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Abstract: In the present work, a WC particle-reinforced CoCrFeMnNi high-entropy alloy (HEA)
was fabricated by laser melting deposition (LMDed). The LMDed CoCrFeMnNi high-entropy alloy
(CoCrFeMnNi) composite is primarily comprised of a face-centered cubic (FCC) crystal structure.
However, in the case of CoCrFeMnNi with 2.5 wt.% WC, it exhibits a combination of an FCC matrix
and a ceramic phase known as M23C6. The corrosion behavior of CoCrFeMnNi and CoCrFeMnNi with
2.5 wt.% WC particle in 0.5 M H2SO4 was comparatively investigated. Compared with CoCrFeMnNi,
the passive film formed on the CoCrFeMnNi with 2.5 wt.% WC had a more stable and stronger
protective property. The corrosion current density of the CoCrFeMnNi with 2.5 wt.% WC dropped by
149.1% compared to that of the CoCrFeMnNi, indicating that the CoCrFeMnNi with 2.5 wt.% WC
had better corrosion resistance than that of the CoCrFeMnNi.

Keywords: high-entropy alloys; corrosion behavior; laser melting deposition; the passivation film;
the potentiodynamic polarization curves

1. Introduction

The development of high-entropy alloys (HEAs) has drawn significant interest since
the pioneering work in 2004 by Yeh et al. and Cantor et al. [1,2]. In contrast to the
conventional method with only one dominant element in the alloy, HEAs are composed
of multiple elements with near-equal atomic percentages. Due to the “four core effects”
defined by Yeh, HEAs can exhibit remarkable mechanical and functional properties, such
as excellent thermal stability, wear, and oxidation resistance corrosion resistance [3–10].

Traditional manufacturing processes, such as vacuum arc melting, mechanical al-
loying, and powder metallurgy, have been extensively used to fabricate HEAs [11–15].
However, these HEAs usually have restricted shapes and coarse grains, which limits the
wide application of HEAs. In recent years, several studies on additively manufactured
(AM) HEAs have been carried out [16–20]. Additive manufacturing technology offers a
rapid and efficient approach to fabricate alloys with gradient or complex shapes, making
it a valuable tool in advancing the development of high-entropy alloys. This technique
possesses several advantageous features, including unrestricted forming size and struc-
ture, free-forming capabilities, net shaping, and precise manufacturing. In contrast to
conventional preparation methods, AM provides better control over structural uniformity
and enables the production of ultra-fine grains, leading to enhanced overall mechanical
properties of WC-containing HEAs. As a result, AM holds significant potential in ensur-
ing the structural integrity and enhancing the comprehensive mechanical performance of
WC-containing HEAs, contributing to their advancement and application. As one of the
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most widely used AM methods, laser melting deposition (LMD) can fabricate metal parts
in complex shapes with high precision and excellent performance [21–26].

The CoCrFeMnNi high-entropy alloy is a well-researched material known for its out-
standing mechanical properties, particularly at cryogenic temperatures. This is attributed to
the activation of diverse deformation mechanisms, including dislocation and twin-mediated
processes, within its single-face FCC structure. Notably, studies have revealed that additive
manufacturing techniques can further enhance the CoCrFeMnNi HEA by producing finer
grain sizes and increasing its overall strength, surpassing the properties of convention-
ally manufactured counterparts. In order to advance the comprehensive properties of
high-entropy alloys, there is a continual need for novel modification methods. In recent
times, the incorporation of ceramic particles such as carbides and nitrides into HEAs have
emerged as a promising approach to enhance their properties. This strategy enables the
customization of structures and facilitates the synergistic combination of mechanical and
chemical attributes in HEAs. By incorporating ceramic particles, researchers aim to achieve
optimized performance and further unlock the potential of these materials [4,27–32].

In this study, a CoCrFeMnNi high-entropy alloy with 2.5 wt.% WC particles was fabri-
cated using laser melting deposition. A comparative analysis was conducted to examine
the electrochemical corrosion behavior of the CoCrFeMnNi and CoCrFeMnNi with 2.5 wt.%
WC particles in a 0.5 M H2SO4 environment. The aim was to gain insights into the corrosion
resistance enhancement. The investigation included microstructural characterization and
examination of the composition uniformity of the alloy. By comprehending these factors,
the underlying reasons behind the improved corrosion resistance could be identified in
this work.

2. Materials and Methods
2.1. Sample Preparation

Laser melting deposition (LMD) was utilized to fabricate the CoCrFeMnNi and CoCr-
FeMnNi with 2.5 wt.% WC high-entropy alloy particles. The average particle sizes of
pre-alloyed CrMnFeCoNi powder and WC powder were analyzed by Microtrac S3500
(Microtrac, Largo, FL, USA) laser particle size analyzer, which were approximately 120 µm
and 10 µm, respectively. The two powders are mixed according to the designed proportion.
The mixed powder is heated to 80 ◦C and dried for 2 h and then cooled to room temperature
in a vacuum chamber before use. The mixed powder is transported to the laser molten pool
through a closed loop powder supply unit, and deposited continuously on 316 L stainless
steel substrate by a reciprocating multi-layer scanning under 1000 W laser power and
500 mm/min scanning speed. During deposition, the atmosphere was under the protection
of argon, and the oxygen content in the room was below 20 ppm. The mixed powder is
delivered to the chamber through the coaxial nozzle at an argon flow rate of 15–18 L/min
and a feed rate of 7–9 g/min. The width of a single deposition track was approximately
35 mm, the thickness was approximately 4 mm. After each layer was deposited, the laser
head would rise to a certain height until the deposition height reaches 40 mm.

2.2. Microstructural Characterization

Electric spark corrosion was used to cut thin-walled samples with at least 4 mm away
from the substrate. Samples were polished with sandpaper from 200 #, 400 #, 600 #, to
3000 #, followed by mechanical polishing until there were no obvious scratches under
a 400× optical microscope. X-ray diffraction (XRD) analysis of the particles’ crystalline
structure was conducted using a Japan Nigaku D/max-RB X-ray diffraction spectrometer
equipped with Cu-Kα radiation. The scanning angle for the analysis ranged from 15◦ to 90◦.
The size and microstructure of samples are characterized by S-4800 SEM and JEM 200CX
transmission electron microscope (TEM) with 200 kV operating voltage. Aqua regia was
used for corrosion before SEM testing. For TEM testing, the samples were grinded to below
100 µm, and then punched a hole of Φ3 mm. The ion thinning method was used to thin them
until met the requirements of TEM testing. JEM 200CX transmission electron microscope
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(TEM) with 200 kV operating voltage. The composition of the etched passivation film was
characterized using FEI EscaLab 250Xi X-ray photoelectron spectroscopy (XPS).

2.3. Electrochemical Measurements

The electrochemical workstation was used to characterize the corrosion resistance
of the alloy. The corrosion medium was 0.5 M H2SO4 solution. The test surface size of
10 mm × 10 mm, the back side of the test surface is connected to the copper wire using
conductive adhesive, and the other surfaces are wrapped and sealed with epoxy resin to
avoid contacting with the test solution. During the test, a three-electrode system is selected,
with the platinum plate electrode as the auxiliary electrode. The connecting wire of the
sample is encapsulated with rubber resin, and the surface exposed for the test is used
as the working electrode. The potentiodynamic polarization curve and AC impedance
curve of the alloy was obtained. The scanning rate was 3 mv/s during the action potential
polarization test. When conducting the AC impedance test, the test frequency range is
10−2–106 Hz, and the amplitude is 5 mv.

3. Results and Discussion
3.1. Microstructure before Corrosion

Figure 1a illustrates the X-ray diffraction (XRD) analysis results of the LMDed fab-
ricated CoCrFeMnNi and CoCrFeMnNi with 2.5 wt.% WC high-entropy alloy samples.
The two alloys show a single-phase FCC structure, and the peak of WC is not found in the
XRD results of CoCrFeMnNi with 2.5 wt.% WC samples. Figure 1b is an enlarged view of
the (111) peak. It can be seen from the figure that the main peak of the CoCrFeMnNi with
2.5 wt.% WC sample shifted significantly to the left side. According to the Bragg equation
(2dsin θ = λ), the observed difference in lattice constants between the LMDed CoCrFeMnNi
sample with 2.5 wt.% WC (a0 = 3.6032 Å) and the CoCrFeMnNi sample (a0 = 3.6007 Å) can
be attributed to the incorporation of WC particles into the HEA matrix. The addition of WC
can introduce lattice strain and result in a slight expansion of the lattice. The presence of
WC particles may cause lattice distortion and contribute to the observed increase in lattice
constant. It is worth noting that the difference in lattice constant may also be influenced by
factors such as processing conditions, composition variations, and the distribution of WC
particles within the HEA matrix [22].
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Figure 1. (a) X-ray diffraction patterns of CoCrFeMnNi and CoCrFeMnNi with 2.5 wt.% WC samples,
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Figure 2 shows the SEM images and EDS mapping of CoCrFeMnNi and CoCrFeMnNi
with 2.5 wt.% WC. It can be seen from the SEM image that is a mixed structure of dendritic
and cytosolic crystals, while CoCrFeMnNi with 2.5 wt.% WC are mostly columnar crystals.
Compared with CoCrFeMnNi, CoCrFeMnNi with 2.5 wt.% WC shows a finer grain size. As
can be seen from the EDS mapping in Figure 2c, Mn and Fe elements in the CoCrFeMnNi
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are separated, which is consistent with the results of Cantor and Salishchev et al. [2,33].
The red border in the Figure 2 shows the enriched part of Mn, while the white border
shows the poor part of Mn. The segregation degree of Fe is lower than that of Mn, the
difference of element content between rich Fe region and poor Fe region is smaller, and
the size of enrichment region is smaller than Mn. Element segregation also exists in the
CoCrFeMnNi with 2.5 wt.% WC samples prepared by laser melting deposition. As can
be seen from the EDS mapping in Figure 2d, Cr; Mn and Fe elements in the CoCrFeMnNi
with 2.5 wt.% WC are separated. In the laser melting deposition process, the extremely fast
heating speed brings about a great temperature gradient from the substrate to the cladding
layer. In addition, due to the uneven distribution of laser radiation energy, the convection
of molten pool is caused during cladding. Both may lead to composition segregation. The
results of EDS point scan tests on part A and B are shown in Table 1. The CoCrFeMnNi
with 2.5 wt.% WC samples have more significant component segregation, which may be
due to the decomposition of WC and the formation of solid solutions.

Table 1. Composition of CoCrFeMnNi and CoCrFeMnNi with 2.5 wt.% WC high-entropy alloys A
and B regions in Figure 2(a2,b2).

Cr Mn Fe Co Ni C W

LMDed HEA
A 20.40 23.45 20.64 18.26 17.25 — —
B 23.87 19.94 20.55 18.37 17.27 — —

LMDed HEA with 2.5 wt.% WC
A 21.59 21.55 19.07 18.00 18.94 0.55 0.30
B 26.68 19.07 15.00 16.20 15.65 6.87 0.53

In order to further analyze the effect of WC addition on the microstructure of the alloy,
TEM and HAADF-STEM technology have been applied, as shown in Figure 3. According
to Figure 3a, some nanoscale particles can be found in HEA matrix, the corresponding
selected area diffraction pattern, as illustrated in Figure 3a, revealed that the precipitations
were M23C6 carbides. The HAADF-STEM technology was used to characterize the particle
in the red frame, the results are shown in Figure 3b. The particle is mainly composed of Cr,
Mn, and W elements. This indicates that the particles in the matrix are precipitates related
to the decomposition of WC and the formation of solid solutions. After the decomposition
of WC, both W and C elements are solidly dissolved into the matrix, and some W elements
also form nano precipitates with other elements. The EDS point scan results in Table 1
show that the alloy composition at B location contains high Cr and C elements, with a
high probability of Cr carbides. However, the results of HAADF in Figure 3 show that
M23C6-type carbides rich in Cr, Mn, and W appear in LMDed HEA with 2.5 wt.% WC
alloy, which corresponds to the EDS results. From Figure 2(b2), it can be observed that the
particle (M23C6, M is Cr, Mn, W) mainly appears at the grain boundary, this may lead to
the formation of Cr poor zone along the grain boundary.
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Figure 3. Characterization of precipitate in CoCrFeMnNi with 2.5 wt.% WC sample. (a) TEM image;
(b) HAADF-STEM image and corresponding element maps.

3.2. Electrochemical Corrosion Properties

The potentiodynamic polarization curve test is an effective method to evaluate the
corrosion behavior of materials. The polarization curves of CoCrFeMnNi and CoCrFeMnNi
with 2.5 wt.% WC in 0.5 M H2SO4 are shown in Figure 4a. The characteristic parameters
used to describe corrosion properties can be obtained from Figure 4a. In this work, Taffel’s
extrapolation method is used to calculate the results of the polarization curves. The
fitting electrochemical parameters are shown in Table 2. The corrosion potential (Ecoor)
represents the corrosion potential of a material in the open circuit condition, and Icorr
represents the corrosion current density. It is clear from both the fitting parameters and the
potentiodynamic polarization curves of the alloys that CoCrFeMnNi with 2.5 wt.% WC
has higher Ecorr and lower Icorr, which represent higher corrosion resistance. As can be
seen from Figure 4a, both samples exhibit strong “activation-passivation” behavior, with
wide primary passivation intervals and secondary passivation phenomena. In order to
investigate the passivation process, AC electrochemical impedance tests were carried out,
and the results were shown in the form of Nyquist diagram in Figure 4b. The Nyquist plots
of samples are semicircular capacitance arcs. Generally, the larger the curvature radius
of the arc, the stronger the corrosion resistance. It can be seen from the figure that the
semi-arc of CoCrFeMnNi with 2.5 wt.% WC has a larger curvature radius, indicating its
better corrosion resistance, which is consistent with the results of the polarization curve.
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Table 2. Electrochemical corrosion parameters of CoCrFeMnNi and CoCrFeMnNi with 2.5 wt.% WC
obtained from potentiodynamic polarization curve measured in 0.5 M H2SO4 solution.

Sample CoCrFeMnNi CoCrFeMnNi with 2.5 wt.% WC

Ecorr(VAg/AgCl) −0.298 −0.285
icorr(A/cm−2) 3.038 × 10−5 1.594 × 10−5

Epp(VAg/AgCl) −0.14 −0.107
ipass(A/cm2) 6.275 × 10−5 2.519 × 10−5

Eb(VAg/AgCl) 0.961 0.926
Esp(VAg/AgCl) 1.196 1.147
∆E(VAg/AgCl) 1.101 1.033

Epp: primary passivation potential ipass: Passivation current density Eb: breakdown potential. Esp: secondary
passivation potential ∆E: Eb − Epp, length of passive zone.

As Warburg impedance in the low-frequency part of Nyquist diagram appears,
R(Q(R(QR)))(W) models are used to fit the results, and the equivalent electrical circuit
diagram is shown in Figure 5. The fitting results are shown in Table 3, where Rs stands
for solution resistance, Rb stands for film resistance, Rt stands for charge transfer resis-
tance, and Ws represents the Warburg diffusion impedance, which is a very slow process.
Before it affects the corrosion of the alloy, the alloy undergoes severe corrosion due to
other reasons, and the corrosion resistance of the alloy is generally not determined by Ws.
Therefore, in AC impedance testing, the Ws results are generally not discussed, constant
phase element CPE stands for non-ideal capacitance caused by the non-uniform electrode,
and its impedance value is given by the following formula:

Z =
1

T(jω)n

T is the scale factor, j is the imaginary number unit, ω is the angular frequency, and n
is the phase shift, which is between 0 and 1. When n = 0, CPE behaves as a pure resistance.
When n = 1, CPE is equivalent to a pure capacitor [34]. Generally, when the chi-square
value is between 10−3 and 10−4, it indicates that the fitting results are reliable. In this paper,
the chi-square values of all the results are between 10−3 and 10−4. Rt value is positively
correlated with corrosion resistance. The larger the Rt value, the more difficult the charge
transfer and the better the corrosion resistance. It can be seen from Table 3 that the Rt
value of CoCrFeMnNi with 2.5 wt.% WC sample is 859.1 Ω·cm2, about six-fold that of
CoCrFeMnNi sample.
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seen in Figure 6(b1). 

Figure 5. AC impedance spectrum fitting circuit diagram of CoCrFeMnNi and CoCrFeMnNi with
2.5 wt.% WC.
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Table 3. Equivalent circuit fitting parameters of CoCrFeMnNi and CoCrFeMnNi with 2.5 wt.% WC
in 0.5 M H2SO4 solution.

CoCrFeMnNi CoCrFeMnNi with 2.5 wt.% WC

Rs (Ω·cm2) 1.143 0.460
Rb (Ω·cm2) 0.411 0.806
Rt (Ω·cm2) 138.8 859.1
T1 (F·cm−2) 4.1042 × 10−6 2.179 × 10−6

n1 0.9304 0.986
T2 (F·cm−2) 4.442 × 10−5 4.081 × 10−5

n2 0.8723 0.928
Chi-square 0.829 × 10−3 7.199 × 10−3

3.3. Microstructure after Corrosion

The morphology of CoCrFeMnNi and CoCrFeMnNi with 2.5 wt.% WC after the poten-
tiodynamic polarization curve test in 0.5 M H2SO4 solution is shown in Figure 6. As can be
seen in Figure 6(a1), strong corrosion occurred on the surface of the CoCrFeMnNi sample,
and the dendrite structure was clearly visible. This was mainly due to the segregation of
Mn and Fe elements during slow solidification, which resulted in the difference in composi-
tion between the first-solidification and post-solidification regions, and corrosion galvanic
cells were formed under applied voltage. However, from the SEM images of Figure 6(a2),
only a slight surface relief and partial corrosion pits were observed, indicating a large
area of uniform corrosion. On the other hand, CoCrFeMnNi with 2.5 wt.% WC sample
underwent relatively large corrosion along the grain boundary, which is because the C
atom generated during the decomposition of WC tended to produce nanometer carbide
with Cr element at the grain boundary [19,35], resulting in the formation of Cr-poor zone
at the grain boundary, resulting in relatively severe corrosion at the grain boundary [36], as
can be seen in Figure 6(b1).
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To elucidate the improvement of corrosion resistance of CoCrFeMnNi with 2.5 wt.%
WC alloy, XPS was carried out to study the composition and valence state of the passivation
film formed after the corrosion. The high-resolution spectra of O 1 s, Fe 2p3/2, Cr 2p3/2, Ni
2p3/2, Co 2p3/2, Mn 2p3/2, and W 4f are shown in Figures 7a–f and 8a–g, and the element
distribution in the passivated film is shown in Figures 7g and 8h. The spectrum of Co 2p3/2
in the passivated film is composed of Co0 and Coox

3+/2+; Coox
3+/2+ is related to its oxides

CoO and Co3O4. Although CoO is easily dissolved in acidic solution, it may be formed in
air, and oxide can also be formed in the anode polarization process [37,38]. The spectrum
of Cr 2p3/2 consists of Cr0, Crox

3+ and Crhy
3+, among which Crox

3+ is related to Cr2O3,
FeCr2O4 or NiCr2O4, while Crhy

3+ is related to Cr(OH)3 [39–41], in which Crox
3+ accounts

for 53.08%. The proportion of Crhy
3+ is 33.47%, indicating that the main valence state of Cr

element in the passivation film is Crox
3+. While Cr2O3 and Cr(OH)3 are considered to be

the key point to the quality of the passivation film [42], Cr2O3 and Cr(OH)3 accounting for
86.55% in total, and Cr element accounts for 21.87% in the whole passivation film, which
is much bigger than other elements. The spectrum of Fe 2p3/2 is complicated, and there
are many possible substances with overlapping binding energy, which is very difficult
to distinguish. As shown in Figures 7c and 8c, the spectrum is divided into constituent
peaks representing Fe, Feox

2+/3+, Feox
3+, and Fehy

3+. After anode polarization in 0.5 M
H2SO4 solution, FeO is difficult to exist [43] and is not easy to form in dry air; therefore, the
compounds related to Feox

2+/3+ may be Fe3O4 and FeCr2O4. Feox
3+ is related to Fe2O3, and

due to the spectral overlap of Fe2O3 and its complex composition, NiFe2O4 may be related
with Feox

3+. Fehy
3+ comes from Fe(OH)3 or FeOOH [37–40]. From the figure, the relative

intensities and the peak areas of Feox
2+/3+, Feox

3+, and Fehy
3+ are similar. The Mn 2p3/2

spectrum consists of Mn0, Mn2+, Mn3+ and Mn4+. Mn2+ is connected with MnO; Mn3+ may
be Mn2O3 or MnOOH, and Mn4+ is related to MnO2. The spectrum of Ni 2p3/2 consists
of Ni0 and Niox

2+. Niox
2+ is related to NiO, NiFe2O4, or NiCr2O4 [37,44]. Comparing the

peak intensity, it is found that the valence state of Ni is mainly Ni0. As shown in Figure 8f,
unlike the CrMnFeCoNi alloy, O1s spectrum of the CoCrFeMnNi with 2.5 wt.% WC alloy
is composed of O2−, OH−, and H2O, which correspond to metal oxides and hydroxides in
the passivation film. H2O may be the binding water formed in the passivation film [45,46];
Luo et al. reported the same results—that the binding water can be an effective substance
to capture dissolved metal ions, and a new film forms to resist further corrosion [47]. It can
be found, by analyzing the peak intensity, that O in the passivated film comes from a large
number of metal hydroxides, which corresponds to the spectrum of other elements. The
spectra of W 4f are mainly W0 and W6+, and W6+ is related to WO3 [48,49].

In summary, the valence states of each element in CoCrFeMnNi and CoCrFeMnNi
with 2.5 wt.% WC are similar, except for oxygen element. Only CoCrFeMnNi with 2.5 wt.%
WC alloy is composed of H2O. The corrosion resistance of the metal is highly dependent on
the composition and structure of the passivation film formed in the solution, among which
Cr is considered to be the main reason for the corrosion resistance of stainless steel. As can
be seen from the element distribution in Figure 8h, the passivation film is mainly composed
of the oxides/hydroxides of Cr(Cr2O3, Cr(OH)3), whose content reaches 21.87% equivalent
to 304 L stainless steel. The content of Mn in the passivated film hardly decreases compared
with the nominal composition of the alloy, which is consistent with the literature [50].
Carbon has an impact on the formation of bound water in the passivation film. If there
is bound water in the passivation film, it will have a significant impact on the stability of
the passivation film. The existence of bound water in the passivation film has a strong
self-healing ability on the passivation film, and the bound water in the film will capture
dissolved metal ions, and the new film will form to prevent further corrosion [46,47].
Adding a small amount of carbon to FeCoCrNiMn will increase the content of bound water
in the passivation film, so that the corrosion resistance of the passivation film is improved.
In the passivation film formed by the CoCrFeMnNi with 2.5 wt.% WC in 0.5 M H2SO4
solution, the content of bound water is 4.49%, which will improve the corrosion resistance
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of the passivation film. In addition, the addition of W can inhibit the dissolution of metal
in acidic electrolyte and also improve the corrosion resistance of the alloy.
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(d) Mn, (e) Ni, (f) O, (g) W; (h) elemental fractions in the passive film of HEA obtained by XPS analysis.

4. Conclusions

In this study, LMDed CoCrFeMnNi with 2.5 wt.% WC HEA particle were fabricated,
and a comparative study on the electrochemical corrosion behavior of the CoCrFeMnNi
and CoCrFeMnNi with 2.5 wt.% WC particle in 0.5 M H2SO4 was carried out. The influence
of WC on the corrosion resistance of CoCrFeMnNi was investigated, and the conclusions
are as follows:

(1) The microstructure of CoCrFeMnNi with WC particle prepared by laser melting
deposition is composed of columnar crystals and equiaxed crystals. During the
preparation process, WC particles were decomposed, and elements C and W were
incorporated into the CoCrFeMnNi matrix, resulting in strong lattice distortion;
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(2) The electrochemical measurement results show that CoCrFeMnNi with 2.5 wt.% WC
have a smaller corrosion current density of 1.594 × 10−5 A·cm−2 and larger corrosion
potential −0.285 VAg/AgCl and higher charge transfer 859.1 Ω·cm2, showing better
corrosion resistance than CoCrFeMnNi;

(3) The morphology after corrosion shows that the CoCrFeMnNi has a large area of
uniform corrosion, while the CoCrFeMnNi with 2.5 wt.% WC corrodes along the
grain boundary; furthermore, the XPS results of the passive film show that the content
of Cr2O3 and Cr(OH)3 are high, which is helpful to improve the stability of the
passive film, and additionally, that the decomposition of WC is not a bad thing. The
incorporation of C atoms causes the combined water to appear in the passive film,
which makes the passive film have a self-repairing function and improves its corrosion
resistance. In addition, the addition of W can inhibit the dissolution of metal in acidic
electrolyte and also improve the corrosion resistance of the alloy.
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