The Influence of Layer Stacking Method on the Mechanical Properties of Honeycomb Skeleton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling
2.2. Experimental Method
2.3. Numerical Simulation Method
2.4. Model Verification
3. Deformation Mode of Honeycomb Skeleton
4. Analysis of Pressure and Energy Absorption Characteristics of Honeycomb Skeleton Tandem Structure
4.1. Analysis of the Influence of Dislocation Mode on the Bearing Performance
4.2. Analysis of the Influence of Dislocation Mode on Buffer and Energy Absorption Characteristics
5. Influence of Interlayer on Pressure-Bearing Characteristics of Honeycomb Skeleton
5.1. Influence of Interlayer Thickness on Pressure-Bearing Performance
5.2. Influence of Interlayer Material on Pressure-Bearing Performance of Honeycomb Skeleton Tandem Structure
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, G.; Li, S.; Xiao, L.; Song, W. Energy absorption performance of honeycombs with curved cell walls under quasi-static compression. Int. J. Mech. Sci. 2021, 210, 106746. [Google Scholar] [CrossRef]
- Wei, X.; Xiong, J.; Wang, J.; Xu, W. New advances in fiber-reinforced composite honeycomb materials. Sci. China Technol. Sci. 2020, 63, 1348–1370. [Google Scholar] [CrossRef]
- Chang, Q.; Feng, J.; Shu, Y. Advanced honeycomb designs for improving mechanical properties: A review. Compos. Part B Eng. 2021, 227, 109393. [Google Scholar]
- Li, M.; Deng, Z.; Liu, R.; Guo, H. Crashworthiness design optimisation of metal honeycomb energy absorber used in lunar lander. Int. J. Crashworthines 2011, 16, 411–419. [Google Scholar] [CrossRef]
- Quoc, P.M.; Krzikalla, D.; Mesicek, J.; Petru, J.; Smiraus, J.; Sliva, A.; Poruba, Z. On Aluminum Honeycomb Impact Attenuator Designs for Formula Student Competitions. Symmetry 2020, 12, 1647. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, J.; Luo, R.; Min, S.; Dou, Y. Application Characteristics of Zeolite-Based Stuffing for Nanofluidic Packer Rubber. Energies 2022, 15, 7962. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, M.; Dou, Y.; Luo, R. Study on the Loading Capacity of Honeycomb Matrix Skeleton for Nanofluidic Packer Rubber. China Pet. Mach. 2021, 49, 117–122. [Google Scholar]
- Zhang, Y.; Min, S.; Wang, H.; Gao, M.; Dou, Y. Analysis on Loading Capacity of First-order Honeycomb Skeleton of Nanofluidic Packer rubber. China Pet. Mach. 2022, 50, 73–78. [Google Scholar]
- Weng, H.; Dang, X.; Zhang, X. Energy absorption properties of tandem honeycomb with dislocated assembly. J. Zhejiang Univ. (Eng. Sci.) 2020, 54, 2329–2335. [Google Scholar]
- Zhang, X.; Weng, H.; Liu, L. Effect of dislocation and layer height on the compression performance of tandem honeycombs. J. Sandw. Struct. Mater. 2022, 24, 928–949. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Lu, Z.; Hui, D. Mechanical behavior of composited structure filled with tandem honeycombs. Compos. Part B Eng. 2017, 114, 128–138. [Google Scholar] [CrossRef]
- Vijayanand, R.B.; Anantharaman, S.; Arumaikkannu, G. Energy absorbing capability of additive manufactured multi-material honeycomb structure. Rapid Prototyp. J. 2019, 25, 623–629. [Google Scholar]
- Zhang, J.; Ashby, M.F. The out-of-plane properties of honeycombs. Int. J. Mech. Sci. 1992, 34, 475–489. [Google Scholar] [CrossRef]
- Liu, S.; Tong, Z.; Tang, Z.; Liu, Y.; Zhang, Z. Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads. Thin-Walled Struct. 2015, 88, 70–81. [Google Scholar] [CrossRef]
- He, W.; Liu, J.; Wang, S.; Xie, D. Low-velocity impact behavior of X-Frame core sandwich structures–experimental and numerical investigation. Thin-Walled Struct. 2018, 131, 718–735. [Google Scholar] [CrossRef]
- Chen, L.; Du, B.; Zhang, J.; Zhou, H. Numerical study on the projectile impact resistance of multi-layer sandwich panels with cellular cores. Lat. Am. J. Solids Struct. 2016, 13, 2876–2895. [Google Scholar] [CrossRef] [Green Version]
- Yoshiaki, Y. Dynamic axial crushing of multi-layer honeycomb panels and impact tensile behavior of the component members. Int. J. Impact Eng. 2000, 24, 659–671. [Google Scholar]
- Sun, D.; Zhang, W.; Zhao, Y.; Li, G.; Xing, Y.; Gong, G.F. In-plane crushing and energy absorption performance of multi-layer regularly arranged circular honeycombs. Compos. Struct. 2013, 96, 726–735. [Google Scholar] [CrossRef]
- Yao, S.; Xiao, X.; Xu, P.; Qu, Q.; Che, Q. The impact performance of honeycomb-filled structures under eccentric loading for subway vehicles. Thin-Walled Struct. 2018, 123, 360–370. [Google Scholar] [CrossRef]
- Chandrasekaran, N.K.; Arunachalam, V. State-of-the-art review on honeycomb sandwich composite structures with an emphasis on filler materials. Polym. Compos. 2021, 42, 5011. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, P.; Xie, S.; Feng, Z.; Wang, D. Mechanical performance and energy absorption properties of structures combining two Nomex honeycombs. Compos. Struct. 2018, 185, 524–536. [Google Scholar] [CrossRef]
- Jamshid, F.; Nima, A. Multi objective crashworthiness optimization of multi-layer honeycomb energy absorber panels under axial impact. Thin Wall Struct. 2016, 107, 197–206. [Google Scholar]
- Fan, C.; Zhang, L.; Shan, J.; Wang, P.; Xu, S. The mechanical performance and energy absorption properties of composite paper honeycomb structures. J. Exp. Mech. 2021, 36, 627–637. [Google Scholar]
- Li, M.; Liu, R.; Luo, C.; Guo, H.; Ding, B. Numerical and experimental analyses on series aluminum honeycomb structures under quasi-static load. J. Vib. Shock 2013, 32, 50–56. [Google Scholar]
- Zhou, J.; Ma, H.; Jia, S.; Tian, S. Mechanical properties of multilayer combined gradient cellular structure and its application in the WLL. Heliyon 2023, 9, e14825. [Google Scholar] [CrossRef]
- Lin, Y.L.; Zhang, Z.; Chen, R.; Li, Y.; Wen, X.; Lu, F. Cushioning and energy absorbing property of combined aluminum honeycomb. Adv. Eng. Mater. 2015, 17, 1434–1441. [Google Scholar] [CrossRef]
- Palomba, G.; Epasto, G.; Crupi, V.; Guglielmino, E. Single and double-layer honeycomb sandwich panels under impact loading. Int. J. Impact Eng. 2018, 121, 77–90. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Li, S.; Xu, L.; Wu, G. The explosion resistance of double-layer honeycomb sandwich panel under blast load. J. Taiyuan Univ. Technol. 2021, 52, 1022–1028. [Google Scholar]
- Wang, T.; An, J.; He, H.; Wen, X.; Xi, X. A novel 3D impact energy absorption structure with negative Poisson’s ratio and its application in aircraft crashworthiness. Compos. Struct. 2021, 262, 113663. [Google Scholar] [CrossRef]
- Lin, X.; Gao, J.; Wang, J.; Wang, R.; Gong, M.; Zhang, L.; Lu, Y.; Wang, D.; Zhang, L. Desktop printing of 3D thermoplastic polyurethane parts with enhanced mechanical performance using filaments with varying stiffness. Addit. Manuf. 2021, 47, 102267. [Google Scholar] [CrossRef]
- Ambekar, R.S.; Kushwaha, B.; Sharma, P.; Bosia, F.; Fraldi, M.; Pugno, N.M.; Tiwary, C.S. Topologically engineered 3D printed architectures with superior mechanical strength. Mater. Today 2021, 48, 72–94. [Google Scholar] [CrossRef]
- Naser, M.Z. Deriving temperature-dependent material models for structural steel through artificial intelligence. Constr. Build. Mater. 2018, 191, 56–68. [Google Scholar] [CrossRef]
- Isaac, C.W.; Duddeck, F. Current trends in additively manufactured (3D printed) energy absorbing structures for crashworthiness application–A review. Virtual Phys. Prototyp. 2022, 17, 1058–1101. [Google Scholar] [CrossRef]
- Cao, L.; Lin, Y.; Lu, F.; Chen, R.; Zhang, Z.; Li, Y. Experimental study on the shock absorption performance of combined aluminium honeycombs under impact loading. Shock Vib. 2015, 2015, 689546. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Hao, W.; Xue, G.; Liu, B.; Pu, Y.; Ma, F.W. Parametric design strategy of a novel self-similar hierarchical honeycomb for multi-stage energy absorption demand. Int. J. Mech. Sci. 2022, 217, 107029. [Google Scholar] [CrossRef]
- Du, P.A.; Razavi, S.M.J.; Benedetti, M.; Murchio, S.; Leary, M.; Watson, M.; Bhate, D.; Berto, F. Properties and applications of additively manufactured metallic cellular materials: A review. Prog. Mater. Sci. 2022, 125, 100918. [Google Scholar]
Diameter of Consumable | Tensile Strength [30] | Bending Strength [30] | Shrinkage Rate STn | Elongation | Melting Point |
---|---|---|---|---|---|
1.75 mm | 450 kg/cm2 | 400 kg/cm2 | 0.8% | 170% | 190 °C |
Dislocation Type | Parameter | Error |
---|---|---|
Dislocation along the | 5.63% | |
X-axis | 3.81% | |
Dislocation along the | 4.68% | |
Y-axis | 5.57% | |
Rotation dislocation | 0° | 3.34% |
10° | 4.61% | |
20° | 3.7% | |
30° | 5.21% | |
Alignment | 4% | |
Single layer | 6.21% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhai, Y.; Min, S.; Dou, Y. The Influence of Layer Stacking Method on the Mechanical Properties of Honeycomb Skeleton. Materials 2023, 16, 4933. https://doi.org/10.3390/ma16144933
Zhang Y, Zhai Y, Min S, Dou Y. The Influence of Layer Stacking Method on the Mechanical Properties of Honeycomb Skeleton. Materials. 2023; 16(14):4933. https://doi.org/10.3390/ma16144933
Chicago/Turabian StyleZhang, Yafei, Yuqing Zhai, Shiwei Min, and Yihua Dou. 2023. "The Influence of Layer Stacking Method on the Mechanical Properties of Honeycomb Skeleton" Materials 16, no. 14: 4933. https://doi.org/10.3390/ma16144933
APA StyleZhang, Y., Zhai, Y., Min, S., & Dou, Y. (2023). The Influence of Layer Stacking Method on the Mechanical Properties of Honeycomb Skeleton. Materials, 16(14), 4933. https://doi.org/10.3390/ma16144933