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Abstract: An ammonia sensor based on a delay-line surface acoustic wave (SAW) device is developed
in this study by coating the delay line area of the device with a nano-structured molybdenum disulfide
(MoS2) sensitive material. A SAW device of 122 MHz was designed and fabricated with a pair of
interdigital transducers (IDTs) defined on a 128◦ y-cut LiNbO3 substrate using photolithography
technologies, and the aluminum IDT electrodes were deposited by a DC magnetron sputtering system.
By adjusting the pH values of precursor solutions, molybdenum disulfide (MoS2) nanospheres were
prepared with various structures using a hydrothermal method. Finally, an NH3 gas sensor with high
sensitivity of 4878 Hz/ppm, operating at room temperature, was successfully obtained. The excellent
sensitivity performance may be due to the efficient adsorption of NH3 gas molecules on the surfaces
of the nanoflower-like MoS2, which has a larger specific surface area and provides more active sites,
and results in a larger change in the resonant frequency of the device due to the mass loading effect.

Keywords: SAW; MoS2; NH3; gas sensor; nanosphere

1. Introduction

The development and application of industrial technology have improved the conve-
nience of human life, but they have also brought many new challenges, such as negative
impacts on air quality and the ecological environment. There are many kinds of pollutants
in the air, among which the dust-like particles floating in the air are called particulate matter
(PM). When the suspended particulate matter is PM2.5 (particle size less than or equal to
2.5 microns), it can penetrate the bubbles in the lungs and cause serious harm to human
health as the blood circulates in the body, which cannot be ignored. It has been clarified
that the main source precursors of PM2.5 are sulfur dioxide, nitrogen oxides, ammonia,
etc. [1,2]. The US Occupational Safety and Health Administration (OSHA) has declared that
the acceptable average ammonia exposures time is 8 h at 25 ppm and 15 min at 35 ppm [3,4].
If the human body strongly inhales high concentrations of NH3, various symptoms such
as tearing, coughing, and dyspnea will appear, and death can be caused under extremely
high concentrations of ammonia [5,6].

Ammonia gas (NH3) is commonly used in industrial manufacturing processes. How-
ever, when the concentration of NH3 in the air reaches a certain range, of about 15% to 28%,
it is explosive. Many kinds of NH3 sensors using various sensitive materials have been
developed. For example, metal-oxide sensors, which are current research hotspots, have
the advantages of simple operation, low cost, and fast response, but complex synthesis
processes and higher operating temperatures are required for better performance, and
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because of high power needed, their application in the Internet of Things is bound to be
limited [7–11]. Therefore, there is an urgent need to study high-performance NH3 sensors
operating at room temperature for immediate preventive measures under adverse conditions.

In this study, a SAW device was employed to perform as an ammonia sensor using
novel nanostructured molybdenum disulfide (MoS2) as the sensitive layer. In the applica-
tion of gas sensors, surface acoustic wave devices have the advantages of high sensitivity,
low detection limit and operation at room temperature, which can be used to measure
the trace concentrations [12–14]. In addition, the frequency responses of SAW sensors can
support wireless sensing, and also have outstanding performance at room temperature [15].

The resonant frequency f of a surface acoustic wave device is related to the spacing of
the interdigital transducer (IDT) electrodes and the wave velocity, with the relationship of
f = υ/λ where υ is the wave velocity, λ is the wavelength, and f is the resonant frequency.
The 4 times the line width of the electrode (d) can excite the acoustic wave, with a wave-
length of λ = 4d. In the design of a SAW gas sensor, the delay line area of the SAW device is
coated with a sensitive thin film, and the gas molecules are adsorbed through the sensitive
thin film to produce physical changes, which will change the resonant frequency of the
SAW device [16,17].

Molybdenum disulfide (MoS2) has a large band gap, a layered structure, semiconduc-
tor characteristics, etc. It is an excellent gas-sensing material, with high sensitivity and
selectivity when applied as a sensor [18,19]. In addition, studies have shown that the shape,
size, and specific surface area of gas-sensing materials also have a great influence on the
gas-sensing performance [20]. Therefore, it is of great significance to study the gas-sensing
properties of MoS2 with different morphologies for the design of sensor structures. In this
study, three kinds of ammonia sensors with different MoS2 morphologies were constructed
based on the hydrothermal method, and the gas-sensing properties of MoS2 with three
different morphologies for ammonia gas were studied.

2. Materials and Methods
2.1. Preparation of Molybdenum Disulfide Nanospheres

In this study, MoS2 nanospheres, prepared with a simple hydrothermal method, were
used as the sensitive materials of the surface acoustic wave gas sensors. Briefly, Na2MoO4
(0.05 M) and C2H5NS (0.15 M) were added to 40 mL of deionized (DI) water and stirred
for 30 min to fully dissolve. In order to obtain different MoS2 morphologies, various
amounts of HCl were added to adjust the pH values of the solutions, with pH1, pH3, and
pH5, respectively, and were then stirred for 10 min to form uniform precursor solutions.
Subsequently, the precursor solution was poured into 100 mL of Teflon liner, then loaded
into an autoclave reactor and heated to 180 ◦C in a high-temperature furnace for 20 h.
Finally, the obtained powders were washed several times by centrifuge with ethanol and
deionized water. After drying at 80 ◦C for 6 h on a heater platform, various morphologies
of MoS2 nanospheres were obtained. The process flow of the hydrothermal method is
shown in Figure 1.

2.2. Fabrication of Surface Acoustic Wave Devices

LiNbO3 is a crystal that integrates multiple effects such as piezoelectricity, electro-optic,
and nonlinear optics, and has the advantages of high temperature resistance and corrosion
resistance. In this study, 128◦ y-cut LiNbO3 was adopted as the piezoelectric substrate
with a wave speed of ≈3900 m/s. The line width of the interdigital transducer (IDT)
electrodes of 8 µm was designed to excite the surface acoustic wave with a wavelength of
32 µm, which resulted in a resonant frequency of 122 MHz. Figure 2 shows the fabrication
processes of a SAW device. Firstly, the 128◦ y-cut LiNbO3 substrate was cleaned according
to the RCA cleaning processes, and then the photoresist (AZ1500) (1.2 µm) was coated on
the substrate using a spinning coater, and heated on a heater platform for soft baking, and
then exposed and developed through the usual photolithography processes. In this study,
a dual-target DC sputtering system was used to deposit Ti (20 nm) and Al (100 nm) as IDT
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electrodes, in which the titanium metal film was used as an adhesive layer. The advantage
of the double-target sputtering system is that it can continuously deposit multi-layer films
without restarting the vacuum chamber, avoiding pollution or oxidation on the films.
Therefore, a high-quality SAW device can be obtained through controlling the film quality.
Finally, the lift-off process was carried out by immersing the substrate into the acetone
solution and shaking using an ultrasonic washing machine to remove the photoresist and
unnecessary films to complete the SAW device.
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2.3. Sensor Fabrication

In this study, a SAW delay line structured device with a resonant frequency of
122 MHz was successfully fabricated on the 128◦ y-cut LiNbO3 substrate. Then, the MoS2
nanospheres, as the sensitive materials, were spin-coated on the delay line area of the SAW
devices. Figure 3 shows the preparation processes of the sensitive layer of the sensor. First,
the IDT electrodes of the SAW device were covered with tape. Then, the MoS2 powders
were mixed with absolute ethanol at a weight ratio of 1:30, and stirred for 20 min. Then,
the MoS2 solution of 1 mL was dropped on the delay line area using a precision dropper,
and spun at 1200 rpm for 30 s. Finally, the substrate and the sensitive materials were dried
at 90 ◦C for 6 min. After removing the tape, the sensor device was fabricated. Figure 4
is a schematic diagram of the complete ammonia gas sensor. The SPB-U668 aluminum
wire bonder was adopted to connect the SAW sensor and the microstrip line, according
to the design rules of the coplanar waveguide (CPW) microstrip line and the impedance
calculation of the 50 ohm (PCB) board.
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2.4. Material Analysis and Sensor Measurement

The nanostructures of MoS2 will affect the properties of the sensor devices. Therefore,
scanning electron microscopy (SEM, JEOL-6700 field emission SEI/BEI type, JEOL, Ltd.,
Tokyo, Japan), energy-dispersive X-ray spectroscopy (EDX, JEOL, Ltd., Tokyo, Japan), and
X-ray diffraction (XRD, Bruker, Billerica, MA, USA) were used to analyze the nanostructures
and atomic ratio of MoS2 under different hydrothermal conditions. The frequency response
of the SAW sensor was measured using the P9372A Keysight Streamline USB Vector
Network Analyzer (Keysight, Santa Rosa, CA, USA).

Gas sensing measurements were performed on a static gas sensing measurement
system at room temperature. During the test, a 25% ammonia solution was carried by N2
gas and injected into the vaporizer through a micro-syringe, then mixed with air in a 3 L
test chamber to prepare NH3 gas with various concentrations of 5–50 ppm. Finally, the
desired concentration of NH3 gas was introduced into the measurement chamber, and
the frequency response of the sensor exposed to different concentrations of NH3 gas was
recorded by the network analyzer.

3. Results and Discussion
3.1. Performance of the Designed Surface Acoustic Wave Device

The performance of a SAW device can be defined by its figure of merit (FoM), as in
Equation (1).

FoM = Q × K2 (1)

where Q is the quality factor, and K2 is the electromechanical coupling factor of the SAW
device. Besides, Q and K2 can be derived from the following Equations (2) and (3).

Q =
f0

fH − fL
(2)
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K2 =
π

4N
× Ga

B
(3)

where f 0 is the center frequency of the SAW filter, fH and fL are the upper and low 3-dB
frequencies of the SAW filter, respectively. B is the radiated susceptance; Ga is the radiated
conductance; and N is the IDT pair number.

In practical applications, it is necessary to pursue SAW devices with high electrome-
chanical coupling factors (K2) and quality factors (Q). However, there are some trade-offs
between these two parameters. Therefore, FoM can better demonstrate the advantages and
disadvantages of the device during the design process of SAW. In this study, the fabricated
SAW device exhibited a Q factor of 180, K2 of 3.29 % and FoM of 5.922.

3.2. Characteristic Analysis of Molybdenum Disulfide

In this experiment, by adjusting the pH values of the precursor solutions, various
MoS2 nanospheres were successfully prepared using the hydrothermal method. It is
demonstrated that HCl will play an important role in the synthesis of MoS2 [22]. Without
HCl, the pH value of the precursor solution was about 6, and no MoS2 powder was
produced at this situation. As HCl was added into the precursor solution, MoS2 appeared
without any byproduct at pH value of 5. However, as the concentration of HCl increased
further, the byproduct MoO2 appeared at pH values of 3 and 1. The X-ray diffractions of
obtained MoS2 samples with different pH values were shown in Figure 5. It can be inferred
that HCl may enhance the formation of MoS2 and MoO2.
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Figure 5. X-ray diffractions of MoS2 samples obtained from precursor solutions with different
pH values.

The concentration of HCl in the reaction solution not only affects the formation of
MoS2, but also has a great influence on the microscopic morphology. From the SEM images
in Figure 6, it can be found that the nanospheres are formed by flake agglomeration. As the
pH value increases, the flake structure becomes more obvious. When the pH value was
5, the structure resembled a nanosphere of a rose. The experimental results show that the
morphological control of the product could be achieved by adjusting the concentration of
HCl in the reaction solution.
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Figure 6. SEM images of MoS2 microstructures obtained from precursor solutions with different
pH values.

From the EDX analysis, it can be clearly observed that there were only Mo and S
elements in the MoS2 samples without impurities. Moreover, as the pH value approached
neutral, the atomic ratio of Mo and S approached 1:2, as shown in Table 1.

Table 1. EDX analysis of MoS2 nanospheres obtained from various precursor solutions.

Precursors pH1 pH3 pH5
Element Atomic % Atomic % Atomic %

S 61.32 65.24 67.57
Mo 38.68 34.76 32.43

Atomic ratio (S/Mo) 1.59 1.88 2.08

3.3. Analysis of Ammonia Gas Sensor

The MoS2 nanospheres obtained from various precursor solutions with pH values
of pH1, pH3, and pH5 were coated on the delay line area as the sensitive layers of the
SAW gas sensors, and those were defined as sensor−1, sensor−2, and sensor−3. As the
gas sensors were exposed to different concentrations of NH3, variations in the frequency
response could be observed and shown in Figure 7a for sensor−1, 8a for sensor−2, and 9a
for sensor−3. For clarity, the sensor response near the resonant frequency of 122 MHz was
zoomed in further, as shown in Figures 7b, 8b and 9b.
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The original resonant frequency of all sensors without NH3 gas was around 122 MHz,
whereas it shifted toward lower frequencies as the concentration of NH3 gas increased. The
frequency shifts for the three sensors are shown in Figure 10. Sensitivity is an important
indicator of sensor performance, which refers to the ratio of sensor output variation to
measured input variation; its calculation formula is as follows:

S =

∣∣ f0 − fgas
∣∣

∆c
(4)

where S is the sensitivity, ∆c is the change of gas concentration, f0 is the frequency of the
gas sensor in air, and fgas is the frequency at which the gas sensor detects the measured
gas. From Equation (4), the calculated sensitivities were 1402 Hz/ppm for sensor−1,
2816 Hz/ppm for sensor−2 and 4878 Hz/ppm for sensor−3, respectively. The detection
limit could be as low as <1ppm.
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In the SAW sensor, the resonant frequency change (∆f ) may be related to mass load-
ing or acoustoelectric interactions, or elastic changes when interacting with target gas
molecules [23]. However, the lower value of the electromechanical coupling factor for 128◦

y-LiNbO3-based SAW sensor is expected to result in a negligible contribution due to the
acoustoelectric effect [24]. Therefore, the existence of acoustoelectric interaction can be
ruled out in this case. Furthermore, it is essential to point out that mass loading causes the
resonant frequency to move towards the lower end (i.e., decreasing the resonant frequency),
while the elastic changes cause the resonant frequency to move towards the higher end
(i.e., increasing the resonant frequency); that is, the material elasticity can also be ruled out
and the change was negligible [24]. From the results obtained, it can be concluded that the
frequency shift is owing to the mass loading effect.

The mass loading effect of a sensor can be expressed by the following formula [23–26]:

∆ f = (k1 + k2)× f 2
0 × ∆ρs (5)

where k1 (−3.775 × 10−8 m2 s kg−1) and k2 (−1.73 × 10−8 m2 s kg−1) are the material
constants of 128◦ y−cut LiNbO3 substrate. ∆ρs is the density change of the sensing layer of
the SAW sensor after being exposed to ammonia. Note that both k1 and k2 are negative, so
a positive change in ∆ρs results in a negative value in ∆f [27–29].

In this study, sensor−3, prepared with MoS2−pH5 as sensitive material, exhib-
ited the best performance as an ammonia sensor. It is known from the literature that
nanoflower−like MoS2 has the highest specific surface area, and it is speculated that a
larger specific surface area can provide more active sites, thereby obtaining higher ammonia
gas−sensing response performances [30–33]. The resonant frequency of the SAW sensor
shows a downward shift as the concentration of NH3 increases. The frequency variation
for 5–50 ppm NH3 gas is shown in Table 2 for sensor−3, from which the sensitivity was
calculated to be 4878 Hz/ppm. Compared with other works in the literature, this study
showed an excellent sensitivity performance [34–38], as shown in Table 3.
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Table 2. Resonant frequency and frequency shifts with different concentrations of NH3 for fabricated
MoS2/SAW sensor−3.

Concentration of NH3
(in ppm)

Resonant Frequency
(in MHz)

Shift in Frequency
(in kHz)

0 122.956197 Reference
5 122.931808 24.389
10 122.915316 40.881
20 122.898117 58.08
30 122.881384 74.813
40 122.864918 91.279
50 122.848529 107.668

Table 3. Comparisons of NH3 sensing performance of SAW−based sensors with various sensing materials.

Working Frequency (MHz) Sensing Material Sensitivity (Hz/ppm) Ref.
100 SnO2/Co3O4 3.33 [34]
200 SiO2−SnO2 210 [35]
200 SiO2−TiO2 2000 [36]
200 AlO(OH) 154 [37]
200 TiO2 500 [38]
122 MoS2 4878 Present work

4. Conclusions

In this study, SAW devices of 122 MHz were fabricated using the piezoelectric 128◦

y−cut LiNbO3 as the substrate. MoS2 nanospheres were prepared using the hydrothermal
method and coated on the delay line area of SAWs. Finally, an NH3 gas sensor with a
high sensitivity of 4878 Hz/ppm was successfully obtained. The reason for the improved
sensitivity was due to the efficient adsorption of the target NH3 gas molecules on the
surfaces of the nanoflower−like MoS2 sensitive layer, which had a larger specific surface
area and provided more active sites, resulting in a more significant change in the resonant
frequency of the device due to the mass loading effect.
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