Corrosion Resistance Enhancement of CoCrFeMnNi High-Entropy Alloy with WC Particle Reinforcements via Laser Melting Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Microstructural Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Microstructure before Corrosion
3.2. Electrochemical Corrosion Properties
CoCrFeMnNi | CoCrFeMnNi with 2.5 wt.% WC | |
---|---|---|
Rs (Ω·cm2) | 1.143 | 0.460 |
Rb (Ω·cm2) | 0.411 | 0.806 |
Rt (Ω·cm2) | 138.8 | 859.1 |
T1 (F·cm−2) | 4.1042 × 10−6 | 2.179 × 10−6 |
n1 | 0.9304 | 0.986 |
T2 (F·cm−2) | 4.442 × 10−5 | 4.081 × 10−5 |
n2 | 0.8723 | 0.928 |
Chi-square | 0.829 × 10−3 | 7.199 × 10−3 |
3.3. Microstructure after Corrosion
4. Conclusions
- (1)
- The microstructure of CoCrFeMnNi with WC particle prepared by laser melting deposition is composed of columnar crystals and equiaxed crystals. During the preparation process, WC particles were decomposed, and elements C and W were incorporated into the CoCrFeMnNi matrix, resulting in strong lattice distortion;
- (2)
- The electrochemical measurement results show that CoCrFeMnNi with 2.5 wt.% WC have a smaller corrosion current density of 1.594 × 10−5 A·cm−2 and larger corrosion potential −0.285 VAg/AgCl and higher charge transfer 859.1 Ω·cm2, showing better corrosion resistance than CoCrFeMnNi;
- (3)
- The morphology after corrosion shows that the CoCrFeMnNi has a large area of uniform corrosion, while the CoCrFeMnNi with 2.5 wt.% WC corrodes along the grain boundary; furthermore, the XPS results of the passive film show that the content of Cr2O3 and Cr(OH)3 are high, which is helpful to improve the stability of the passive film, and additionally, that the decomposition of WC is not a bad thing. The incorporation of C atoms causes the combined water to appear in the passive film, which makes the passive film have a self-repairing function and improves its corrosion resistance. In addition, the addition of W can inhibit the dissolution of metal in acidic electrolyte and also improve the corrosion resistance of the alloy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.C.; Vincent, A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375, 213–218. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743–5755. [Google Scholar] [CrossRef] [Green Version]
- Luan, H.; Zhang, X.; Ding, H.; Zhang, F.; Luan, J.; Jiao, Z.; Yang, Y.C.; Bu, H.; Wang, R.; Gu, J.; et al. High-entropy induced a glass-to-glass transition in a metallic glass. Nat. Commun. 2022, 13, 2183. [Google Scholar] [CrossRef]
- Peng, Z.; Sun, J.; Luan, H.W.; Chen, N.; Yao, K.F. Effect of Mo on the high temperature oxidation behavior of Al19Fe20-xCo20-xNi41Mo2x high entropy alloys. Intermetallics 2023, 155, 107845. [Google Scholar] [CrossRef]
- Lei, Z.F.; Liu, X.J.; Wu, Y.; Wang, H.; Jiang, S.; Wang, S.D.; Hui, X.D.; Wu, Y.D.; Gault, B.; Kontis, P.; et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018, 563, 546–550. [Google Scholar] [CrossRef]
- Lu, Z.P.; Wang, H.; Chen, M.W.; Baker, I.; Yeh, J.W.; Liu, C.T.; Nieh, T.G. An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics 2015, 66, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Peng, Z.; Li, B.W.; Luo, Z.B.; Chen, X.F.; Tang, Y.; Yang, G.N.; Gong, P. A Lightweight AlCrTiV0.5Cux High-Entropy Alloy with Excellent Corrosion Resistance. Materials 2023, 16, 2922. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.F.; Wang, Q.; Cheng, Z.Y.; Zhu, M.L.; Zhou, H.; Jiang, P.; Zhou, L.L.; Xue, Q.; Yuan, F.P.; Zhu, J.; et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature 2021, 592, 712–716. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Peng, Z.; Luo, Z.B.; Li, B.W.; Li, J.F.; Luan, H.W.; Gu, J.L.; Wu, Y.; Yao, K.F. Microstructure and mechanical properties of lightweight AlCrTiV0.5Cux high-entropy alloys. Rare Met. 2022, 41, 2016–2020. [Google Scholar] [CrossRef]
- Jia, Y.F.; Jia, Y.D.; Wu, S.W.; Ma, X.D.; Wang, G. Novel Ultralight-Weight Complex Concentrated Alloys with High Strength. Materials 2019, 12, 1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senkov, O.N.; Senková, S.; Miracle, D.B.; Woodward, C. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng. A 2013, 565, 51–62. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Y.; Zhao, D.X.; Chen, Y.; Guan, S.; Liu, Y.F.; Liu, L.; Peng, S.Y.; Kong, F.; Poplawsky, J.D.; et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature 2022, 608, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Luan, H.W.; Wu, J.; Yao, K.F.; Li, J.F.; Liu, X.; Tian, Y.Z.; Mao, W.L.; Bai, H.; Le, G.M.; et al. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique. J. Alloys Compd. 2019, 773, 387–392. [Google Scholar] [CrossRef]
- Xiang, S.; Li, J.; Luan, H.W.; Amar, A.; Lu, S.Y.; Li, K.; Zhang, L.; Liu, X.; Le, G.M.; Wang, X.Y.; et al. Effects of process parameters on microstructures and tensile properties of laser melting deposited CrMnFeCoNi high entropy alloys. Mater. Sci. Eng. A 2019, 743, 412–417. [Google Scholar] [CrossRef]
- Li, J.F.; Xiang, S.; Luan, H.W.; Amar, A.; Liu, X.; Lu, S.Y.; Zeng, Y.Y.; Le, G.M.; Wang, X.Y.; Qu, F.S.; et al. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition. J. Mater. Sci. Technol. 2019, 35, 2430–2434. [Google Scholar] [CrossRef]
- Chew, Y.; Bi, G.J.; Zhu, Z.G.; Ng, F.L.; Weng, F.; Liu, S.B.; Nai, S.M.L.; Lee, B.Y. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Mater. Sci. Eng. A 2019, 744, 137–144. [Google Scholar] [CrossRef]
- Wang, Y.M.; Voisin, T.; McKeown, J.T.; Ye, J.; Calta, N.P.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roehling, T.T.; et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 2018, 17, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melia, M.A.; Carroll, J.D.; Whetten, S.R.; Esmaeely, S.N.; Locke, J.; White, E.; Anderson, I.; Chandross, M.; Michael, J.R.; Argibay, N.; et al. Mechanical and Corrosion Properties of Additively Manufactured CoCrFeMnNi High Entropy Alloy. Addit. Manuf. 2019, 29, 100833. [Google Scholar] [CrossRef]
- Jia, Y.J.; Chen, H.N.; Liang, X.D. Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition. Rare Met. 2019, 38, 1153–1159. [Google Scholar] [CrossRef]
- Moghaddam, A.O.; Shaburova, N.A.; Samodurova, M.N.; Abdollahzadeh, A.; Trofimov, E.A. Additive manufacturing of high entropy alloys: A practical review. J. Mater. Sci. Technol. 2021, 77, 131–162. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, X.P.; Descoins, M.; Mangelinck, D.; Tor, S.B.; Lim, C.S. Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting. Scr. Mater. 2019, 168, 129–133. [Google Scholar] [CrossRef]
- Guo, J.; Liu, C.H.; Wang, D.X.; Xu, L.F.; Song, K.K.; Gao, M. Structure and Wear Resistance of TiC-Reinforced Al1.8CrCuFeNi2 High-Entropy Alloy Coating Using Laser Cladding. Materials 2023, 16, 3422. [Google Scholar] [CrossRef]
- Chen, P.; Li, S.; Zhou, Y.H.; Yan, M.; Attallah, M.M. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying. J. Mater. Sci. Technol. 2020, 43, 40–43. [Google Scholar] [CrossRef]
- Kim, Y.K.; Cho, J.; Lee, K.A. Selective laser melted equiatomic CoCrFeMnNi high-entropy alloy: Microstructure, anisotropic mechanical response, and multiple strengthening mechanism. J. Alloys Compd. 2019, 805, 680–691. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Mao, M.M.; Wang, J.G.; Gludovatz, B.; Zhang, Z.; Mao, S.X.; George, E.P.; Yu, Q.; Ritchie, R.O. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 2015, 6, 10143. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.L.; Zhang, H.; Du, X.J.; He, Y.Z.; Luo, H.; Song, G.S.; Mao, L.; Zhou, T.W.; Wang, L.L. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing. Corros. Sci. 2020, 177, 108954. [Google Scholar] [CrossRef]
- Yehia, H.M. Microstructure, physical, and mechanical properties of the Cu/ (WC-TiC-Co) nano-composites by the electroless coating and powder metallurgy technique. J. Compos. Mater. 2019, 53, 1963–1971. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yehia, H.M.; Mohamed, A.S.A.; El-Nikhaily, A.E.; Elkady, O.A. Effect of Copper Addition on the AlCoCrFeNi High Entropy Alloys Properties via the Electroless Plating and Powder Metallurgy Technique. Crystals 2021, 11, 540. [Google Scholar] [CrossRef]
- Salishchev, G.; Tikhonovsky, M.A.; Shaysultanov, D.; Stepanov, N.D.; Kuznetsov, A.V.; Kolodiy, I.V.; Tortika, A.S.; Senkov, O.N. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J. Alloys Compd. 2014, 591, 11–21. [Google Scholar] [CrossRef]
- Kissi, M.; Bouklah, M.; Hammouti, B.; Benkaddour, M. Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution. Appl. Surf. Sci. 2006, 252, 4190–4197. [Google Scholar] [CrossRef]
- Park, J.M.; Choe, J.; Kim, J.G.; Bae, J.W.; Moon, J.; Yang, S.; Kim, K.T.; Yu, J.H.; Kim, H.S. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Mater. Res. Lett. 2019, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Samoilova, O.; Pratskova, S.; Shaburova, N.; Ostovari Moghaddam, A.; Trofimov, E. Corrosion Resistance of Al0.5CoCrFeNiCuxAgy (x = 0.25, 0.5; y = 0, 0.1) High-Entropy Alloys in 0.5M H2SO4 Solution. Materials 2023, 16, 3585. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Li, Z.M.; Mingers, A.M.; Raabe, D. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci. 2018, 134, 131–139. [Google Scholar] [CrossRef]
- Gardin, E.; Zanna, S.; Seyeux, A.; Allion-Maurer, A.; Marcus, P. XPS and ToF-SIMS characterization of the surface oxides on lean duplex stainless steel – Global and local approaches. Corros. Sci. 2019, 155, 121–133. [Google Scholar] [CrossRef]
- Luo, H.; Zou, S.W.; Chen, Y.H.; Li, Z.; Du, C.W.; Li, X.G. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution. Corros. Sci. 2020, 163, 108287. [Google Scholar] [CrossRef]
- Sun, Y.P.; Wang, Z.; Yang, H.J.; Lan, A.D.; Qiao, J.W. Effects of the element La on the corrosion properties of CrMnFeNi high entropy alloys. J. Alloys Compd. 2020, 842, 155825. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; National Association of Corrosion: Houston, TX, USA, 1974. [Google Scholar]
- Haupt, S.; Strehblow, H.H. Combined Surface Analytical and Electrochemical Study of the Formation of Passive Layers on Fe/Cr Alloys in 0.5 M H2SO4. ChemInform 1995, 26, 43–54. [Google Scholar] [CrossRef]
- Mansour, C.; Lefèvre, G.; Pavageau, E.M.; Catalette, H.; Fédoroff, M.; Zanna, S. Sorption of sulfate ions onto magnetite. J. Colloid Interface Sci. 2009, 331, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, G.O.; Shibata, T. Desorption of Tritiated Bound-water from the Passive Film Formed on Stainless Steels. Nature 1965, 206, 1350. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, J.F.; Liu, R.; Wang, X.P.; Fang, Q.F. Oxidation and corrosion resistance of WC coated tungsten fabricated by SPS carburization. J. Nucl. Mater. 2014, 450, 75–80. [Google Scholar] [CrossRef]
- Noji, N.; Kashiwagura, K.; Akao, N.; Soma, S.; Hara, N.; Sugimoto, K. Corrosion resistance of tungsten and tungsten alloys for spallation target in stagnant and flowing water. J. Jpn. Inst. Met. 2002, 66, 1107–1115. [Google Scholar] [CrossRef] [Green Version]
- Hsu, K.M.; Chen, S.H.; Lin, C.S. Microstructure and corrosion behavior of FeCrNiCoMnx (x = 1.0, 0.6, 0.3, 0) high entropy alloys in 0.5 M H2SO4. Corros. Sci. 2021, 190, 109694. [Google Scholar] [CrossRef]
- Wang, C.M.; Yu, Y.; Zhang, H.; Xu, L.X.; Ma, X.Y.; Wang, F.F.; Song, B.Y. Microstructure and corrosion properties of laser remelted CrFeCoNi and CrMnFeCoNi high entropy alloys coatings. J. Mater. Res. Technol. 2021, 15, 5187–5196. [Google Scholar] [CrossRef]
- Zhao, Q.H.; Liu, W.; Li, S.Z.; Zhang, B.L.; Zhu, Y.C.; Lu, M.X. Effects of W and Mo Additions on Wet-dry Acid Corrosion Behavior of Low-Alloy Steels Under Different O2 Concentrations. Acta Metall. Sin. (Engl. Lett.) 2016, 29, 951–962. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.Y.; He, C.L.; Chen, L.Q.; Wei, L.L.; Misra, R.D.K. Effect of W and Ce additions on the electrochemical corrosion behaviour of 444-type ferritic stainless steel. Corros. Eng. Sci. Technol. 2018, 53, 199–205. [Google Scholar] [CrossRef]
Cr | Mn | Fe | Co | Ni | C | W | ||
---|---|---|---|---|---|---|---|---|
LMDed HEA | A | 20.40 | 23.45 | 20.64 | 18.26 | 17.25 | — | — |
B | 23.87 | 19.94 | 20.55 | 18.37 | 17.27 | — | — | |
LMDed HEA with 2.5 wt.% WC | A | 21.59 | 21.55 | 19.07 | 18.00 | 18.94 | 0.55 | 0.30 |
B | 26.68 | 19.07 | 15.00 | 16.20 | 15.65 | 6.87 | 0.53 |
Sample | CoCrFeMnNi | CoCrFeMnNi with 2.5 wt.% WC |
---|---|---|
Ecorr(VAg/AgCl) | −0.298 | −0.285 |
icorr(A/cm−2) | 3.038 × 10−5 | 1.594 × 10−5 |
Epp(VAg/AgCl) | −0.14 | −0.107 |
ipass(A/cm2) | 6.275 × 10−5 | 2.519 × 10−5 |
Eb(VAg/AgCl) | 0.961 | 0.926 |
Esp(VAg/AgCl) | 1.196 | 1.147 |
ΔE(VAg/AgCl) | 1.101 | 1.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Z.; Fan, Z.; Abdullah, M.R.; Ren, C.; Li, J.; Gong, P. Corrosion Resistance Enhancement of CoCrFeMnNi High-Entropy Alloy with WC Particle Reinforcements via Laser Melting Deposition. Materials 2023, 16, 4701. https://doi.org/10.3390/ma16134701
Peng Z, Fan Z, Abdullah MR, Ren C, Li J, Gong P. Corrosion Resistance Enhancement of CoCrFeMnNi High-Entropy Alloy with WC Particle Reinforcements via Laser Melting Deposition. Materials. 2023; 16(13):4701. https://doi.org/10.3390/ma16134701
Chicago/Turabian StylePeng, Zhen, Zize Fan, Muhammad Raies Abdullah, Congcong Ren, Jinfeng Li, and Pan Gong. 2023. "Corrosion Resistance Enhancement of CoCrFeMnNi High-Entropy Alloy with WC Particle Reinforcements via Laser Melting Deposition" Materials 16, no. 13: 4701. https://doi.org/10.3390/ma16134701
APA StylePeng, Z., Fan, Z., Abdullah, M. R., Ren, C., Li, J., & Gong, P. (2023). Corrosion Resistance Enhancement of CoCrFeMnNi High-Entropy Alloy with WC Particle Reinforcements via Laser Melting Deposition. Materials, 16(13), 4701. https://doi.org/10.3390/ma16134701