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Abstract: High-strength steel-fiber-reinforced concrete (HSFRC) has become increasingly popular
as a cast-in-place jointing material in precast concrete bridges and buildings due to its excellent
tensile strength and crack resistance. However, working conditions such as emergency repairs and
low-temperature constructions require higher demands on the workability and mechanical properties
of HSFRC. To this end, a novel rapid-hardening HSFRC has been proposed, which is produced using
sulphoaluminate cement (SC) instead of ordinary Portland cement. In this study, quasi-static and
dynamic tests were carried out to compare the compressive behavior of conventional and rapid-
hardening HSFRCs. The key test variables included SC replacement ratios, concrete curing ages,
and strain rates. Test results showed: (1) Rapid-hardening HSFRC exhibited high early strengths
of up to 33.14 and 44.9 MPa at the curing age of 4 h, respectively, but its compressive strength and
elastic modulus were generally inferior to those of conventional HSFRC. (2) The strain rate sensitivity
of rapid-hardening HSFRC was more significant compared to its conventional counterpart and
increased with increasing curing ages and strain rates. This study highlights the great potential of
rapid-hardening HSFRC in rapid bridge construction.

Keywords: high-strength steel-fiber-reinforced concrete; rapid hardening; compressive performance;
strain rate; curing age

1. Introduction

As the service life of highway bridges increases and traffic flows become more dra-
matic, bridge deck pavement inevitably suffers from varying degrees of damage. A com-
mon typical disease is the breakage of expansion joints (Figure 1), which regulate the
connection and displacement of the upper bridge deck structure to ensure smooth vehicle
movement. It is noted that the infilled concrete is subjected to external factors such as struc-
tural shrinkage, impact fatigue, natural disasters, and vehicle overloading, which can lead
to cracking, spalling of the concrete cover, and even outright failure [1,2]. High-strength
steel-fiber-reinforced concrete (HSFRC) has become increasingly popular as a cast-in-place
jointing material in precast assembled concrete bridges and buildings due to its excellent
tensile strength and resistance to crack development [3,4]. However, the Highway Agency
often requires repairs to be completed within six hours during the night so that lanes can be
reopened the next morning to avoid disruption to road users [5]. However, the replacement
of the existing expansion joint concrete requires a number of operations, such as cutting and
chiseling of the old concrete and casting of the new concrete, which often takes a long time
and can cause extensive traffic congestion. Moreover, the poor stability of the construction
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quality and the extremely high rework rate reduce the efficiency of the highway. The search
for a rapid-hardening concrete with high early strength that can be used to repair bridge
decks quickly and with minimum disruption to traffic has therefore become a high priority.
For this reason, a new rapid-hardening HSFRC has been proposed, which is produced
using sulphoaluminate cement (SC) instead of ordinary Portland cement [6,7]. This type
of concrete is feasible in the actual construction site using rapid-paced construction and
is suitable for the rapid repair of various bridge pavements. It can effectively solve the
current problems of prolonged traffic closure, low traffic throughput, and economic loss
due to the insufficient life of repair materials during bridge deck pavement repair.
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With the increasing demand for better behavior and lower costs, mounting research
has been devoted to upgrading or exploiting the structural mechanical performance by
introducing innovative materials, structures, and techniques [8–17]. For conventional
HSFRC, the presence of silica-fume reactive admixtures and nanoparticles is used to
improve defective and porous structures within the concrete, achieving increased strength
while reducing the permeability of the concrete material to chloride ions, thus protecting the
internal steel fibers from corrosion [18]. In addition, fine quartz sand was used instead of
river sand, and the maximum particle size was limited by not mixing coarse aggregates to
improve the compactness and uniformity of the aggregate [19]. In addition, the presence of
steel fibers reduces the rate of damage development in the concrete and allows for a longer
yielding phase, further improving the static and dynamic strength, ductility, and toughness
of HSFRC [20]. Rapid-hardening HSFRC not only retains the excellent properties of its
conventional counterparts but also has four improvements [6,7]: (1) The introduction of SC
with micro-expansion characteristics can completely fill the bridge deck pavement, whose
early hydration can achieve rapid construction. (2) The incorporation of gypsum helps
to regulate the initial setting time of concrete, which can form an encapsulation layer on
the surface of particles to prevent further hydration of SC, thus enabling rapid-hardening
HSFRC to achieve slow setting. (3) The addition of water-reducing agents ensures the
fluidity of the fresh concrete and solves the problem that the elements cannot be formed
densely due to the short setting time of SC. (4) High-temperature steam curing at 90 ◦C for
3 days is used to reduce material shrinkage and improve the microstructure of the material.
The above improvements of rapid-hardening HSFRC ultimately result in an improvement
in the three performance indicators of HSFRC, namely, rapid hardening, slow setting, and
high early strength. In recent years, rapid-hardening HSFRC has been successfully adopted
to repair the deteriorated pavement of a roadway in China, as shown in Figure 2. Within
two hours of hardening, the lanes were reopened. After serving for three years, no visible
damage was observed on the pavement (Figure 2c). This phenomenon demonstrated that
the rapid-hardening HSFRC as investigated in this study exhibited favorable durability.
However, the mechanical properties of rapid-hardening HSFRC still remain unclear, which
hinders the application of this innovative type of concrete.
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Static mechanical properties are the main performance indicators of concrete, which
determine the load-bearing capacity of structures such as bridges and pavements. They are
also an important basis for structural design and construction and are an essential part of
the in-depth study of the dynamic mechanical properties of concrete [21,22]. Luo et al. [23]
showed that the incorporation of polypropylene fibers had a significant effect on the frost
resistance of HSFRC after hundreds of freeze–thaw (F–T) cycles, with a greater effect on the
splitting tensile strength than on the compressive strength. Lancellotti et al. [24] used alkali-
activated materials instead of Portland cement in fiber-reinforced concrete and found that
the presence of fibers neither facilitated nor hindered the ground polymerization process,
even though there was an increase in ionic conductivity in the samples containing fibers. As
a result, a hypothesis was obtained that the samples containing fibers were less consolidated
or that the dissolution of fibers contributed to the conductivity values. Vaitkevicius et al. [25]
have found that a large number of microsteel fibers (up to 147 kg/m3) were incorporated
into HSFRC to obtain excellent salt-scale resistance and favorable mechanical properties.
Rady et al. [26] investigated the bond mechanism of high-strength lightweight concrete
containing steel fibers with different geometries. The tested results showed that the steel
fibers enhanced the internal bond strength and prevented crack extension, regardless of the
geometries of the steel fibers. Furthermore, most of the existing equations for predicting
tensile and bond strengths need to be modified for the case of high-strength lightweight
concrete. Yu et al. [6] conducted an experimental study on HSFRC with rapid-hardening
characteristics. The experimental results indicated that the 3 h strength developed fastest
at 55 MPa when the gypsum substitution rate was 15%, while the later strength could be
continuously increased to 81 MPa after 7 days. In addition, 2.5% (by volume) of steel fibers
could increase the 3 h and 28 d compressive strength of the newly designed UHPC by
157.0% and 46.1%, respectively, compared to the reference group without fibers. Despite
the above-mentioned investigations of HSFRC, few studies have focused on the static
mechanical properties of rapid-hardening HSFRC.

In addition, pavements and bridges are mainly subjected to dynamic loads during
services, for example, the impact friction caused by vehicles coming into direct contact
with pavement, which can cause the concrete to deform and crack. Then there are the more
destructive earthquakes, which can even cause bridge structures to collapse, resulting in
huge losses of life and road safety. Note that the strain rates generated by impacts and
earthquakes are generally higher than 100 s−1. When concrete is subjected to short and
strong loads, its failure is considerably different from that under quasi-static loads, and the
brittleness of concrete under high strain rates of impact loading is more obvious. For this
reason, it is also crucial to study the dynamic mechanical properties of HSFRC. It is worth
noting that in recent years there have been a large number of studies on the mechanical
properties of conventional HSFRC under quasi-static loading. Murali and Vinodha [27]
carried out an experimental campaign to assess the impact failure strength of steel hybrid
fiber reinforced concrete (SHFRC) subjected to freezing–thawing cycles in water containing
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4.0% solution of NaCl. The experimental results revealed that when the number of freezing–
thawing cycles was increased, the loss in weight of SHFRC specimens was increased,
and the impact failure strength of SHFRC specimens was decreased. The impact failure
strength of SHFRC incorporating a higher amount of long fibers was higher compared
to short fibers, which implies that long fiber played a predominant role in enhancing its
impact failure strength. Li et al. [28] investigated the dynamic mechanical properties of
HSFRC under the influence of freeze–thaw cycles and found that the compressive strength
and energy absorption capacity of concrete gradually decreased with the increase in F–
T cycles. During F–T cycles, the mechanical properties of concrete increased with the
addition of steel fibers, and the optimum amount of steel fibers to enhance the resistance to
F–T cycles was 1% within the evaluated range. Moein et al. [29] conducted a systematic
experimental study on conventional types of HSFRC concrete cured under wet and dry
conditions by drop-weight impact assessment and revealed that hooked steel fibers were
more effective than crimped steel fibers in improving the impact strength, even though
the length diameter was smaller. The compressive strength of concrete containing hybrid
fibers (hooked + crimped) was also lower than other fibers. In addition, the moisture-
cured samples had higher compressive strength (up to 12%) and tensile strength (up to
21%). Sharma et al. [30] concluded that HSFRC was effective against abrasion erosion
and cavitation erosion. A systematic experimental study showed that SFRC with the
addition of 1.25–1.5% steel fibers showed significant improvements in impact resistance,
toughness, and energy absorption. Sun et al. [31] demonstrated that as the steel-fiber
content increased, the peak stress, energy absorption, and multiple impact compressive
resistance of the specimens were greatly improved. When the steel-fiber content was 6%,
the dynamic impact peak strain, dynamic impact compressive strength ratio, and energy
absorption capacity of the specimens were 3.09, 1.45, and 4.1 times higher than those of
the reference group, respectively. Dalvand et al. [32] used zeolite material to partially
replace ordinary silicate cement, which could effectively enhance the bond strength in the
interfacial transition zone between fine aggregate and cement paste, thus improving the
toughness and postpeak behavior. In recent years, a number of researchers have studied
the mechanical properties of rapid-hardening HSFRC under quasi-static loading; however,
there is limited research on its dynamic mechanical properties under impact loading [29,33].
Previous studies have shown that rapid-hardening HSFRC has good dynamic mechanical
properties and its use in repairing bridge deck pavement allows a structure to dissipate
more energy at the material level, reduce amplitude and stress, and improve the overall
structural damping [33].

Against the above background, this paper aimed to investigate the effects of SC
replacement ratios and concrete curing ages on the failure mode, ultimate condition, and
stress–strain response of HSFRC under static and dynamic compression tests. It is noted
that the Split Hopkinson pressure bar (SHPB) test can skillfully decouple the inertia effect
in the structure and the strain rate effect in the material, which is the typical experimental
technique for obtaining the dynamic compressive behavior of concrete at relatively high
strain rates (102~104 s−1). Therefore, the dynamic compression tests in this study are carried
out based on the SHPB experimental technique.

2. Experimental Program
2.1. Specimen Design

A number of 35 groups of (or 112) specimens were prepared and tested, including
7 groups of (or 21) cubic specimens with 100 mm sides, 7 groups (or 21) cylindrical speci-
mens with 100 mm diameter and 200 mm height for quasi-static compression tests, and
35 groups of (or 70) flattened Brazilian discs (FBD) with 100 mm diameter and 50 mm
height for dynamic compression tests. Each group of quasi-static compression specimens
consisted of three nominally identical specimens and two dynamic counterparts. Two
series were designed for each type of compression test. Specifically, for the quasi-static com-
pression tests, three groups of cubic specimens and three groups of cylindrical specimens
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made from conventional HSFRC were tested together as control specimens to form Series
I, while Series II comprised the remaining cubic and cylindrical specimens infilled with
rapid-hardening HSFRC. It is noted that conventional HSFRC was introduced to better
investigate the effect of SC replacement ratios on HSFRC. For the dynamic compression
tests, Series I consisted of 15 groups of FBD specimens made of conventional HSFRC, while
Series II consisted of 20 groups of FBD specimens made of rapid-hardening HSFRC. Each
series (i.e., Series I and II in the quasi-static and dynamic compression tests) examined
the influence of test parameters on the concrete curing age, using 3, 7, and 28 days for the
conventional HSFRC and 4 h, 3 days, 7 days, and 28 days for the rapid-hardening HSFRC,
to cover the emergency repair work opening time (4 h) and typical concrete curing ages (3,
7, and 28 days). In addition, the effect of strain rate was investigated in both Series I and II
of the dynamic compression test. It should be mentioned here that the strain rate test range
was determined by designing the gas pressure for the SHPB technique in the dynamic
compression test. Five SHPB gas pressures were used for the dynamic compression tests,
0.5, 0.6, 0.7, 0.8, and 0.9, representing strain rates in the range of 50 to 134 s−1, covering a
wide range of strain rates to which concrete is subjected when used in structural members.
The detailed specimen arrangement for the quasi-static and dynamic compression tests is
shown in Table 1. It is worth noting that instead of the quasi-static compression test where
the stress and strain are directly output by the instrument and strain gauge, the average
strain rate, stress, and its corresponding strain at each step (or time t) of the dynamic
compression test can be obtained based on the one-dimensional stress wave propagation
theory. Specifically, the average strain rate (

.
εs), compressive strength (σs), and its corre-

sponding strain (referred to as the ultimate strain εs) of all FBD specimens under dynamic
compressive loading are expressed in the following equations [34,35]:

.
εs(t) =

2C0

ls
εR(t) (1)

σs(t) =
Eb Ab

As
εT(t) (2)

εs(t) =
2C0

ls

∫ t

0
εR(t)dt (3)

where C0 is the speed of propagation of a one-dimensional stress wave in the SHPB; ls and
As are the thickness and cross-sectional area of FBD specimens, respectively; εR is the strain
of the reflected wave; and Eb and Ab are the elastic modulus and cross-sectional area of the
SHPB, respectively.

Each specimen is given a name consisting of 3 or 4 sets of letters and/or numbers
(3 sets for the quasi-static compression test and 4 sets for the dynamic compression test),
plus a numeral “1, 2, or 3” to distinguish between 2 or 3 nominally identical specimens.
The first set consists of the two or three byte letters “CQC, QC, or DC”, representing
cubic and cylindrical specimens for quasi-static compression tests (i.e., “cubes under quasi-
static compression” is shortened to “CQC” and “cylinders under quasi-static compression”
is shortened to “QC”), and FBD specimens for dynamic compression tests (i.e., “FBD
specimens under dynamic compression” is shortened to “DC”), respectively. The second
set consists of the number “0 or 60” and the unit “%”, representing the type of infilled
concrete as conventional or rapid-hardening HSFRC, respectively. The third set consists
of the numbers “4, 3, 7, or 28” and the letters “h or d”, representing the curing age of
the specimen as 4 h, 3 days, 7 days, or 28 days, respectively. The fourth set of specimens
for dynamic compression tests only represents the gas pressure of the SHPB technique in
dynamic compression tests. For example, specimen DC-60%-4h-0.5-1 represents one of two
identical dynamic compressive specimens infilled with rapid-hardening HSFRC, with a
curing age of 4 h and a target SHPB gas pressure of 0.5 MPa.
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Table 1. Detailed design of test specimens.

Specimen ID Test Type Specimen
Type

SC Replacement
Ratio

Curing
Age

Diameter × Height
(Side Length)

SHPB Gas
Pressure

CQC-0%-3d-1,-2,-3

Quasi-
static

Cube

0%
3 days 100 mm

--

CQC-0%-7d-1,-2,-3 7 days 100 mm
CQC-0%-28d-1,-2,-3 28 days 100 mm

CQC-60%-4h-1,-2,-3

60%

4 h 100 mm
CQC-60%-3d-1,-2,-3 3 days 100 mm
CQC-60%-7d-1,-2,-3 7 days 100 mm

CQC-60%-28d-1,-2,-3 28 days 100 mm

QC-0%-3d-1,-2,-3

Cylinder

0%
3 days 100 mm × 200 mm

QC-0%-7d-1,-2,-3 7 days 100 mm × 200 mm
QC-0%-28d-1,-2,-3 28 days 100 mm × 200 mm

QC-60%-4h-1,-2,-3

60%

4 h 100 mm × 200 mm
QC-60%-3d-1,-2,-3 3 days 100 mm × 200 mm
QC-60%-7d-1,-2,-3 7 days 100 mm × 200 mm

QC-60%-28d-1,-2,-3 28 days 100 mm × 200 mm

DC-0%-3d-0.5-1,-2

Dynamic FBD

0%

3 days

100 mm × 50 mm 0.5
DC-0%-3d-0.6-1,-2 100 mm × 50 mm 0.6
DC-0%-3d-0.7-1,-2 100 mm × 50 mm 0.7
DC-0%-3d-0.8-1,-2 100 mm × 50 mm 0.8
DC-0%-3d-0.9-1,-2 100 mm × 50 mm 0.9

DC-0%-7d-0.5-1,-2

7 days

100 mm × 50 mm 0.5
DC-0%-7d-0.6-1,-2 100 mm × 50 mm 0.6
DC-0%-7d-0.7-1,-2 100 mm × 50 mm 0.7
DC-0%-7d-0.8-1,-2 100 mm × 50 mm 0.8
DC-0%-7d-0.9-1,-2 100 mm × 50 mm 0.9

DC-0%-28d-0.5-1,-2

28 days

100 mm × 50 mm 0.5
DC-0%-28d-0.6-1,-2 100 mm × 50 mm 0.6
DC-0%-28d-0.7-1,-2 100 mm × 50 mm 0.7
DC-0%-28d-0.8-1,-2 100 mm × 50 mm 0.8
DC-0%-28d-0.9-1,-2 100 mm × 50 mm 0.9

DC-60%-4h-0.5-1,-2

60%

4 h

100 mm × 50 mm 0.5
DC-60%-4h-0.6-1,-2 100 mm × 50 mm 0.6
DC-60%-4h-0.7-1,-2 100 mm × 50 mm 0.7
DC-60%-4h-0.8-1,-2 100 mm × 50 mm 0.8
DC-60%-4h-0.9-1,-2 100 mm × 50 mm 0.9

DC-60%-3d-0.5-1,-2

3 days

100 mm × 50 mm 0.5
DC-60%-3d-0.6-1,-2 100 mm × 50 mm 0.6
DC-60%-3d-0.7-1,-2 100 mm × 50 mm 0.7
DC-60%-3d-0.8-1,-2 100 mm × 50 mm 0.8
DC-60%-3d-0.9-1,-2 100 mm × 50 mm 0.9

DC-60%-7d-0.5-1,-2

7 days

100 mm × 50 mm 0.5
DC-60%-7d-0.6-1,-2 100 mm × 50 mm 0.6
DC-60%-7d-0.7-1,-2 100 mm × 50 mm 0.7
DC-60%-7d-0.8-1,-2 100 mm × 50 mm 0.8
DC-60%-7d-0.9-1,-2 100 mm × 50 mm 0.9

DC-60%-28d-0.5-1,-2

28 days

100 mm × 50 mm 0.5
DC-60%-28d-0.6-1,-2 100 mm × 50 mm 0.6
DC-60%-28d-0.7-1,-2 100 mm × 50 mm 0.7
DC-60%-28d-0.8-1,-2 100 mm × 50 mm 0.8
DC-60%-28d-0.9-1,-2 100 mm × 50 mm 0.9

2.2. Raw Materials

The material mass proportion for both types of HSFRC was cementitious material: fine
aggregate: steel fiber: water: water reducer = 42:40:6:10:2. Note that the two types of con-
crete differed only in the mass proportion of cementitious material, with the conventional
type using ordinary Portland cement: microsilica fume: Nano-CaCO3 = 77:20:3, and the
rapid-hardening type using sulphoaluminate concrete: ordinary Portland cement: gypsum:
microsilica fume: Nano-CaCO3 = 45:16:16:20:3. A close-up view of the raw materials is
shown in Figure 3.

2.3. Specimen Preparation

The same preparation procedure was used for all specimens, and the key steps are
given in Figure 4. It is noted that the same type of concrete was cured in the same en-
vironment using the same methods. In particular, conventional HSFRC specimens were
demolded after one day of hardening, and then placed outdoors and covered with plastic
molds for one week with three dripping treatments per day. Furthermore, rapid-hardening
HSFRC specimens were demolded after 2 h of hardening and subsequently steamed at
90 ◦C for 3 days, followed by 4 days of outdoor conditioning as with their conventional
counterparts. In addition, to ensure smooth surfaces during loading to avoid stress con-
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centrations at the specimen ends, the top and bottom surfaces of the specimens for the
static compression test were covered with a high-strength plaster, while the top and bottom
surfaces of the specimens for the dynamic compression test were polished with an MY259
grinder. Note that the nonparallel depth of the top and bottom surfaces of the specimens
was kept below 0.02 mm [36,37].
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2.4. Test Setup and Instrumentation
Quasi-Static Compression Tests

All quasi-static compression tests were carried out in accordance with the American
Specification ASTM C469/C469M-14 [38]. The test setup and instrumentation are shown in
Figure 5. Specifically, a displacement-controlled loading mode was used with a constant
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rate of 0.18 mm/min, corresponding to 10−5 s−1. All specimens were loaded in two steps:
(1) Each specimen was preloaded to 10% of the expected peak load to verify loading axis
alignment and proper instrument operation. (2) After preloading, all specimens were
formally loaded until the load dropped to 40% of the measured peak load. In addition, the
same linear displacement transducers (LVDTs) and strain gauge arrangement were used for
all specimens: (1) two LVDTs installed symmetrically to cover the middle two-fifths of the
column height to measure axial shortenings; (2) two strain gauges installed symmetrically
in the axial direction with a gauge length of 50 mm to measure axial deformations of the
midheight section in the specimen; and (3) two strain gauges installed symmetrically in
the hoop direction with a gauge length of 50 mm to measure hoop deformations of the
midheight section in the specimen. All test data were automatically collected every second
using a data acquisition system.
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All dynamic compression tests were performed in a separate SHPB apparatus in
the Mechanics Laboratory of Guangdong University of Technology, China, following the
Chinese Specifications GB/T 7314-2017 and GB/T 34108-2017 [39,40]. The test setup and
instrumentation is shown in Figure 6. Specifically, the striker, incident, transmitted, and
absorbent bars in the SHPB technique were fabricated from 60Si2Mn, which had an elastic
modulus, Poisson’s ratio, mass density, and yield strength of 206 GPa, 0.3, 7740 kg/m3,
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and 1180 MPa, respectively. According to the definition of the elastic wave velocity of a
bar as the square ratio of the elastic modulus to its mass density, the above-mentioned
elastic wave velocity of the bar in the used SHPB technique was 5169 m/s. It was noted
that wave fluctuations and dispersion would greatly affect the dynamic performance of the
specimens during SHPB impact tests. Therefore, two additional measures were routinely
taken to ensure uniform forces at both ends of the concrete specimen: (1) the contact
surfaces of the incident bar, specimen, and transmitted bar were covered with Vaseline to
reduce the frictional resistance of the contact surfaces; and (2) brass pulse shapers of 2 mm
thickness and 20 mm diameter were applied between the incident bar and the specimen
to retard the slope of the rising phase of the incident wave and increase the reflection
time of the gravitational wave inside the specimen. In addition, four strain gauges with a
gauge length of 50 mm were installed equally on the incident and transmitted bars on the
SHPB technique, which were used to monitor the signals of the incident (ε I) and reflected
(εR) waves from the incident bar, and the transmitted (εT) waves from the transmitted
bar, respectively.
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3. Results and Discussion of Quasi-Static Compression Test
3.1. Failure Modes and Ultimate Conditions

Figure 7 shows typical failure modes of cubic and cylindrical specimens tested under
quasi-static compression loading. All of the quasi-static compressive specimens failed by
early crack initiation followed by rapid crack propagation and even concrete crushing. A
conical final failure mode was observed in the midheight region of all specimens. It is
noteworthy that as the load approached its peak, all specimens showed surface cracking
of the concrete protective layer, followed by the formation of major vertical cracks and
the development of multiple diagonal cracks along the vertical cracks. Furthermore,
both types of HSFRC specimens showed a gradual decrease in the crack numbers as the
concrete curing age increased. Furthermore, the rapid-hardening HSFRC specimens all
had higher crack numbers than their conventional counterparts at the same curing ages.
Note that with earlier curing ages or higher SC replacement ratios, the cubic and cylindrical
specimens exhibited more significant diagonal splitting cracks. This relationship twisted
with the increasing curing age or decreasing SC replacement ratio, i.e., the specimens
developed a dominant failure with the vertical cracking. This finding may be related to the
strength development level of the base material, with the diagonal-crack-dominated failure
occurring when their diagonal shear capacity is lower than the corresponding vertical
splitting capacity and, conversely, with vertical-crack-dominated failure.

Table 2 summarizes the average key test results for cubic and cylindrical specimens
under quasi-static compressive loading, which include the compressive strength and its
corresponding axial strain (corresponding to the ultimate axial strain), elastic modulus, and
Poisson’s ratio. Specifically, the axial strain was determined by averaging the two LVDT
readings installed in the midheight region of the specimen.

Table 2. Key results of quasi-static compression tests.

Specimen ID Compressive Strength
(MPa) Ultimate Axial Strain Elastic Modulus

(GPa) Poisson’s Ratio

CQC-0%-3d-1,-2,-3 72.62 -- -- --
CQC-0%-7d-1,-2,-3 90.65 -- -- --

CQC-0%-28d-1,-2,-3 124.89 -- -- --

CQC-60%-4h-1,-2,-3 45.16 -- -- --
CQC-60%-3d-1,-2,-3 52.56 -- -- --
CQC-60%-7d-1,-2,-3 62.55 -- -- --
CQC-60%-28d-1,-2,-3 80.94 -- -- --

QC-0%-3d-1,-2,-3 49.52 0.0022 33.1 0.15
QC-0%-7d-1,-2,-3 56.17 0.0020 37.0 0.19

QC-0%-28d-1,-2,-3 90.95 0.0018 43.6 0.21

QC-60%-4h-1,-2,-3 33.14 0.0046 26.5 0.19
QC-60%-3d-1,-2,-3 39.14 0.0030 27.6 0.20
QC-60%-7d-1,-2,-3 54.06 0.0028 34.1 0.21

QC-60%-28d-1,-2,-3 70.62 0.0023 38.3 0.22

Figures 8 and 9 show the effect of the examined parameters on the ultimate condition
of quasi-static compression tests for cubic and cylindrical specimens, where all results
are represented by the average of the test results for three nominally identical specimens
in each test case. Note that in addition to the test results for cubic specimens shown in
Figure 7, the test results for cylindrical specimens are shown in Figure 8. Figures 8 and 9
show the effects of SC replacement ratios and concrete curing ages, respectively. Generally,
the curing age of both types of HSFRC is proportional to the compressive strength of cubic
and cylindrical specimens and inversely proportional to the cylindrical ultimate axial strain.
Conversely, as the SC replacement ratio increased, the compressive strength of cylindrical
HSFRC specimens at the same curing age gradually decreased while the corresponding
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ultimate axial strain gradually increased. It can be seen from Figure 9 that the relationship
curve between the concrete curing age and compressive strength or ultimate axial strain is
generally higher for specimens with conventional HSFRC than for their rapid-hardening
counterparts. However, it is worth noting that the rate of strength enhancement (i.e.,
the slope of the curve) was significantly greater for rapid-hardening HSFRC than for
conventional counterparts at the early curing age. Such a finding is understandable, as the
low elastic modulus of SC makes the matrix more rigid than ordinary Portland cement,
and thus exhibits a lower compressive strength at the same stress state. Nevertheless,
Table 2 shows that cubic and cylindrical specimens of conventional HSFRC cured for 3 days
reached 58% and 54% of those cured for 28 days, respectively, and similar comparative
results were found for rapid-hardening HSFRC counterparts cured for 4 h and 28 days.
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Figure 8. Effect of SC replacement ratios on ultimate conditions of quasi-static compression tests. (a)
Ultimate axial stress. (b) Ultimate axial strain.
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Figure 9. Effect of concrete curing ages on ultimate conditions of quasi-static compression tests.
(a) Ultimate axial stress. (b) Ultimate axial strain.

3.2. Stress–Strain Responses

Quasi-static compressive stress–strain curves for cylindrical specimens are shown in
Figures 10 and 11, each examining the effect of one test parameter. The test results show
that all three nominally identical specimens have close stress–strain curves. Therefore, for
ease of comparison, only one of the test results for one of the repeated specimens is given in
both Figures 10 and 11. Note that the positive strains in Figures 10 and 11 represent the axial
strains of the specimens measured by the LVDTs, while the negative strains refer to the hoop
strains of the specimens measured by the strain gauges. In addition, to further illustrate
the quasi-static compressive stress–strain curves for the cylindrical specimens, Figures 12
and 13 each depict the effect of one test parameter on the quasi-static compressive index
(including the elastic modulus and Poisson’s ratio).
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Figure 10. Effect of SC replacement ratios on stress–strain curves of quasi-static compression tests.
(a) Conventional HSFRC. (b) Rapid-hardening HSFRC.
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Figure 12. Effect of SC replacement ratios on ultimate conditions of quasi-static compression tests.
(a) Elastic modulus. (b) Poisson’s ratio.
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Figure 13. Effect of concrete curing ages on ultimate conditions of quasi-static compression tests.
(a) Elastic modulus. (b) Poisson’s ratio.

Figure 10 regroups and compares the quasi-static compressive stress–strain responses
of cylindrical specimens using the two different types of HSFRC. Three subplots are
included in Figure 12 to illustrate the difference in quasi-static compressive performance
of cylindrical specimens with two types of HSFRC for ages of 3 days, 7 days, and 28 days,
respectively. It can be seen that the nonlinear growth phase of the quasi-static compressive
stress–strain response was generally higher for conventional HSFRC cylindrical specimens
than for their rapid-hardening HSFRC counterparts. The difference gradually increased
with the increasing concrete curing age. Furthermore, Figure 12 clearly shows that the
elastic modulus of HSFRC cylindrical specimens under quasi-static compression decreases
with increasing SC replacement ratio; the opposite relationship was found for Poisson’s
ratio and SC replacement ratio. Additionally, it can be found that rapid-hardening HSFRC
cylindrical specimens had a more stable development of quasi-static compressive elastic
modulus and Poisson’s ratio with the changing concrete curing age compared to their
conventional counterparts.

Figure 11 illustrate the effect of concrete curing ages on the quasi-static compressive
stress–strain response of cylinders with conventional and rapid-hardening HSFRC, re-
spectively. The effect of concrete curing ages is similar to previous studies [36]: as the
concrete curing age increased, the compressive strength of the cylindrical specimens under
quasi-static loading increased; by contrast, the corresponding ultimate strain decreased.
Furthermore, Figure 13 clearly shows that the elastic modulus and Poisson’s ratio of both
types of HSFRC cylindrical specimens generally increased with increasing curing age. Inter-
estingly, the effect of concrete curing ages on the quasi-static compressive elastic modulus
and Poisson’s ratio of HSFRC cylindrical specimens was significant until the curing age
was less than 7 days; however, the effect of curing age became less pronounced when the
curing age was greater than 7 days. This phenomenon demonstrates that an early curing
age is crucial for the development of the quasi-static compressive properties of HSFRC.

4. Results and Discussion of Dynamic Compression Tests
Failure Modes and Ultimate Conditions

Figure 14 shows the typical failure modes of the FBD specimens tested under dynamic
compression loading. All of the dynamic compressive specimens experienced either macro-
scopic cracking or crushing damage. Specifically, the concrete cracking first occurred on
the sides of the FBD specimens and subsequently developed in both two-specimen planes
along the height direction. Such crack propagations triggered both the spalling of the
concrete protective layer and the successive appearance of crushing in the specimen core.
Additionally, it was noteworthy that the specimens with both types of HSFRC exhibited
more significant cracking and even crushing as the strain rate (or SHPB gas pressure)
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increased or the concrete curing age decreased, i.e., the integrity of the specimens after
failure became increasingly degraded. Specifically, with the increasing strain rate (or SHPB
gas pressure) or the decreasing concrete curing age, the specimens eventually failed in
more fragments with smaller volumes. It is noted that there may be a threshold between
the strain rate (or SHPB gas pressure) and specimen cracking (or crushing): when the strain
rate (or SHPB gas pressure) is greater than a certain threshold, HSFRC specimens will crack
or crush. Specifically, when the SHPB gas pressure is greater than 0.5 MPa (corresponding
to a strain rate of 43 to 90 s−1), all HSFRC specimens will experience macroscopic cracking;
when the SHPB gas pressure is greater than 0.8 MPa (corresponding to a strain rate of 81
to 135 s−1), all HSFRC specimens will experience almost complete separation of mortar,
aggregate, and steel fibers. Further observations of the specimen’s failure modes were
made after testing. Note that a large number of steel fibers were observed to be pulled
out as a whole but not broken. This phenomenon indicates that the anchoring capacity of
the steel fibers used in this study was poor, i.e., better mechanical properties of HSFRC
could be achieved if steel fibers with stronger anchoring capacity were used. In addition,
FBD specimens with rapid-hardening HSFRC had significantly fewer cracks than their
conventional counterparts, maintaining a higher degree of postfailure integrity. This was
more pronounced at the early curing age, suggesting that the introduction of SC favored the
dynamic performance of the HSFRC, which may be attributed to the higher early strength.

Table 3 summarizes the key test results for all FBD specimens under dynamic com-
pressive loading, which include the average strain rate (

.
εs), compressive strength (σs), and

ultimate strain (εs).

Table 3. Key results of dynamic compression tests.

Specimen ID Average Strain Rate
(s−1)

Compressive Strength
(MPa) Ultimate Axial Strain

DC-0%-3d-0.5-1 43 35.56 0.013
DC-0%-3d-0.5-2 49 37.82 0.021
DC-0%-3d-0.6-1 66 45.32 0.012
DC-0%-3d-0.6-2 67 47.99 0.015
DC-0%-3d-0.7-1 71 45.84 0.019
DC-0%-3d-0.7-2 76 46.34 0.017
DC-0%-3d-0.8-1 119 50.98 0.024
DC-0%-3d-0.8-2 122 50.63 0.030
DC-0%-3d-0.9-1 127 54.20 0.022
DC-0%-3d-0.9-2 132 54.79 0.030

DC-0%-7d-0.5-1 51 40.35 0.012
DC-0%-7d-0.5-2 59 43.21 0.022
DC-0%-7d-0.6-1 72 46.72 0.023
DC-0%-7d-0.6-2 79 46.79 0.017
DC-0%-7d-0.7-1 89 47.76 0.016
DC-0%-7d-0.7-2 97 49.63 0.037
DC-0%-7d-0.8-1 102 49.08 0.036
DC-0%-7d-0.8-2 104 51.89 0.016
DC-0%-7d-0.9-1 110 57.85 0.019
DC-0%-7d-0.9-2 123 62.19 0.027

DC-0%-28d-0.5-1 80 63.68 0.027
DC-0%-28d-0.5-2 90 65.74 0.029
DC-0%-28d-0.6-1 97 72.84 0.024
DC-0%-28d-0.6-2 100 74.13 0.018
DC-0%-28d-0.7-1 125 78.06 0.043
DC-0%-28d-0.7-2 126 80.89 0.032
DC-0%-28d-0.8-1 124 81.34 0.040
DC-0%-28d-0.8-2 135 82.06 0.039
DC-0%-28d-0.9-1 128 93.81 0.047
DC-0%-28d-0.9-2 133 95.34 0.032
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Table 3. Cont.

Specimen ID Average Strain Rate
(s−1)

Compressive Strength
(MPa) Ultimate Axial Strain

DC-60%-4h-0.5-1 65 33.42 0.022
DC-60%-4h-0.5-2 70 34.41 0.029
DC-60%-4h-0.6-1 83 37.07 0.026
DC-60%-4h-0.6-2 96 39.18 0.036
DC-60%-4h-0.7-1 97 39.43 0.038
DC-60%-4h-0.7-2 98 41.08 0.024
DC-60%-4h-0.8-1 98 39.52 0.031
DC-60%-4h-0.8-2 99 40.99 0.033
DC-60%-4h-0.9-1 100 42.32 0.029
DC-60%-4h-0.9-2 104 43.97 0.020

DC-60%-3d-0.5-1 70 39.04 0.023
DC-60%-3d-0.5-2 71 40.82 0.039
DC-60%-3d-0.6-1 93 44.85 0.032
DC-60%-3d-0.6-2 95 46.73 0.032
DC-60%-3d-0.7-1 98 51.41 0.026
DC-60%-3d-0.7-2 100 55.89 0.022
DC-60%-3d-0.8-1 100 53.92 0.032
DC-60%-3d-0.8-2 103 54.86 0.027
DC-60%-3d-0.9-1 105 61.82 0.017
DC-60%-3d-0.9-2 122 64.53 0.028

DC-60%-7d-0.5-1 63 43.33 0.029
DC-60%-7d-0.5-2 66 45.83 0.024
DC-60%-7d-0.6-1 80 52.75 0.029
DC-60%-7d-0.6-2 83 52.91 0.030
DC-60%-7d-0.7-1 98 61.82 0.017
DC-60%-7d-0.7-2 103 61.93 0.032
DC-60%-7d-0.8-1 107 67.01 0.030
DC-60%-7d-0.8-2 107 67.08 0.015
DC-60%-7d-0.9-1 134 67.82 0.030
DC-60%-7d-0.9-2 111 69.21 0.021

DC-60%-28d-0.5-1 80 60.13 0.029
DC-60%-28d-0.5-2 82 60.40 0.030
DC-60%-28d-0.6-1 98 68.43 0.032
DC-60%-28d-0.6-2 99 69.36 0.033
DC-60%-28d-0.7-1 106 70.03 0.036
DC-60%-28d-0.7-2 110 71.63 0.038
DC-60%-28d-0.8-1 108 88.54 0.038
DC-60%-28d-0.8-2 110 93.89 0.042
DC-60%-28d-0.9-1 123 99.06 0.043
DC-60%-28d-0.9-2 126 99.86 0.044

Figures 15–17 show the effects of the SC replacement ratio, concrete curing age, and
strain rate (or SHPB gas pressure) on the average strain rate, compressive strength, and
ultimate axial strain of FBD specimens in dynamic compression tests, respectively, where
all ultimate conditions are represented by the average of the test results of two nominally
identical specimens in each test case. As expected, Figures 15 and 17 demonstrate that for
FBD specimens with different types of HSFRC, the average strain rate, dynamic compressive
strength, and ultimate axial strain generally increased with increasing concrete curing age
or strain rate (or SHPB gas pressure). Furthermore, Figure 15 shows that the introduction of
SC enhanced the early curing age dynamic compressive performance of HSFRC specimens
to some extent. Specifically, when the SHPB gas pressure was increased from 0.5 to 0.9
MPa, the mean strain rate of the specimens with conventional HSFRC increased from 43 to
132 s−1 and 51 to 123 s−1 at the concrete curing ages of 3 and 7 days, respectively. Their
corresponding peak stresses increased from 35.56 to 54.79 MPa and 40.35 to 62.19 MPa,
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respectively, and their corresponding ultimate axial strains increased from 0.013 to 0.030
and 0.012 to 0.027, respectively. Meanwhile, the average strain rate of the specimens with
rapid-hardening HSFRC increased from 70 to 122 s−1 and 63 to 111 s−1 at the concrete
curing ages of 3 and 7 days, respectively. Their corresponding peak stresses increased from
39.04 to 64.53 MPa and 43.33 to 69.21 MPa, respectively, and their corresponding ultimate
axial strains increased from 0.023 to 0.028 and 0.029 to 0.030, respectively. However, when
the SHPB gas pressure was increased from 0.5 to 0.9 MPa at the concrete curing age of
28 days, the average strain rate of the specimens with conventional and rapid-hardening
HSFRC increased from 80 to 133 s−1 and 80 to 126 s−1, respectively, and their corresponding
peak stresses increased from 63.68 to 95.34 MPa and 60.13 to 99.86 MPa, respectively. In
addition, their corresponding ultimate axial strains increased from 0.027 to 0.047 and 0.029
to 0.044, respectively. The above phenomenon shows that there were some differences in
the dynamic compressive performance between the two types of HSFRC at the concrete
curing age of 28 days, i.e., when the material properties had stabilized, but that both were
generally acceptable. At the same time, rapid-hardening HSFRC has a clear advantage
over its conventional counterparts in terms of dynamic compressive performance at early
curing ages. These two aspects confirm the potential of rapid-hardening HSFRC for rapid
bridge construction.
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Figure 14. Typical failure modes of HSFRC specimens under dynamic compression tests.

The dynamic compression stress–strain curve for the FBD specimen is shown in
Figure 18. Note that the plot consists of 20 subplots in 5 rows and 4 pillars, where the
subplots in the same row can be used to examine the effect of concrete curing ages on the
dynamic compression stress–strain responses of HSFRC specimens, while their counterparts
in the same pillar are used to investigate the effect of strain rate (or SHPB gas pressure). In
addition, each subplot gives a comparison of specimens differing only in SC replacement
ratio while other parameters remain the same, for investigating the effect of SC replacement
ratio on the dynamic compression behavior of HSFRC specimens. The test results showed
that both nominally identical specimens had close stress–strain curves, indicating the good
repeatability of the majority of the test results. The following observations can be made
from Figure 18: (1) All specimens presented comparable stress–strain responses under
dynamic compression, which can be divided into four main components: a linear elastic
phase, a nonlinear ascent phase, a yielding phase, and a softening phase where the specimen
is completely destroyed. (2) With other parameters being the same, the longer the concrete
curing age, the higher the peak point of dynamic compressive stress–strain responses of
FBD specimens, but at the same time leading to a shorter yielding stage (i.e., with a constant
stress but large change in strain). (3) When other parameters remained consistent, the
dynamic compressive stress–strain response of specimens with rapid-hardening HSFRC
was generally higher than that of their conventional counterparts when the concrete curing
age was less than 7 days, but the opposite relationship existed when the curing age was
greater than 7 days. (4) The dynamic compressive stress–strain response of specimens
with rapid-hardening HSFRC exhibited an overall shorter yielding phase compared to
their conventional counterparts. (5) The higher the strain rate (or SHPB gas pressure), the
higher the dynamic compression stress–strain response of the FBD specimen when all other
parameters are kept consistent.
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5. Conclusions

This paper presents an experimental study of the quasi-static and dynamic compres-
sive behavior of conventional and rapid-hardening HSFRCs. The key parameters examined
in this study include concrete curing ages (from 4 h to 28 days) and strain rates (from 43
to 133 s−1). Based on the experimental results and discussion presented in this paper, the
following main highlights, main findings, limitations, and areas of future research can
be drawn.

Main highlights and findings include the following:

(1) Rapid-hardening HSFRC exhibited high early strength characteristics: the quasi-static
compressive strengths of the cubes and cylinders at 4 h of curing age reached 45.16
and 33.14 MPa, respectively, which were 55 and 48% of their corresponding 28-day
age strengths; in addition, the FBD specimen at 4 days of curing age had a dynamic
compressive strength of up to 43.97 MPa, roughly 0.4 times their corresponding 28-day
age strength.

(2) The introduction of SC resulted in an increase in the strain rate sensitivity of HS-
FRC, where the strain rate sensitivity of rapid-hardening HSFRC increased with the
increasing curing age and strain rate.

(3) The compressive strength, elastic modulus, and Poisson’s ratio of rapid-hardening HS-
FRC were inferior to those of their conventional counterparts in both quasi-static and
dynamic compressive loading, but rapid-hardening HSFRC’s postpeak deformation
capacity was significantly better than that of the conventional counterparts.

(4) The elastic modulus and Poisson’s ratio of HSFRC with different cement types under
quasi-static compression increased with increasing curing age; the negative relation-
ship between the elastic modulus and curing ages or strain rates was found under
dynamic counterparts.

Limitations and areas of future research include the following: Overall, rapid-
hardening HSFRC has great potential for rapid bridge construction. In addition, the
objective of this research was to verify the application feasibility of rapid-hardening HS-
FRC in rapid bridge construction through experimental investigations. To this end, this
research only investigated the short-term compressive performance of a specific rapid-
hardening HSFRC under normal conditions, lacking consideration of the effects of different
material compositions, fiber types, and environmental conditions. Furthermore, to fully
assess the properties of this innovative type of HSFRC, additional investigations should
also be supplemented to determine the skin, the durability under the action of water
and frost, the alkaline reactivity of HSFRC concrete with new cement, and so on. More-
over, the quasi-static and dynamic compressive constitutive models of this new type of
concrete were unavailable due to the lack of test data on their compressive performance.
Therefore, further research in this area is needed to investigate more systematically the
compressive performance and mechanical modelling for the engineering application of
such novel concrete.
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Nomenclature

The following abbreviations and symbols are used in this paper (sorted by first ap-
pearance).

Abbreviations
HSFRC High-strength steel-fiber-reinforced concrete
SC Sulphoaluminate cement
SHPB Split Hopkinson pressure bar
FBD Flattened Brazilian discs
CQC Cubes under quasi-static compression
QC Cylinders under quasi-static compression
DC FBD specimens under dynamic compression
h Hour
d Day
LVDT Linear displacement transducer
Symbols
.
εs Average strain rate of FBD specimens
σs Compressive strength of FBD specimens
εs Strain corresponding to σs
t Time
C0 Propagation speed of one-dimensional stress wave in SHPB
ls Thickness of FBD specimens
As Cross-sectional area of FBD specimens
εR Strain of reflected wave from incident bar of SHPB
Eb Elastic modulus of SHPB
Ab Cross-sectional area of the SHPB
ε I Strain of incident wave from incident bar of SHPB
εT Strain of transmitted wave from transmitted bar of SHPB
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