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Abstract: The segregation of the Fe element in Ti-10V-2Fe-3Al titanium alloy (Ti-1023) can lead to
the generation of beta flecks, which seriously affects the performance of Ti-1023 products. During
the heat treatment (HT) process at a high temperature, the Fe element in Ti-1023 ingots will migrate,
making its distribution more uniform and reducing the segregation index. In this paper, the control
of Fe micro-segregation in Ti-1023 ingots by homogenization HT was investigated. Firstly, dissection
sampling and SEM-EDS analysis methods were used to study the distribution pattern of the Fe
element in the equiaxed grains in the core of Ti-1023 ingots. It was found that the Fe content in
the grain gradually increased along with the radial direction from the core to the grain boundary.
Then, the homogenization HT experiments and numerical simulations of Ti-1023 at different HT
temperatures from 1050 ◦C to 1200 ◦C were carried out. The results showed that the uniformity of Fe
element distribution within grain can be significantly improved by the homogenization HT. With
increasing HT temperature, Fe atoms migration ability increases, and the uniformity of Fe element
distribution improves. Homogenization HT at 1150 ◦C and 1200 ◦C for 12 h can effectively reduce
the degree of Fe element segregation.

Keywords: Ti-1023 titanium alloy; homogenization heat treatment; diffusion; micro-segregation

1. Introduction

Ti-1023 is a typical near-beta Ti alloy with a beta transit temperature of 795 ◦C and has
high fracture toughness, deep hardening potential and inherent ductility [1–3]. It is mainly
used in the manufacturing of large load-bearing components such as aircraft fuselages,
helicopter rotors and landing gears [4–8]. Due to the small equilibrium distribution constant
of Fe during solidification of Ti-1023, which is as low as 0.3, it has a high tendency of
segregation [9–12]. The low partition ratios of Fe, combined with the relative movement
of liquid and solid phases in the two-phase zone caused by buoyancy and Lorentz force,
large differences of Fe content at different areas and β-flecks are likely to occur in the
ingot [13–17] result in the precipitation of brittle phase. The β-flecks usually deteriorate the
plasticity and fatigue properties of Ti-1023 forgings [14].

At the microscopic scale, there is a possibility of relatively significant compositional
differences within individual grains due to different solidification sequences, which could
be inherited in bars and forgings [18–22]. It has been found that there is a certain degree of
segregation of Fe elements in Ti-1023. Zhao Yongqing et al. [23] studied the distribution of
Fe elements in Ti-3Fe and Ti-6Al-1.7Fe within isometric crystals, and the results proved that
the two alloys have a high Fe element content in the ingot near the grain boundary. For
the Ti-3Fe alloy with a high Fe element content, the elevated Fe element content near the
grain boundary was more obvious. Jing Zhenquan et al. [24] examined the heredity law of
macrosegregation of the easily segregated Fe element between the primary and secondary
ingots by numerical simulation of the interaction between temperature and solute fields
during the process of vacuum arc remelting.
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Multiple smelting, homogenization HT and other methods are required to prevent
and control the segregation of Fe in Ti-1023 [25–28]. HT can relieve macro-segregation and
micro-segregation of many kinds of alloys to a certain degree [29–33]. However, at present,
there are limited reports on the intragranular distribution of Fe in Ti-1023, and there is little
research on the improvement of intragranular segregation by annealing. It is important
to reveal the distribution pattern of Fe content in the grains of Ti-1023 ingots to study the
formation and control of β-flecks. Therefore, this paper uses energy spectroscopy to study
the distribution pattern of Fe content at the grain scale in large-size Ti-1023 ingots. Various
homogenization HT processes were used to eliminate or reduce the gradient of Fe content
within the grains.

2. Materials and Methods
2.1. Sampling and Corrosion of Ti-1023 Ingots

Ti-1023, with the composition shown in Table 1, was smelted using a vacuum smelting
furnace and cast into an ingot with the size of φ360 mm × 1300 mm. A pie-shaped sample
with the size of φ360 mm × 10 mm was cut from the middle part of the Ti-1023 ingot.

Table 1. Composition of Ti-1023, wt.%.

Element Al V Fe O N H Ti

Content 3.02 ± 0.03 10.25 ± 0.05 1.92 ± 0.10 0.08 ± 0.01 0.009 ± 0.001 0.0012 ± 0.0003 Bal.

Note: The Al and V contents were measured using the method of inductively coupled plasma atomic emission
spectroscopy. The Fe content was measured using the method of atomic absorption spectroscopy. The O, N and H
contents were measured using the methods of inert gas melting and infrared detection.

Considering the segregation in the axial part of the ingot is obvious [17], four cylindri-
cal samples with a size of φ30 mm × 10 mm were cut from the center of the pie-shaped
sample, as shown in Figure 1.
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In order to observe the grain distribution of the Ti-1023 sample, the sample was ground
using silicon carbide abrasive paper, polished using the diamond polishing paste, and
finally etched using 4% nitric acid alcohol solution.
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2.2. Detection of Fe Element Content Distribution in Sample Grains

The microstructure of the four samples mentioned above were observed using SEM
(JSM-6510LV). In each sample, three grains with a regular shape were chosen to detect the
Fe element content. The distances between the parallel edges of the grains were measure
as D, and then several micro-areas with the size of 10 µm × 10 µm were selected from the
midpoint of one of the parallel edges along the direction of the grain center at intervals of
D/20, as shown in Figure 2a. The compositions of each micro-area were detected using an
energy spectrum analyzer (JSM-6510LV, manufacturer is Hitachi, Tokyo, Japan).
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2.3. Homogenization HT of Sample

Before the homogenization HT, select three grains with large size about 6 mm to 10 mm
in each sample. For each grain, the composition was detected using an energy spectrum
analyzer at the grain center and near grain boundary, as shown in Figure 2b.

The four samples, numbered 1# to 4#, were encapsulated in different quartz tubes filled
with argon as a protective atmosphere. Keep the four quartz tubes at different temperatures
of 1050 ◦C, 1100 ◦C, 1150 ◦C and 1200 ◦C for 12 h, and then cooled to room temperature in
the furnace.

After the homogenization HT, the four samples were taken out of the quartz tubes.
In the same way, the samples were etched using Carroll solution after being ground and
polished. Three grains with a large size about 6 mm to 10 mm were chosen in each sample,
and their compositions were detected using an energy spectrum analyzer at the grain center
and near the grain boundary, as shown in Figure 2b.

3. Numerical Simulation of Fe Diffusion Intragranular of Ti-1023 during
Homogenization HT

In order to establish a mathematical model for the diffusion and transport of Fe in
Ti-1023, the following assumptions were made:

1. Grain boundary and dislocation have no influences on diffusion.
2. The diffusion rate of Fe is equal in all directions.
3. The diffusion coefficient of Fe is a constant value when the temperature and composi-

tion are determined.

Based on Fick’s law, the mathematical model of Fe diffusion in Ti alloy was estab-
lished, and the main governing equation is the component transfer equation, as shown in
Formula (1):

∂C
∂t

=
∂

∂xi

(
D

∂C
∂xi

)
(1)
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where C is the concentration of Fe, mol·m−3, x is the coordinate of i direction, m, D is the
diffusion coefficient, m2·s−1, which can be calculated via Formula (2):

D = D0 exp
(
− Q

RT

)
(2)

The diffusion constant D0 and the activation energy of the Fe element in Ti-1023 are
obtained through diffusion couple test, which are 5.45 × 10−5 m2·s−1 and 249,940 J·mol−1,
respectively. Figure 3 shows the diffusion coefficients of the Fe element in Ti-1023 at
different temperatures during the homogenization HT.
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The mathematical forms of the unsteady diffusion mass transfer and unsteady heat
conduction equations are similar. Therefore, the heat transfer module in the finite element
software ProCAST can be used for the numerical simulation of Fe diffusion during the
Ti-1023 homogenization HT process. A two-dimensional geometric model of a single grain
of Ti-1023 was established, assuming the grain to be hexagonal with a side length of 4 mm.
The finite element mesh of the grain consisted of 10,704 nodes and 9142 triangular elements,
which were selected based on several mesh refinements, as shown in Figure 4.
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The initial distribution of Fe contents is shown in Figure 5. The Fe contents in the
grain center and grain boundary are set according to the results of detection of Fe element
content distribution in sample grains, which are about 1.9% and 2.2%, respectively. The
boundary edges of the single grain are considered walls, meaning that no Fe atoms moving
in or out of the single grain through these six edges.
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4. Results and Discussion
4.1. Characterization of Intragranular Fe Content Distribution of Ti-1023 Ingot

Macrographs of the grain distributions of the four samples from the Ti-1023 ingot are
shown in Figure 6. It can be seen that the shape of the grains is irregular polygon, and the
measured sizes of the grains using area method are ranging from about 3 mm to 8 mm.
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sample to 4# sample, respectively.

The distributions of Fe content in the grains of the Ti-1023 samples are shown in
Table 2. It can be seen that the distribution of Fe content in the grains is uneven, and
in most of the grains, the Fe content is low in the grain center and high near the grain
boundary. The average distribution of Fe content in the grains along the radial direction is
obtained by averaging the Fe content at the corresponding position of all grains, as shown
in Figure 7. It can be seen that the Fe content in the grain increases gradually from the center
to the boundary along the radial direction. Put differently, there is positive segregation of
Fe content near the grain boundary and negative segregation near the grain center. The
average Fe content increases from 1.90% near the center to 2.15% near the grain boundary.
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Table 2. Distributions of Fe content in grains of the Ti-1023 samples, wt%.

Relative Distance
from Grain Center

Sample1#-
Grain1#

Sample1#-
Grain2#

Sample2#-
Grain1#

Sample2#-
Grain2#

Sample3#-
Grain1#

Sample3#-
Grain2#

Sample4#-
Grain1#

Sample4#-
Grain2#

0% 1.81 2.15 1.95 1.69 1.93 1.92 2.20 2.10
10% 2.04 1.94 2.15 1.78 1.67 2.02 1.80 1.80
20% 1.97 1.91 2.12 1.58 1.83 1.84 1.90 1.80
30% 1.84 1.89 2.16 1.87 1.69 1.55 2.00 2.20
40% 1.89 1.89 2.22 1.84 1.80 1.71 2.10 2.00
50% 1.76 2.28 2.10 1.82 1.65 2.13 1.90 2.00
60% 1.66 1.97 2.13 1.86 1.96 1.79 1.80 1.80
70% 1.77 2.29 2.11 1.92 1.68 1.87 2.00 2.10
80% 2.10 2.48 2.07 1.68 1.68 1.92 1.70 1.60
90% 1.98 2.49 2.23 1.81 2.04 1.99 2.50 2.00
100% 1.90 2.28 2.25 1.59 1.99 2.13 2.50 1.50

The segregation of the Fe element in Ti-1023 is caused by the small equilibrium
distribution constant K0 of the Fe element during solidification. K0 is the ratio of Fe content
in the solid and liquid phases at equilibrium, that is, K0 = CS/CL, where CS and CL are the
concentration of solute in the solid and liquid phases, respectively. The difference in Fe
content between the grain center and the grain boundary has an important influence on the
formation of β-freckle, which would appear during the subsequent forging process.

4.2. Effect of Homogenization HT on the Distribution of Fe Content in the Grains

The Fe contents in the grain center and boundary of the Ti-1023 ingot before and
after homogenization HT were measured, and the Fe content distributions in the grain
center and near the grain boundary of 1# to 4# samples before and after HT were obtained,
as shown in Table 3. The Fe content deviation is used to characterize the difference in
Fe content between at the grain center and grain boundary, which is calculated with the
formula (Cboundary – Ccenter)/Cboundary × 100%, where Cboundary and Ccenter represent the
Fe contents in grain boundary and grain center, respectively. For the samples before HT,
according to the statistical results of 36 pairs of Fe contents in the grain boundary and in
the center of 12 grains, it can be seen that there is a difference of 3.8–13.3% between the Fe
content in the grain center and the grain boundary. In other words, the Fe element exhibits
positive segregation at the grain boundary of the Ti-1023 ingot.
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Table 3. Fe content in the grain center and boundary before and after homogenization HT.

Sample#
Before HT After HT HT Temperature,

◦CGrain Boundary Grain Center Difference Grain Boundary Grain Center Difference

1# 2.16 1.96 9.3% 2.10 1.98 5.7% 1050
1# 2.22 2.04 8.1% 2.18 1.90 12.8% 1050
1# 2.36 2.15 8.9% 2.14 2.02 5.6% 1050
2# 2.20 1.96 10.9% 2.08 2.01 3.4% 1100
2# 2.17 2.01 7.4% 2.40 2.29 4.6% 1100
2# 2.20 2.09 5.0% 2.15 1.95 9.3% 1100
3# 2.12 2.01 5.2% 2.27 2.21 2.6% 1150
3# 2.17 1.91 12.0% 2.38 2.29 3.8% 1150
3# 2.25 1.95 13.3% 2.20 2.09 5.0% 1150
4# 2.24 2.02 9.8% 2.11 2.03 3.8% 1200
4# 2.38 2.29 3.8% 2.14 2.07 3.3% 1200
4# 2.40 2.26 5.8% 2.46 2.45 0.4% 1200

Then, the 1#–4# Ti-1023 samples were subjected to homogenization HT at different
temperatures of 1050 ◦C, 1100 ◦C, 1150 ◦C and 1200 ◦C for 12 h, respectively. During the
homogenization HT process, Fe atoms are capable of diffusing against the concentration
gradient, reducing the chemical segregation to a certain extent [34,35]. The results show
that after homogenization HT at 1050 ◦C for 12 h, the Fe content deviations in the Ti-1023
ingot are 5.7%, 12.8% and 5.6%, respectively, which are not significantly lower than before
HT. These results indicate that at 1050 ◦C, the diffusivity of the Fe element is lower, and the
diffusion rate is lower, resulting in an insignificant homogenization effect of the Fe content
after 12 h. When the homogenization HT temperature is increased to 1100 ◦C, the Fe content
deviations in the ingot are 3.4%, 4.6% and 9.3%, respectively, which are slightly improved
compared to before HT. This indicates that significant homogenization and diffusion of
the Fe element cannot be achieved within 12 h under 1100 ◦C. When the homogenization
HT temperature is increased to 1150 ◦C, the Fe content deviations in the ingot are 2.6%,
3.8% and 5.0%, respectively. The uniformity of the Fe content distribution in the grains
is improved to a certain extent compared to before HT. After 12 h of homogenization HT
at 1200 ◦C, the Fe content deviations in the ingot reaches 0.4–3.8%, and the distribution
uniformity of the Fe content is further improved with the increase in temperature, as shown
in Figure 8.
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Figure 8. Fe content deviations before and after homogenization HT.

According to the above analysis of the experimental data, the Fe content deviations of
the Ti-1023 samples after HT decrease gradually with the increase in HT temperature. The
homogenization HT above 1150 ◦C for 12 h can make more sufficient Fe diffusion. With the
increase in HT temperature, the atomic diffusion energy is gradually activated, and atomic



Materials 2023, 16, 4911 8 of 13

mobility is gradually improved [36–38]. The diffusion coefficient of the Fe element in the Ti
alloy matrix increases exponentially with the increase in temperature, thus increasing the
HT temperature can improve the diffusion of the Fe element effectively and improves the
uniformity of its distribution.

However, in actual industrial production of Ti-1023, the oxidation of the ingot during
the HT process would cause the loss of the metal and reduce the yield of the Ti alloy.
Therefore, the homogenization HT temperature should be determined according to the
degree of oxidation and the effect of the Fe content deviation.

4.3. Homogenization Factors of Fe Content in Ti-1023 Grains during HT
4.3.1. Effect of HT Temperature on Homogenization of Fe in Grains

Both HT temperature and time have significant effect on the homogenization of
alloys [39,40]. Increased homogenization treatment temperature and extended holding
time can significantly alleviate the segregation of the alloying element [41]. In other words,
a reasonable high HT temperature and long HT time will result in a uniform distribution of
alloy elements. The distributions of Fe content in Ti-1023 grains after homogenization HT
for 12 h at different temperatures are shown in Figure 9, it can be seen that: (1) For a single
grain, the higher the homogenization HT temperature, the more uniform the distribution of
Fe element content would be after a certain HT time. (2) Homogenization HT temperature
has a great influence on the homogenization of Fe content in a single grain. For example,
after homogenization HT at 1000 ◦C and 1250 ◦C for 12 h, the differences in Fe contents
between the grain center and grain boundary are 0.21% and 0.04%, respectively, and the Fe
content deviations are 10.9% and 1.8%, respectively.
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In order to further clarify the effect of homogenization HT temperature on the distribu-
tion of Fe content within the grains of Ti-1023, a characteristic line passing through the core
of the grain was selected, and the Fe content distribution curve along this characteristic
line after homogenization HT at different temperatures are plotted, as shown in Figure 10.
It can be seen that when the homogenization HT time is fixed, the higher the temperature,
the more uniform the Fe content distribution along the characteristic line. For example,
when the homogenization HT time is 12 h, the extreme difference in Fe content along the
characteristic line at 1000 ◦C is 0.19%, while at 1250 ◦C is 0.01%.
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Figure 10. Fe content distribution curve along the characteristic line after homogenization HT at
different temperatures, 12 h.

Three characteristic points were selected within the grain of Ti-1023: the core, the
middle and the grain boundary, as shown in Figure 11a. The Fe contents of these three
characteristic points at different homogenization HT temperatures with time are shown
in Figure 11b–d. It can be seen that: (1) The Fe content in the core and middle of the
grain increases with increasing homogenization HT time. The higher the homogenization
HT temperature, the faster the initial increase in Fe element content, and the slower the
subsequent increase at the end of the HT. (2) The Fe content at the grain boundaries
decreases with increasing homogenization HT time. During homogenization HT, the high
temperature accelerates the diffusion rate of atoms, making the dendritic segregation
gradually disappear [42]. The higher the homogenization HT temperature, the faster the
initial decrease in Fe content, and the slower the subsequent decrease at the end of the HT.
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Figure 11. Fe content of characteristic points at different homogenization HT temperatures,
(a) Schematic of three characteristic points selected within the grain of Ti-1023, (b–d) Fe contents at
different homogenization HT temperatures with time of the core, the middle, and the grain boundary,
respectively.
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4.3.2. Effect of HT Time on Homogenization of Fe in Grain

At a reasonable homogenization temperature, the alloy elements gradually tend to
distribute uniformly with an increase in homogenization time [42]. Distributions of Fe
content in the grain during homogenization HT of Ti-1023 were obtained at different
temperatures of 1000 ◦C, 1050 ◦C, 1100 ◦C, 1150 ◦C, 1200 ◦C and 1250 ◦C, respectively.
Figure 12 shows distributions of Fe content in the grain during homogenization HT of
Ti-1023 at a temperature of 1200 ◦C. During homogenization HT of Ti-1023, the Fe content
in the grain tends to become more uniform gradually with an increase in time. When the
HT time is 24 h at 1200 ◦C, the Fe content in the Ti-1023 grains can reach a nearly complete
uniformity.
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Fe content distributions at different positions in the grain during homogenization HT
of Ti-1023 are shown in Figure 13. It can be seen that: (1) At a certain HT temperature, the Fe
content at different distances from the grain center approaches the average value over time.
(2) When the HT temperature is high, such as 1200 ◦C, the Fe content at different distances
from the grain center exhibits a nonlinear change with time, following a concave curve.
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Figure 13. Fe content distributions at different positions in the grain during homogenization HT
at 1200 ◦C.

5. Conclusions

In this paper, the distribution of Fe content in the grains of Ti-1023 ingots smelted
by vacuum self-consumption was investigated. The distribution pattern of Fe contents



Materials 2023, 16, 4911 11 of 13

along the radial direction of the grains in the Ti-1023 ingot was obtained. The effect of
homogenization HT temperature on reducing Fe segregation in the microscopic region was
investigated by conducting homogenizing HT at temperatures ranging from 1050 ◦C to
1200 ◦C for 12 h. Combined with the numerical simulation, the Fe diffusion during the
homogenization HT of Ti-1023 was investigated to explore the Fe diffusion law within the
grain. The influences of the homogenization HT temperature and time on the distribution
of Fe content in Ti-1023 were clarified and the following conclusions were drawn:

1. The Fe content in the Ti-1023 ingots near the grain boundary is higher than that in the
core of the grain.

2. The degree of uniform distribution of Fe content within the grain can be improved
by homogenization HT. As the HT temperature increases, the Fe element migration
capacity improves and the degree of uniform distribution of Fe elements increases.

3. Homogenization HT time has a great influence on the distribution of Fe content
within the grain. The longer the HT time, the more uniform the distribution of Fe
content. Fe content can achieve complete uniformity within the grain of Ti-1023 after
homogenization HT at 1200 ◦C for 12 h.

4. Homogenization HT of Ti-1023 at 1150 ◦C to 1200 ◦C for 12 h can reduce the Fe content
deviation from about 10% to less than 4%.

In order to save heat treatment costs and maximize material performance, further
research will be conducted on the plasticity and fatigue properties of Ti-1023 with different
degrees of Fe segregation after homogenization HT. In addition, methods for controlling Fe
segregation during the solidification process of Ti-1023 ingots will also be investigated in
future studies.
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