is an outlier (+). PCE, SVR and KRG are less variable. The surrogate model
demonstrates lower RMSE values and much smaller variability. Therefore, the surrogate
model is the best prediction method in this experiment.
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Figure 19. Box plots of prediction models for (a) R2 and (b) RMSE.

4.3.3. Global Sensitivity Analysis of Characteristic Parameters That Affect
Long-Term Deflection

Global sensitivity analysis not only identifies the important variables that influence the
long-term deformation of RC structures, but also determines the effect of coupling between
the variables on the prediction of structural deformation. This subsection addresses the
use of global sensitivity analysis based on PCE to provide a comprehensive analysis of
the importance of model input variables for predicting the long-term deformation of
RC structures. As shown in Figure 20, the rectangular colour blocks on the diagonal
line indicate the first-order sensitivity indices. Notably, the variable a(i) has the largest
sensitivity index value and the variables H and Kq acting alone have no effect on the
response. The other variables have smaller first-order sensitivity indices. The results of
second-order sensitivity indices show that there is coupling between most of the variables.
The sum of all first-order sensitivity indices is ∑ Si = 0.9306 and the sum of the first- and
second-order sensitivity indices is ∑ Si + Sij = 0.9665, indicating that there is little higher-
order coupling between the variables affecting the long-term deflection of RC flexural
members.
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Figure 21 shows the total sensitivity indicators for the variables affecting the long-
term deflection of RC structures, and it can be clearly seen that all variables are present
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to influence the response by coupling with other variables, with variable a(i) having the
greatest degree of influence on the response by coupling with other variables.
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5. Conclusions

This paper presents the first prediction of the long-term deformation of RC struc-
tures using surrogate models (PCE, SVR, Kriging and RBF). The model accuracy was
assessed using the evaluation metrics R2, MAAE, RMAE, RMSE, VAF, PI, A10-Index
and U95. and global sensitivity analysis of the parameters affecting the long-term de-
formation of RC structures was carried out. The feasibility of the proposed method was
verified on a numerical example of a RC simply supported beam and a collected ex-
perimental dataset. For a RC simply supported beam, PCE has the highest prediction
accuracy (R2 = 0.9907, RAAE = 0.0535, RMAE = 0.5194, RMSE = 0.0115, VAF = 99.0663,
PI = 0.0249, A10 − Index = 0.9400), followed by Kriging, RBF and SVR. It is noticed
that the RMSE prediction accuracies of all four surrogate models are below 0.0150. For
experiments of long-term deflection of RC flexural members, RBF has the lowest prediction
accuracy, with R2 = 0.8975 able to reach nearly 0.9000. PCE, SVR and Kriging all give
good results when predicting the actual deflection values, especially when predicting the
lower actual deflection, and the data at these points are almost always on the line of best fit.
Taylor diagrams show that although all surrogate models have excellent performance in
the accurate prediction of RC beam deflection, Kriging and RBF have the best prediction
performance for training data and SVR and PCE for testing data. The results of the U95
uncertainty analysis show that all four surrogate models have low uncertainty on both
the FEM numerical model and the experimental data, with the FEM numerical model
having 0.0269 and the experimental data having a maximum value of 0.0753. In addition,
the prediction accuracy of the surrogate models are competitive in relation to empirical
methods (ACI 318-83 and CEB model code) and machine learning models (PSO-XGBoost,
BP, DT and LR).

At the same time, global sensitivity analysis based on PCE is proposed for the first time
to determine the most important parameters for predicting the long-term deflection of RC
structures. The effects of each factor acting alone or coupled with other factors on the long-
term deflection of RC structures are analysed by means of first-order sensitivity indicators
and total sensitivity indicators. For a RC simply supported beam, the beam section width
H has the greatest effect on deflection with SH = 0.4016, followed by the span length L
and load F with SL = 0.3608 and SF = 0.1040, respectively. Additionally, the variable
pairs (H, L), (H, F) and (L, F) have very high values, which in fact are correlated. For
experiments of long-term deflection of RC flexural members, instantaneous or immediate
measured deflection a(i) has the largest sensitivity index value, and all variables are present
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to influence the response by coupling with other variables, with the variable a(i) having
the greatest degree of influence on the response by coupling with other variables.

The results of this paper provide civil engineers and designers with an effective model
for predicting the long-term deflection of RC structures and analysing the factors, such as
the material and geometric factors, affecting the deflection of concrete beams. The future
research directions in structural engineering include the development of user-operated
software for the prediction of long-term deflection and global sensitivity analysis based
on surrogate models, which are more convenient for engineers to use directly for solving
various practical problems. In addition, considering that this paper only focuses on the
long-term continuous loading tests of ordinary RC structures, future research will address
the use of surrogate models in both high-strength and lightweight concrete materials.
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Abbreviations
To clarify, the abbreviations in the text are as follows:

RC Reinforced concrete PCC Parson correlation coefficient
PCE Polynomial chaos expansion R2 Coefficient of determination
SVR Support vector regression RAAE Relative average absolute error
RBF Radial basis function RMAE Relative maximum absolute error
BP Back propagation neural network RMSE Root mean square error
MLP Multilayer perceptron VAF Variance accounted factor
DT Decision tree PI Performance index
LR Linear regression
MCS Monte Carlo simulation
GSA Global sensitivity analysis
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