Tensile Strength Improvements of Ramie Fiber Threads through Combination of Citric Acid and Sodium Hypophosphite Cross-Linking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CA-Treated Specimens
2.3. Optimization of Catalyst SHP and Activation Temperature
2.4. Mechanical Tensile Strength Analysis
2.5. Fourier Transform Infra-Red (FTIR) Analysis
2.6. Micrograph Surface Structure Analysis
3. Results
3.1. Effect of Citric Acid (CA) on Tensile Strength
3.2. Crosslinking Reaction with Addition of Sodium Hypophosphite (SHP) and Temperature
3.3. FTIR Spectra
3.4. Surface Morphologies
3.5. Evaluation of the Formula CA/SHP on Ramie Fiber-Derived Material
4. Discussion
No | Material | Treatment | Tensile Strength (MPa) | Reference |
---|---|---|---|---|
1 | Ramie Yarn | Polylactic acid (PLA) | 38.4–52.7 | [45] |
2 | Ramie Fabric | PLA + Cyclic load treatment | 75–85 | [46] |
3 | Ramie fabric | Alkaline + PLA cyclic load | 90.9 | [45] |
4 | Composite ramie | diisocyanates | 60.1–62.0 | [7] |
5 | Fiber-modified Ramie/Polypropylene (PP) | Amino silicone oil emulsion (ASO) | 20.4–28.6 | [46] |
6 | Ramie fiber | Diammonium phosphate (DAP) + Polylactic acid (PLA) | 19.6 ± 1.2 | [47] |
7 | Ramie Fiber | Pectinase-DAP/PLA | 32.7 ± 1.5 | [47] |
8 | Ramie Fiber | Alkaline-DAP/PLA | 33.1 ± 1.6 | [47] |
9 | Ramie Fiber | Silane-DAP/PLA | 21.1 ± 1.6 | [47] |
10 | Ramie Fiber | Alkaline-Silane-DAP/PLA | 21.5 ± 1.7 | [47] |
11 | Ramie Fiber | Lignin-Based Polyurethane Resin (LPU) | 441.19–577.61 | [48] |
12 | Ramie Fiber | Low-viscosity lignin-based polyurethane resin (LPU) | 648.7 | [10] |
13 | Ramie Fiber | Tannin-Bio-NIPU | 451.3 | [9] |
14 | Ramie Fiber | 8% NaOH, a PLA/fiber composite | 57.37 | [11] |
15 | Ramie Fiber | Alkaline for prosthetics | 62–86 | [49] |
16 | Ramie fiber | Crosslinked Citric acid | 172.86 | This work |
17 | Ramie Fiber | Crosslinking Citric Acid + Sodium hypophosphite | 1209 | This work |
18 | Banana peel starch | Crosslinking Citric Acid 20–60% (w/w) | 80 | [14] |
19 | Bamboo fiber | Crosslinking Citric acid 5% | 0.953–4.202 | [50] |
5. Conclusions
- A significant increase in tensile strength was observed more than 19 times when CA/SHP 1% was treated at an activation temperature of 110 °C with a superior tensile strength of 1290.63 MPa. Unfortunately, the effectiveness of CA/SHP crosslinks has not been successfully applied to ramie fibers that have been processed by degumming or that have been spun into yarn.
- The crosslinking ramie with CA/SHP may have occurred, and this has been confirmed by evidence from SEM by a change in the surface structure of the fiber, which is denser as a result of the closeness of the regional distribution between cellulose, which contributes to the strong tensile strength. Besides that, FTIR studies support the evidence of a feature to assess the effectiveness of the CA crosslinking process on the fiber surface. Crosslinking between cellulose and CA in the presence of a reaction between the hydroxyl group of cellulose and the positive carbon of the carboxyl group of CA, which joins to form an ester group which is shown as a new band at 1719–1740 cm−1 with the stretching mode of the ester group (C=O).
- The approach described in this study shows the capability of ramie fibers crosslinked with CA to be applied on NFRPC, which can replace synthetic fibers with more sustainable, cost-efficient, stronger, and lighter ones. The NFRPC offers better characteristics for textile functional or aerospace and automotive industries such as cars, rockets, airplanes, railroad, and construction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baishya Kalita, B.; Gogoi, N.; Kalita, S. Properties of ramie and its blends. Int. J. Eng. Res. Gen. Sci. 2013, 1, 1–6. [Google Scholar]
- Habibie, S.; Suhendra, N.; Setiawan, B.A.; Hamzah, M.; Aisah, N.; Fitriani, D.A.; Tasomara, R.; Anggaravidya, M. Prospect of Ramie Fiber Development in Indonesia and Manufacturing of Ramie Fiber Textile-Based Composites for Industrial Needs, an Overview. Int. J. Compos. Mater. 2021, 11, 43–53. [Google Scholar]
- Constable, G.A.; Bange, M.P. The Yield Potential of Cotton (Gossypium hirsutum L.). Field Crops Res. 2015, 182, 98–106. [Google Scholar] [CrossRef]
- Wulandari, A.P.; Purba, J.R.; Irawan, B.; Masruchin, N.; Ismayanti, M.; Gustiani, R.S. Effect of Harvesting Age of Plant and Pectinolytic Selected-Fungi in Biodegumming Ramie Performance. Heliyon 2021, 7, e08392. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A Review of the Recent Developments in Biocomposites Based on Natural Fi-bres and Their Application Perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Kan, Z.; Shi, H.; Zhao, E.; Wang, H. Preparation and Performance of Different Modified Ramie Fabrics Reinforced Anionic Polyamide-6 Composites. Processes 2019, 7, 226. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Hu, C.; Chen, X.; Li, Y. Effect of Diisocyanates as Compatibilizer on the Properties of Ramie/Poly(Lactic Acid) (PLA) Composites. Compos. Part A Appl. Sci. Manuf. 2015, 76, 20–27. [Google Scholar] [CrossRef]
- Debeli, D.K.; Zhang, Z.; Jiao, F.; Guo, J. Diammonium Phosphate-Modified Ramie Fiber Reinforced Polylactic Acid Com-posite and Its Performances on Interfacial, Thermal, and Mechanical Properties. J. Nat. Fibers 2018, 16, 342–356. [Google Scholar] [CrossRef]
- Aristri, M.A.; Sari, R.K.; Lubis, M.A.R.; Laksana, R.P.B.; Antov, P.; Iswanto, A.H.; Mardawati, E.; Lee, S.H.; Savov, V.; Kristak, L.; et al. Eco-Friendly Tannin-Based Non-Isocyanate Polyurethane Resins for the Modification of Ramie (Boehmeria nivea L.) Fibers. Polymers 2023, 15, 1492. [Google Scholar] [CrossRef]
- Lubis, M.A.R.; Handika, S.O.; Sari, R.K.; Iswanto, A.H.; Antov, P.; Kristak, L.; Seng-hua, L.; Pizzi, A. Modification of Ramie Fiber via Impregnation with Low Viscosity Bio-Polyurethane Resins Derived from Lignin. Polymers 2022, 14, 2165. [Google Scholar] [CrossRef]
- Jamilah, U.L.; Sujito, S. The Improvement of Ramie Fiber Properties as Composite Materials Using Alkalization Treat-ment: NaOH Concentration. J. Sains Mater. Indones. 2021, 22, 62–70. [Google Scholar] [CrossRef]
- Wang, G.W.; Zhuang, L.H.; Sun, J.; Zheng, C.L. Salt-Free Dyeing of Ramie Fabric with an Amino-Terminated Hyper-branched Polymer. Cellulose 2014, 21, 3725–3736. [Google Scholar] [CrossRef]
- Wang, G.W.; Chen, B.; Zhuang, L.H.; Yun, K.; Guo, J.R.; Wang, Y.; Xu, B. Dyeing Performances of Ramie Fabrics Modified with an Amino-Terminated Aliphatic Hyperbranched Polymer. Cellulose 2015, 22, 1401–1414. [Google Scholar] [CrossRef]
- Liu, J.; Wang, B.; Xu, X.; Chen, J.; Chen, L.; Yang, Y. Green Finishing of Cotton Fabrics Using a Xylitol-Extended Citric Acid Cross-Linking System on a Pilot Scale. ACS Sustain. Chem. Eng. 2016, 4, 1131–1138. [Google Scholar] [CrossRef]
- Zoldners, J.; Kiseleva, T. Modification of Hemicelluloses with Polycarboxylic Acids. Holzforschung 2013, 67, 567–571. [Google Scholar] [CrossRef]
- Umemura, K.; Ueda, T.; Munawar, S.S.; Kawai, S. Application of Citric Acid as Natural Adhesive for Wood. J. Appl. Polym. Sci. 2012, 123, 1991–1996. [Google Scholar] [CrossRef]
- Tang, P.; Ji, B.; Sun, G. Whiteness Improvement of Citric Acid Crosslinked Cotton Fabrics: H2O2 Bleaching under Alkaline Condition. Carbohydr. Polym. 2016, 147, 139–145. [Google Scholar] [CrossRef]
- Gauss, C.; Kadivar, M.; Harries, K.A.; Savastano, H. Chemical Modification of Dendrocalamus Asper Bamboo with Citric Acid and Boron Compounds: Effects on the Physical-Chemical, Mechanical and Thermal Properties. J. Clean. Prod. 2021, 279, 123871. [Google Scholar] [CrossRef]
- Niu, T.; Wu, Y.; Zhai, X.; Sun, D.; Fang, L.; Zhang, X. Investigation on Multifunctional Modification of Cotton Fabrics for Salt-Free Dyeing, Resisting Crease and Inhibiting Bacteria. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129131. [Google Scholar] [CrossRef]
- Pua, F.L.; Sapuan, S.M.; Zainudin, E.S.; Adib, M.Z. Effect of Fibre Surface Modification on Properties of Kenaf/Poly(Vinyl Alcohol) Composite Film. J. Biobased Mater. Bioenergy 2013, 7, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Peraza-Ku, S.A.; Escobar-Morales, B.; Rodríguez-Fuentes, N.; Cervantes-Uc, J.M.; Uribe-Calderon, J.A. Ceiba Pentandra Cellulose Crosslinked with Citric Acid for Drug Release Systems. Carbohydr. Res. 2021, 504, 108334. [Google Scholar] [CrossRef] [PubMed]
- Dehabadi, V.A.; Buschmann, H.J.; Gutmann, J.S. Durable Press Finishing of Cotton Fabrics: An Overview. Text. Res. J. 2013, 83, 1974–1995. [Google Scholar] [CrossRef]
- Haji, A.; Bidoki, S.M.; Gholami, F. Isotherm and Kinetic Studies in Dyeing of Citric Acid-Crosslinked Cotton with Cation-ic Natural Dye. Fibers Polym. 2020, 21, 2547–2555. [Google Scholar] [CrossRef]
- Feng, X.; Xiao, Z.; Sui, S.; Wang, Q.; Xie, Y. Esterification of Wood with Citric Acid: The Catalytic Effects of Sodium Hypo-phosphite (SHP). Holzforschung 2014, 68, 427–433. [Google Scholar] [CrossRef]
- Wulandari, A.P.; Insan, F.L.; Wahyudi, T.; Anugrah, R.I.; Indrawati, I. Preservation of Rhizopus in Bentonite Clay as Bio-Starter. Int. J. Technol. 2016, 7, 1437–1443. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.M.; Tucker, N.; Le Guen, M.J. Thermal, Mechanical and Viscoelastic Properties of Citric Acid-Crosslinked Starch/Cellulose Composite Foams. Carbohydr. Polym. 2020, 230, 115675. [Google Scholar] [CrossRef]
- Ilankeeran, P.; Mohite, P.; Kamle, S. Axial Tensile Testing of Single Fibres. Mod. Mech. Eng. 2012, 2, 151–156. [Google Scholar] [CrossRef] [Green Version]
- ISO 527-2:2012; Plastics-Determination of Tensile Propoerties-Part 2: Test Conditions for Moulding and Extrusion Plastics. International Organizatuon for Standarization: London, UK, 1996.
- Yao, W.; Wang, B.; Ye, T.; Yang, Y. Durable Press Finishing of Cotton Fabrics with Citric Acid: Enhancement of Whiteness and Wrinkle Recovery by Polyol Extenders. Ind. Eng. Chem. Res. 2013, 52, 16118–16127. [Google Scholar] [CrossRef]
- Ji, B.; Qi, H.; Yan, K.; Sun, G. Catalytic Actions of Alkaline Salts in Reactions between 1,2,3,4-Butanetetracarboxylic Acid and Cellulose: I. Anhydride Formation. Cellulose 2016, 23, 259–267. [Google Scholar] [CrossRef]
- Ye, T.; Wang, B.; Liu, J.; Chen, J.; Yang, Y. Quantitative Analysis of Citric Acid/Sodium Hypophosphite Modified Cotton by HPLC and Conductometric Titration. Carbohydr. Polym. 2015, 121, 92–98. [Google Scholar] [CrossRef]
- Salihu, R.; Abd Razak, S.I.; Ahmad Zawawi, N.; Rafiq Abdul Kadir, M.; Izzah Ismail, N.; Jusoh, N.; Riduan Mohamad, M.; Hasraf Mat Nayan, N. Citric Acid: A Green Cross-Linker of Biomaterials for Biomedical Applications. Eur. Polym. J. 2021, 146, 110271. [Google Scholar] [CrossRef]
- Awada, H.; Montplaisir, D.; Daneault, C. Cross-Linking of Papers Based on Thermomechanical Pulp Fibers by Polycar-boxylic Acids: Influence on the Wet Breaking Length. Ind. Eng. Chem. Res. 2014, 53, 4312–4317. [Google Scholar] [CrossRef]
- Wulandari, A.P.; Triyana, T.; Andayaningsih, P. Delignification of Rice Straw with Ligninase from Novel Penicillium Sp. Strain Apw-Tt2 for Biopulping. Int. J. Biosci. Biochem. Bioinform. 2013, 3, 43–46. [Google Scholar] [CrossRef]
- Gil, J.; Seca, R.; Amaral, R.; Emadinia, O.; De Jesus, A.; Reis, A. Tensile Properties of As-Built 18Ni300 Maraging Steel Pro-duced by DED. Appl. Sci. 2022, 12, 10829. [Google Scholar] [CrossRef]
- Kang, Y.L.; Han, Q.H.; Zhao, X.M.; Cai, M.H. Influence of Nanoparticle Reinforcements on the Strengthening Mecha-nisms of an Ultrafine-Grained Dual Phase Steel Containing Titanium. Mater. Des. 2013, 44, 331–339. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, E.Y.; Woo, W.; Han, S.H.; Kwak, J.H. The Effect of Crystallographic Orientation on the Micromechani-cal Deformation and Failure Behaviors of DP980 Steel during Uniaxial Tension. Int. J. Plast. 2013, 45, 85–102. [Google Scholar] [CrossRef]
- Santos, A.; Archbold, P. Characterisation of Natural Fibres for Enhancement of Concrete Properties. In Proceedings of the 3rd International Conference on Bio-Based Building Materials, Belfast, UK, 26–28 June 2019; Volume 37. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, L.; Yang, Z.; Yao, L.; Qiu, Y. Improving Mechanical Properties of Ramie/Poly (Lactic Acid) Composites by Synergistic Effect of Fabric Cyclic Loading and Alkali Treatment. J. Ind. Text. 2017, 47, 390–407. [Google Scholar] [CrossRef]
- He, L.; Xia, F.; Wang, Y.; Yuan, J.; Chen, D.; Zheng, J. Mechanical and Dynamic Mechanical Properties of the Amino Sili-cone Oil Emulsion Modified Ramie Fiber Reinforced Composites. Polymers 2021, 13, 4083. [Google Scholar] [CrossRef]
- Li, N.; Yan, H.; Xia, L.; Mao, L.; Fang, Z.; Song, Y.; Wang, H. Flame Retarding and Reinforcing Modification of Ram-ie/Polybenzoxazine Composites by Surface Treatment of Ramie Fabric. Compos. Sci. Technol. 2015, 121, 82–88. [Google Scholar] [CrossRef]
- Debeli, D.K.; Guo, J.; Li, Z.; Zhu, J.; Li, N. Treatment of Ramie Fiber with Different Techniques: The Influence of Diammo-nium Phosphate on Interfacial Adhesion Properties of Ramie Fiber-Reinforced Polylactic Acid Composite. Iran. Polym. J. (Engl. Ed.) 2017, 26, 341–354. [Google Scholar] [CrossRef]
- Handika, S.O.; Lubis, M.A.R.; Sari, R.K.; Laksana, R.P.B.; Antov, P.; Savov, V.; Gajtanska, M.; Iswanto, A.H. Enhancing Thermal and Mechanical Properties of Ramie Fiber via Impregnation by Lignin-Based Polyurethane Resin. Materials 2021, 14, 6850. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, Y.; Luo, Y.; Luo, S. Carbon Nanomaterials Based Smart Fabrics with Selectable Characteristics for In-Line Monitoring of High-Performance Composites. Materials 2018, 11, 1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De, J.; Baxi, R.N. Experimental Investigation and Analysis of Mercerized and Citric Acid Surface Treated Bamboo Fiber Reinforced Composite. IOP Conf. Ser. Mater. Sci. Eng. 2017, 225, 012154. [Google Scholar] [CrossRef] [Green Version]
- Militký, J.; Jabbar, A. Comparative Evaluation of Fiber Treatments on the Creep Behavior of Jute/Green Epoxy Compo-sites. Compos. B Eng. 2015, 80, 361–368. [Google Scholar] [CrossRef]
- Siakeng, R.; Jawaid, M.; Ariffin, H.; Sapuan, S.M.; Asim, M.; Saba, N. Natural Fiber Reinforced Polylactic Acid Composites: A Review. Polym. Compos. 2019, 40, 446–463. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Al Rashid, A.; Arif, Z.U.; Ahmed, W.; Arshad, H. Recent Advances in Nanocellulose-Based Different Bio-materials: Types, Properties, and Emerging Applications. J. Mater. Res. Technol. 2021, 14, 2601–2623. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Ismadi; Amin, Y.; Damayanti, R.; Lubis, M.A.R.; Wulandari, A.P.; Nurindah; Iswanto, A.H.; et al. A Comprehensive Review on Natural Fibers: Technological and Socio-Economical Aspects. Polymers 2021, 13, 4280. [Google Scholar] [CrossRef]
- Mohsin, M.; Ahmad, S.W.; Khatri, A.; Zahid, B. Performance Enhancement of Fire Retardant Finish with Environment Friendly Bio Cross-Linker for Cotton. J. Clean. Prod. 2013, 51, 191–195. [Google Scholar] [CrossRef]
- Thakur, V.K. Lignocellulosic Polymer Composites: Processing, Characterization, and Properties, 1st ed.; Thakur, V.K., Ed.; Scrivener Publishing: Beverly, MA, USA, 2015; ISBN 9781118773574. [Google Scholar]
- Al-Oqla, F.M.; Sapuan, S.M. Natural fiber reinforced polymer composites in industrial applications: Feasi-bility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 2014, 66, 347–354. [Google Scholar] [CrossRef]
- Dai, D.; Fan, M. Wood Fibres as Reinforcements in Natural Fibre Composites: Structure, Properties, Pro-Cessing and Applications; Woodhead Publishing Limited: Cambridge, UK, 2014; ISBN 9780857095244. [Google Scholar]
- Thakur, V.K.; Thakur, M.K. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr. Polym. 2014, 109, 102–117. [Google Scholar] [CrossRef]
- Jayamani, E.; Hamdan, S.; Rahman, M.R.; Bakri, M.K. Bin Investigation of fiber surface treatment on mechanical, acoustical and thermal properties of betelnut fiber polyester composites. Procedia Eng. 2014, 97, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Zhong, Z. A micromechanical model for the mechanical degradation of natural fiber reinforced composites induced by moisture absorption. Mech. Mater. 2015, 85, 7–15. [Google Scholar] [CrossRef]
- Ren, B.; Mizue, T.; Goda, K.; Noda, J. Effects of fluctuation of fibre orientation on tensile properties of flax sliver-reinforced green composites. Compos. Struct. 2012, 94, 3457–3464. [Google Scholar] [CrossRef]
- Ramesh, M.; Sri Ananda Atreya, T.; Aswin, U.S.; Eashwar, H.; Deepa, C. Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Eng. 2014, 97, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yu, Y.; Di, M. Green Modification of Corn Stalk Lignin and Preparation of Environmentally Friendly Lignin-Based Wood Adhesive. Polymers 2018, 10, 631. [Google Scholar] [CrossRef] [Green Version]
- Hardjono, H.; Suharti, P.H.; Permatasari, D.A.; Sari, V.A. Pengaruh Penambahan Asam Sitrat Terhadap Karakteristik Film Plastik Biodegradable dari Pati Kulit Pisang Kepok (Musa Acuminata Balbisiana Colla). J. Bahan Alam Terbarukan 2016, 5, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Mujiyono, M.; Nurhadiyanto, D.; Mukhammad, A.F.H.; Riyadi, T.W.B.; Wahyudi, K.; Kholis, N.; Wulandari, A.P.; Has-san, S. bin A. Damage Formations of Ramie Fiber Composites Multilayer Armour System under High-Velocity Impacts. East.-Eur. J. Enterp. Technol. 2023, 1, 16–25. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wulandari, A.P.; Awis, V.P.D.; Budiono, R.; Kusmoro, J.; Hidayat, S.S.; Masruchin, N.; Lubis, M.A.R.; Fatriasari, W.; Rachmawati, U. Tensile Strength Improvements of Ramie Fiber Threads through Combination of Citric Acid and Sodium Hypophosphite Cross-Linking. Materials 2023, 16, 4758. https://doi.org/10.3390/ma16134758
Wulandari AP, Awis VPD, Budiono R, Kusmoro J, Hidayat SS, Masruchin N, Lubis MAR, Fatriasari W, Rachmawati U. Tensile Strength Improvements of Ramie Fiber Threads through Combination of Citric Acid and Sodium Hypophosphite Cross-Linking. Materials. 2023; 16(13):4758. https://doi.org/10.3390/ma16134758
Chicago/Turabian StyleWulandari, Asri Peni, Vira Putri Dinda Awis, Ruly Budiono, Joko Kusmoro, Sidiq Syamsul Hidayat, Nanang Masruchin, Muhammad Adly Rahandi Lubis, Widya Fatriasari, and Ulyaa Rachmawati. 2023. "Tensile Strength Improvements of Ramie Fiber Threads through Combination of Citric Acid and Sodium Hypophosphite Cross-Linking" Materials 16, no. 13: 4758. https://doi.org/10.3390/ma16134758
APA StyleWulandari, A. P., Awis, V. P. D., Budiono, R., Kusmoro, J., Hidayat, S. S., Masruchin, N., Lubis, M. A. R., Fatriasari, W., & Rachmawati, U. (2023). Tensile Strength Improvements of Ramie Fiber Threads through Combination of Citric Acid and Sodium Hypophosphite Cross-Linking. Materials, 16(13), 4758. https://doi.org/10.3390/ma16134758