The Evolution of Insulation Performance of Fiber-Reinforced Silica Aerogel after High-Temperature Treatment
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Material
2.2. Heat Treatment Method
2.3. Characterization Methods
2.3.1. Characterization of Apparent Properties
2.3.2. Microstructural Characterization
2.3.3. High Temperature Insulation Performance Test
3. Results and Discussion
3.1. The Effect of Heat Treatment on Silica Aerogel
3.2. The Effect of Heat Treatment on Glass Wool
3.3. The Effect of Heat Treatment on FRAB
3.4. The Performance of FRABs at High Temperature
4. Conclusions
- (1)
- The thermal conductivity of aerogel first decreased and then increased with the increase in heat treatment temperature, due to the change in the microstructure. The hydrophobicity of the aerogel disappeared after heat treatment at 400 °C.
- (2)
- The RT thermal conductivity of the glass fiber was less affected by the heat treatment temperature under 600 °C. A scanning electron microscope observation showed that the microstructure of glass fibers in FRABs remained stable after heat treatment.
- (3)
- The effect of heat treatment on the properties of FRABs was similar to that of aerogels. The contact of the aerogel with the fibers appeared to affect the sintering behavior of the aerogel particles at high temperatures, which may affect the performance of FRAB when in use.
- (4)
- Heat losses of FRAB and glass fibers were calculated and compared in service by using the heating table. When the working temperature is 600 °C and the thickness of the insulation is 5 cm, using FRAB instead of glass fiber can save 656 kJ per square meter per hour. Additionally, when the thickness of the insulation is 1 cm, the energy saved per square meter per hour is 5056 kJ. Using FRAB instead of glass wool is a very effective way to save energy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aditya, L.; Mahlia, T.M.I.; Rismanchi, B.; Ng, H.M.; Hasan, M.H.; Metselaar, H.S.C.; Muraza, O.; Aditiya, H.B. A Review on Insulation Materials for Energy Conservation in Buildings. Renew. Sustain. Energy Rev. 2017, 73, 1352–1365. [Google Scholar] [CrossRef]
- Sarawade, P.B.; Quang, D.V.; Hilonga, A.; Jeon, S.J.; Kim, H.T. Synthesis and Characterization of Micrometer-Sized Silica Aerogel Nanoporous Beads. Mater. Lett. 2012, 81, 37–40. [Google Scholar] [CrossRef]
- Wei, G.; Liu, Y.; Zhang, X.; Yu, F.; Du, X. Thermal Conductivities Study on Silica Aerogel and Its Composite Insulation Materials. Int. J. Heat Mass Transf. 2011, 54, 2355–2366. [Google Scholar] [CrossRef]
- Moretti, E.; Belloni, E.; Merli, F.; Zinzi, M.; Buratti, C. Laboratory and Pilot Scale Characterization of Granular Aerogel Glazing Systems. Energy Build. 2019, 202, 109349. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Aerogel Insulation for Building Applications: A State-of-the-Art Review. Energy Build. 2011, 43, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.A.; Rashmi, S.; Esther, A.C.M.; Bhavanisankar, P.Y.; Sherikar, B.N.; Sridhara, N.; Dey, A. Evaluations of Silica Aerogel-Based Flexible Blanket as Passive Thermal Control Element for Spacecraft Applications. J. Mater. Eng. Perform. 2018, 27, 1265–1273. [Google Scholar] [CrossRef]
- Li, C.; Cheng, X.; Li, Z.; Pan, Y.; Huang, Y.; Gong, L. Mechanical, Thermal and Flammability Properties of Glass Fiber Film/Silica Aerogel Composites. J. Non. Cryst. Solids 2017, 457, 52–59. [Google Scholar] [CrossRef]
- Siligardi, C.; Miselli, P.; Francia, E.; Lassinantti Gualtieri, M. Temperature-Induced Microstructural Changes of Fiber-Reinforced Silica Aerogel (FRAB) and Rock Wool Thermal Insulation Materials: A Comparative Study. Energy Build. 2017, 138, 80–87. [Google Scholar] [CrossRef]
- Jia, G.; Li, Z.; Liu, P.; Jing, Q. Preparation and Characterization of Aerogel/Expanded Perlite Composite as Building Thermal Insulation Material. J. Non. Cryst. Solids 2018, 482, 192–202. [Google Scholar] [CrossRef]
- Cho, J.; Jang, H.G.; Kim, S.Y.; Yang, B. Flexible and Coatable Insulating Silica Aerogel/Polyurethane Composites via Soft Segment Control. Compos. Sci. Technol. 2019, 171, 244–251. [Google Scholar] [CrossRef]
- Motahari, S.; Motlagh, G.H.; Moharramzadeh, A. Thermal and Flammability Properties of Polypropylene/Silica Aerogel Composites. J. Macromol. Sci. Part B Phys. 2015, 54, 1081–1091. [Google Scholar] [CrossRef]
- Leventis, N.; Sotiriou-Leventis, C.; Zhang, G.; Rawashdeh, A.M.M. Nanoengineering Strong Silica Aerogels. Nano Lett. 2002, 2, 957–960. [Google Scholar] [CrossRef]
- Wang, W.; Pang, L.; Jiang, M.; Zhu, Y.; Wang, F.; Sun, J.; Qi, H. Fabrication of SiCN(O) Aerogel Composites with Low Thermal Conductivity by Wrapping Mesoporous Aerogel Structures over Mullite Fibers. Materials 2022, 15, 8811. [Google Scholar] [CrossRef]
- Zhou, T.; Cheng, X.; Pan, Y.; Li, C.; Gong, L.; Zhang, H. Mechanical Performance and Thermal Stability of Glass Fiber Reinforced Silica Aerogel Composites Based on Co-Precursor Method by Freeze Drying. Appl. Surf. Sci. 2018, 437, 321–328. [Google Scholar] [CrossRef]
- Shafi, S.; Navik, R.; Ding, X.; Zhao, Y. Improved Heat Insulation and Mechanical Properties of Silica Aerogel/Glass Fiber Composite by Impregnating Silica Gel. J. Non. Cryst. Solids 2019, 503–504, 78–83. [Google Scholar] [CrossRef]
- Lakatos, Á. Stability Investigations of the Thermal Insulating Performance of Aerogel Blanket. Energy Build. 2019, 185, 103–111. [Google Scholar] [CrossRef]
- Narasimhan, S.; Rajendran, V. Performance Improvement in Temperature Thermometry Using Data Analytics—A Nuclear Power Plant Perspective. Prog. Nucl. Energy 2021, 134, 103669. [Google Scholar] [CrossRef]
- Petkov, M.P.; Chevalier, M.; Dean, D.; Cocks, A.C.F. Creep-Fatigue Interactions in Type 316H under Typical High-Temperature Power Plant Operating Conditions. Int. J. Press. Vessel. Pip. 2021, 194, 104500. [Google Scholar] [CrossRef]
- Hara, T.; Semba, H.; Amaya, H. Pipe and Tube Steels for Oil and Gas Industry and Thermal Power Plant; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; ISBN 9780128197264. [Google Scholar]
- Fedyukhin, A.V.; Strogonov, K.V.; Soloveva, O.V.; Solovev, S.A.; Akhmetova, I.G.; Berardi, U.; Zaitsev, M.D.; Grigorev, D.V. Aerogel Product Applications for High-Temperature Thermal Insulation. Energies 2022, 15, 7792. [Google Scholar] [CrossRef]
- He, S.; Huang, Y.; Chen, G.; Feng, M.; Dai, H.; Yuan, B.; Chen, X. Effect of Heat Treatment on Hydrophobic Silica Aerogel. J. Hazard. Mater. 2019, 362, 294–302. [Google Scholar] [CrossRef]
- Sarawade, P.B.; Kim, J.K.; Hilonga, A.; Quang, D.V.; Jeon, S.J.; Kim, H.T. Synthesis of Sodium Silicate-Based Hydrophilic Silica Aerogel Beads with Superior Properties: Effect of Heat-Treatment. J. Non. Cryst. Solids 2011, 357, 2156–2162. [Google Scholar] [CrossRef]
- Wei, G.; Wang, L.; Xu, C.; Du, X.; Yang, Y. Thermal Conductivity Investigations of Granular and Powdered Silica Aerogels at Different Temperatures and Pressures. Energy Build. 2016, 118, 226–231. [Google Scholar] [CrossRef]
- Zhao, J.J.; Duan, Y.Y.; Wang, X.D.; Wang, B.X. Experimental and Analytical Analyses of the Thermal Conductivities and High-Temperature Characteristics of Silica Aerogels Based on Microstructures. J. Phys. D Appl. Phys. 2013, 46, 015304. [Google Scholar] [CrossRef]
- Huang, D.; Guo, C.; Zhang, M.; Shi, L. Characteristics of Nanoporous Silica Aerogel under High Temperature from 950 °C to 1200 °C. Mater. Des. 2017, 129, 82–90. [Google Scholar] [CrossRef]
- Cai, H.; Jiang, Y.; Feng, J.; Chen, Q.; Zhang, S.; Li, L.; Feng, J. Nanostructure Evolution of Silica Aerogels under Rapid Heating from 600 °C to 1300 °C via In-Situ TEM Observation. Ceram. Int. 2020, 46, 12489–12498. [Google Scholar] [CrossRef]
- Patil, S.P.; Bachhav, B.S.; Markert, B. Thermal Conductivity of Glass Fiber-Reinforced Silica Aerogels Using Molecular Dynamics Simulations. Ceram. Int. 2022, 48, 2250–2256. [Google Scholar] [CrossRef]
- Bi, C.; Tang, G.H.; He, C.B.; Yang, X.; Lu, Y. Elastic Modulus Prediction Based on Thermal Conductivity for Silica Aerogels and Fiber Reinforced Composites. Ceram. Int. 2022, 48, 6691–6697. [Google Scholar] [CrossRef]
- Guo, J.F.; Tang, G.H.; Jiang, Y.G.; Cai, H.F.; Feng, J.; Feng, J.Z. Inhibited Radiation Transmittance and Enhanced Thermal Stability of Silica Aerogels under Very-High Temperature. Ceram. Int. 2021, 47, 19824–19834. [Google Scholar] [CrossRef]
- He, Y.L.; Xie, T. Advances of Thermal Conductivity Models of Nanoscale Silica Aerogel Insulation Material. Appl. Therm. Eng. 2015, 81, 28–50. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Tian, Y.; Wu, X.; Li, Z. Investigation of High Temperature Thermal Insulation Performance of Fiber-Reinforced Silica Aerogel Composites. Int. J. Therm. Sci. 2023, 183, 107827. [Google Scholar] [CrossRef]
- Liu, H.; Hu, M.; Jiao, J.; Li, Z. Geometric Optimization of Aerogel Composites for High Temperature Thermal Insulation Applications. J. Non. Cryst. Solids 2020, 547, 120306. [Google Scholar] [CrossRef]
- Miros, A.; Psiuk, B.; Szpikowska-Sroka, B. Aerogel Insulation Materials for Industrial Installation: Properties and Structure of New Factory-Made Products. J. Sol-Gel Sci. Technol. 2017, 84, 496–506. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.Z.; Zhang, H.; Chen, L.; Tao, W.Q. Numerical Predictions of Thermal Conductivities for the Silica Aerogel and Its Composites. Appl. Therm. Eng. 2017, 115, 1277–1286. [Google Scholar] [CrossRef]
- Liu, S.; Wu, X.; Li, Y.; Cui, S.; Shen, X.; Tan, G. Hydrophobic In-Situ SiO2-TiO2 Composite Aerogel for Heavy Oil Thermal Recovery: Synthesis and High Temperature Performance. Appl. Therm. Eng. 2021, 190, 116745. [Google Scholar] [CrossRef]
- Li, D.; Zhang, C.; Li, Q.; Liu, C.; Arıcı, M.; Wu, Y. Thermal Performance Evaluation of Glass Window Combining Silica Aerogels and Phase Change Materials for Cold Climate of China. Appl. Therm. Eng. 2020, 165, 114547. [Google Scholar] [CrossRef]
- Soleimani Dorcheh, A.; Abbasi, M.H. Silica Aerogel; Synthesis, Properties and Characterization. J. Mater. Process. Technol. 2008, 199, 10–26. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Shi, L.; He, S.; Gong, L.; Li, C.; Zhang, H. Flammability and Oxidation Kinetics of Hydrophobic Silica Aerogels. J. Hazard. Mater. 2016, 320, 350–358. [Google Scholar] [CrossRef]
- Cui, S.; Liu, Y.; Fan, M.H.; Cooper, A.T.; Lin, B.L.; Liu, X.Y.; Han, G.F.; Shen, X.D. Temperature Dependent Microstructure of MTES Modified Hydrophobic Silica Aerogels. Mater. Lett. 2011, 65, 606–609. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, D.; Fang, J. Synthesis of Silica Aerogel Microspheres by a Two-Step Acid–Base Sol–Gel Reaction with Emulsification Technique. J. Porous Mater. 2015, 22, 621–628. [Google Scholar] [CrossRef]
- Pan, Y.; He, S.; Gong, L.; Cheng, X.; Li, C.; Li, Z.; Liu, Z.; Zhang, H. Low Thermal-Conductivity and High Thermal Stable Silica Aerogel Based on MTMS/Water-Glass Co-Precursor Prepared by Freeze Drying. Mater. Des. 2017, 113, 246–253. [Google Scholar] [CrossRef]
- Liao, Y.; Wu, H.; Ding, Y.; Yin, S.; Wang, M.; Cao, A. Engineering Thermal and Mechanical Properties of Flexible Fiber-Reinforced Aerogel Composites. J. Sol-Gel Sci. Technol. 2012, 63, 445–456. [Google Scholar] [CrossRef]
- Woignier, T.; Phalippou, J.; Prassas, M. Glasses from Aerogels—Part 2 The Aerogel-Glass Transformation. J. Mater. Sci. 1990, 25, 3118–3126. [Google Scholar] [CrossRef]
- Nan, C.W.; Birringer, R.; Clarke, D.R.; Gleiter, H. Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance. J. Appl. Phys. 1998, 81, 6692. [Google Scholar] [CrossRef]
- Swartz, E.T.; Pohl, R.O. Thermal Boundary Resistance. Rev. Mod. Phys. 1989, 61, 605. [Google Scholar] [CrossRef]
Thickness (cm) | Heat Loss (kJ/(h·m2)) | |
---|---|---|
FRAB | Glass Fiber | |
1 | 9430.4 | 14,486.4 |
2 | 5126.4 | 7058.4 |
3 | 3506.4 | 4486.4 |
4 | 2834.4 | 3614.4 |
5 | 2542.4 | 3198.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; Zhou, Z.; Zhang, H.; Zhang, X.; Wu, Y. The Evolution of Insulation Performance of Fiber-Reinforced Silica Aerogel after High-Temperature Treatment. Materials 2023, 16, 4888. https://doi.org/10.3390/ma16134888
Gao R, Zhou Z, Zhang H, Zhang X, Wu Y. The Evolution of Insulation Performance of Fiber-Reinforced Silica Aerogel after High-Temperature Treatment. Materials. 2023; 16(13):4888. https://doi.org/10.3390/ma16134888
Chicago/Turabian StyleGao, Rui, Zhangjian Zhou, Hongbo Zhang, Xiaoge Zhang, and Yuming Wu. 2023. "The Evolution of Insulation Performance of Fiber-Reinforced Silica Aerogel after High-Temperature Treatment" Materials 16, no. 13: 4888. https://doi.org/10.3390/ma16134888
APA StyleGao, R., Zhou, Z., Zhang, H., Zhang, X., & Wu, Y. (2023). The Evolution of Insulation Performance of Fiber-Reinforced Silica Aerogel after High-Temperature Treatment. Materials, 16(13), 4888. https://doi.org/10.3390/ma16134888