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Abstract: This study investigated thin-walled plate elements with a central cut-out under axial
compression. The plates were manufactured from epoxy/carbon laminate (CFRP) with an asymmetric
layup. The study involved analyzing the buckling and post-buckling behavior of the plates using
experimental and numerical methods. The experiments provided the post-buckling equilibrium paths
(P-u), which were then used to determine the critical load using the straight-line intersection method.
Along with the experiments, a numerical analysis was conducted using the Finite Element Method
(FEM) and using the ABAQUS® software. A linear analysis of an eigenvalue problem was conducted,
the results of which led to the determination of the critical loads for the developed numerical model.
The second part of the calculations involved conducting a non-linear analysis of a plate with an initial
geometric imperfection corresponding to structural buckling. The numerical results were validated
by the experimental findings, which showed that the numerical model of the structure was correct.

Keywords: composites; critical state; finite element method; thin-walled structures; linear and
nonlinear analysis; stability of construction; matrix couplings

1. Introduction

Carbon fibre-reinforced polymer composites (CFRPCs) are among the most widely
studied lightweight materials. They are widely used in automotive, civil engineering [1,2]
and aircraft structures [3–7], among others. Due to their material properties, such as
a high strength-to-weight ratio [8,9], these materials are very popular as load-bearing
components [8–11]. Furthermore, their mechanical properties can be shaped by designing
specified characteristics and ply configurations for these materials.

Owing to their shape and the fact that they are usually thin-walled, plate elements
are particularly susceptible to stability loss [12–15]. Therefore, the determination of the
critical loads for the plates and the analysis of their behavior under dynamic loads are
very important parts of their strength analysis, which has been undertaken in a number of
studies [12,16,17].

It is worth emphasizing here that there are many numerical and experimental studies
on the stability of structures made of classical isotropic engineering materials, and their re-
sults are widely reported in the literature. In contrast, there are fewer studies investigating
the problem of conjugate buckling for plate structures made of composite materials. Fur-
thermore, there are no experimental studies investigating the buckling and post-buckling
behavior of asymmetric laminate plates.

In general, the analysis of layered plates is more complicated due to their anisotropy
and heterogeneity. However, with the development of computer techniques and numerical
programs, such as FEM, studies attempting to describe these aspects have begun to appear.
To give an example, one can mention here studies investigating the performance charac-
teristics for structures made of thin plates, both with open and closed cross-sections, with
reinforcements [18,19], initial geometric parameters [20] or cut-outs [21,22]. Special focus
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was placed on determining the effects of shape inaccuracy [9], the boundary conditions [23],
the geometric parameters of the structure [24] or the fibre arrangement [25]. Many of these
theoretical considerations were validated through experiments [22]. FEM analyses of the
behavior of plates were also conducted by Batoz et al. [26] and Cui et al. [27].

The stability of thin-walled plates made of composite materials was also investigated
by Kolakowski and Kowal-Michalska [28], Kolakowski and Krolak [29] and Kubiak [30,31].
These studies predominantly dealt with the problem of buckling in thin-walled composite
structures under compression. The above problems were solved by Koiter’s asymptotic
theory. Different approaches to stability analysis of laminated composite plates using the
Ritz method are presented in papers [32–34].

The problem of the stability of compressed thin-walled structures, including mixed-
mode buckling, was analyzed using the finite element method by Kubiak [30], as well as
by Bazant and Cedolin [35]. Examples of using FEM to solve the problems of the linear and
nonlinear stability of composite structures can be found in previous studies conducted by
the author [36,37], as well as in studies performed by Alfano and Crisfield [38], Kreja [39],
Kopecki [40], Mania et al. [41] and Teter and Kolakowski [42]. Numerical FEM simulations
of the behavior of composite structures under different loads were verified experimentally
by Debski et al. [43] and Banat et al. [44,45], among others.

The literature review shows that there are numerous studies on the problems of
deflection and stability. However, there is a lack of experimental studies on thin-walled
asymmetric plates with a cut-out and their use as elastic elements. Furthermore, there
are no experimental studies investigating the buckling and post-buckling behavior of
asymmetric elements, which is the novel aspect of the current work.

Therefore, the determination of the critical load value that causes the buckling of a
thin-walled structure is a very important research problem. The knowledge of this value
makes it possible to prevent the structure from premature failure due to a loss of stability
by its elements, a problem which was discussed, among others, in [36,46–49]. It is also
worth mentioning that this study involved using the FEM method, which is widely used in
many fields [50–56]. However, the numerically determined critical load value may only
yield an approximate estimation of the critical force because the numerical calculations
assume an ideal structure, without the geometric imperfections that occur in real structures.
This means that the analyzed numerical models of thin-walled structures should be further
validated experimentally. To that end, it is necessary to use approximation methods [57–59]
that enable the estimation of the critical load value based on the experimental results. In
this study, the straight-lines intersection method [60,61] was used to estimate the critical
forces.

This study investigated the buckling and early post-buckling behavior of compressed
thin-walled composite plates with a cut-out. The study involved determining the critical
load of a real structure using the straight-lines intersection method, based on the results
obtained using the ARAMIS system and analysis of the buckling and post-buckling be-
havior through the finite element method (FEM). The results showed that this approach
was effective for solving the problems of linear and nonlinear stability for thin-walled
composite structures.

2. Object of the Research

The study was conducted on rectangular thin-walled plates fabricated from an epoxy/carbon
composite material (M12/35%/UD134/AS7) through autoclaving [62]. The material proper-
ties of the CFRP laminate used for samples were determined experimentally in compliance
with the relevant ISO standards, as described in [63]. The mechanical properties of the
composite material are presented in Table 1. The plates were subjected to axial compression.
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Table 1. Material properties of the tested laminate.

Young’s Modulus [MPa] Poisson’s Ratio ν12 Kirchhoff’s Modulus G12 [MPa]

0◦ (E1) 90◦ (E2)
0.36

±45◦

143,530 5826 3845

The tested plates had a central rectangular cut-out with variable geometric parameters
and constant overall dimensions [64]. A schematic representation of the considered model
with its dimensions and ply arrangement is given in Figure 1.
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Figure 1. Schematic representation of the considered model: (a) geometric model, (b) real model with
ply arrangement.

Six plate models with different cut-out dimensions (20 × 100 mm, 30 × 100 mm,
40 × 100 mm, 30 × 120 mm) and three fibre arrangement angles (30◦, 45◦, 60◦) were
analyzed. The composite structure consisted of 18 plies; each 0.105 mm thick, in an
asymmetric arrangement with respect to the midplane. The considered ply layup is
presented in Table 2.
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Table 2. Tested ply configurations.

Ply Number
Core Strips Final Configuration

Ply Orientation Coupling Ply Orientation Coupling Configuration Coupling

18 [α/−α]2 ASBtDS * [α/−α/0/−α/0/α/90/α/−α] ASBlDS * [03/α/−α/0/−α/α/−α/α/−α/α/90/α/−α/903]T ASBltDS

Where: α—angle, AS, DS—simple laminate, Bt—extension-twisting and shearing-bending coupling, Blt—extension-bending, extension–twisting and shearing–bending coupling,
Bt—extension–twisting and shearing–bending coupling, DF—twisting-bending coupling. *—it is some modification of the ply orientation tested by York [65,66], more information about
the selection of this configuration was given in [67].
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Each plate model consisted of a core spread over the entire plate volume and vertical
strips arranged on both sides of the core along the longer edges of the plate (Figure 1b).
This ply layup was selected to ensure that flexural-torsional buckling would be the lowest
buckling mode of the plate, without additional forcing. The ply orientations were selected
using mechanical matrix couplings based on the studies conducted by Ch. York [65,66].
This concept was comprehensively described in the authors’ previous studies [68,69].

3. Methodology and Scope of the Study

The range of the conducted study included the analysis of the buckling and early post-
buckling behavior of a compressed thin-walled composite plate weakened by cut-outs of
various geometrical parameters and different fibre orientations. The study was performed
using both experimental and numerical methods. The experiments conducted on the
fabricated thin-walled laminate plates enabled the observation of the structure’s behavior
in the critical state and after the loss of stability. The numerical simulations conducted
in parallel with the experiments were aimed at developing adequate, experimentally
validated FEM models for simulating the buckling of a thin-walled laminated structure,
closely reproducing the real structure’s behavior.

3.1. Experimental

The experiments were carried out on a Zwick/Roell ZMART PRO universal testing
machine with a measuring range of up to 2500 kN, coupled with the ARAMIS system [70],
which enabled the collection of data in a graphical form and analysis of the deformation
and displacement [71]. The experiments were performed with a constant cross-bar velocity
of 2 mm/min at room temperature. The axially compressed thin-walled composite plates
were loaded with approximately 150% of the numerical critical load value. During the
compression process, the plate element was simply supported by specially designed and
manufactured grips mounted in the testing machine. The test stand with the mounted plate
sample is shown in Figure 2.

During the tests, the compressive force and the shortening of the sample in the
perpendicular direction to its cross-section were measured. The shortening of the sample
was measured at the top edge of the plate. The ARAMIS optical system was used to
measure the plate shortening. This system uses a series of digital images to read the
displacements taken during measurements at regular intervals by two cameras positioned
at an appropriate distance from the tested object. The cameras are placed on a special
tripod. This system is characterized by high resolution and high measurement accuracy.
After preparing the sample and setting up the tripod with the cameras, the system was
calibrated using a template with marked reference points. After the calibration, the first
photo of the sample was taken, which was the zero load state, as well the reference state,
against which all calculations were made for the subsequent images. The images were
captured in the Start/Mid/Stop Trigger mode until the measurement was completed. After
the measurement was completed, in order to start the analysis of the captured images,
the surface area (calculation mask) on which the calculations would be carried out was
determined based on the size of the facets (Figure 3). Each facet was assigned a unique
structure and coordinates, thanks to which they could be recognized in the images captured
during the loading process. The last step before the analysis was to manually select a
starting point from which the calculation process would begin.

Figure 4 presents a sample frame from a film generated based on the data obtained
with the ARAMIS system. By analyzing the frame, it is possible to determine:

- the values of the strains/main displacements in the specimen;
- changes in the specimen shape during the loading process.
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The post-critical equilibrium paths obtained from the measurements, illustrating the
relationship between the load and plate shortening, P-u, made it possible to determine the
critical load value, and thus to evaluate the structure’s performance in the early post-critical
range.
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3.2. Experimental Determination of the Buckling Load

Inaccuracies occurring during the experiments due to different factors—such as bound-
ary conditions and geometric imperfections of the structure, design of the test stand or
application of the load—make it difficult to precisely determine the value of the buckling
load. Therefore, it is necessary to use approximation methods that enable the estimation
of the buckling load value based on the experimental measurements. In this study, the
straight-lines intersection method was used to estimate the critical forces [61,72].

The application of the straight-lines intersection method consisted of the approxi-
mation of the post-buckling equilibrium path, which describes the relationship between
the load and sample shortening measured perpendicularly to the cross-section. To esti-
mate the approximate value of the critical force by solving two linear functions, the post-
buckling equilibrium path P-u in the early post-critical range—which were determined
experimentally—were used. The post-buckling equilibrium paths P-u were approximated
in selected intervals by two linear functions having the form [72]:{

Pcr = P a1
a0

u + P
Pcr = P a2

a0
u + P

→ (Pcr; u) (1)

where a1, a2 are unknown function parameters, P is the applied load value, Pcr is an
unknown critical load value, u is the shortening of the plate corresponding to the critical
load.

The critical (buckling) load is determined based on the intersection point of the ap-
proximation function L1 with the second linear function L2, projected by the horizontal L3
on the coordinate system vertical axis of the post-buckling characteristic of the structure P-u
(Figure 5). The results obtained using approximation methods are not always unambiguous.
The degree of the approximated curve linearity is strictly dependent on the range of data
involved in the process of determining the critical loads. In addition, the result significantly
depends on the number of points with specific coordinates subjected to the approximation
stage.

In this study, the key determinant of the accuracy of the approximation process
was the correlation coefficient R2. This coefficient is used to determine the convergence
level between the approximating function and the selected range of the approximated
experimental curve. A higher value of the correlation coefficient ensured a higher accuracy
of the approximation process. In this experimental approximation of the post-buckling
paths, the minimum value of the correlation coefficient was assumed to be R2 ≥ 0.85.
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3.3. Numerical Model

The experimental investigation of the stability and post-buckling behavior was con-
ducted in parallel with the numerical modelling using the finite element method. The
numerical analysis was performed using the commercial ABAQUS® software. The scope of
the analysis included the investigation of the buckling and early post-buckling behavior up
to a value of ~150% of the lowest critical load value. The calculations for the critical state
included the solution of a linear eigenvalue problem, which led to the determination of the
lowest critical load value and the corresponding buckling mode. The maximum potential
energy condition was used to solve the eigenproblem. It was solved using the following
equation [30]:

([K] + λi[H]){ψ}i = 0 (2)

where [K] is the structural stiffness matrix, [H] is the stress stiffness matrix, λi is the i-th
eigenvalue and ψ is the i-th eigenvector of displacement.

When the {ψ}i value equals zero, this means that the solution is trivial and the structure
remains in the initial state of equilibrium. Equation (3) represents the eigenvalue problem,
which can help find n multiplier λ buckling load values and the corresponding buckling
mode.

|[K] + λi[H]|= 0 (3)

In the second part of the study, a nonlinear static analysis was performed. The initial
geometric imperfection was flexural-torsional buckling, and it was implemented with an
amplitude of 0.1 of the plate thickness. Although nonlinear analyses are carried out with the
progressive failure algorithm [67,73,74], this study only focused on the early post-buckling
range. In effect, the relationship between the load and column shortening P-u in the early
post-critical range could be determined. To solve the geometrically nonlinear problem, the
incremental-iterative Newton-Raphson method was used.

Numerical model discretization was carried out by means of shell elements with six
degrees of freedom at each node. In addition, 8-node shell elements (S8R) with a quadratic
shape function and reduced integration were used. More details about the numerical
analysis and the discretization process are given in [67,73]. A general view of the numerical
model is presented in Figure 6.
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The material properties of each layer of the CFRP were the same as those determined
experimentally (Table 1). The FEM model characteristics, such as the geometry, the method
of load application and the boundary conditions, were adopted as close as possible to those
in the experiments (Figure 2).

The boundary conditions for the numerical model reflected a simple support of the
compressed composite plate (Figure 4a). The boundary conditions were enforced by
constraining the movement of the kinematic degrees of freedom of the nodes located on the
top and bottom edges of the plate. The nodes located on the bottom edge had constrained
movement of two translational degrees of freedom Uy = Uz = 0 and of one rotational
degree of freedom URz = 0, but were allowed free rotation relative to the edge of the plate.
The top edge was assigned the same boundary conditions, additionally allowing node
displacement in the direction of loading, i.e., Uz = 0 and URz = 0. The vertical edges of the
plate remained free during the loading process. Axial compression was applied through
uniform loading of the top edge of the plate.

4. Results and Discussion

The experiments conducted on the axially compressed thin-walled plates provided
information that made it possible to establish a relation between the buckling of the
real structures and the external load. The experimental results allowed qualitative and
quantitative analyses of the pre-buckling and buckling behavior based on the obtained test
parameters. The buckling state was identified based on the obtained buckling mode and
its corresponding critical load. The experimental critical loads were used to validate the
numerical results.

Examples of the experimental and numerical flexural-torsional buckling modes ob-
tained for the tested plates are shown in Figure 7.

The results show good agreement in qualitative terms and confirm the stable behav-
ior of the tested plates in the post-buckling range. They also confirm that the selected
asymmetric configuration with couplings was correct. Examples of the post-buckling
flexural-torsional modes obtained for the compressed composite plate with a 40 × 100 mm
cut-out and 45◦ fibre arrangement angle and deflection maps are given in Figure 8.
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The measurements of the plate shortening made it possible to determine the post-
buckling equilibrium paths, which describe the relationship between the load and shorten-
ing, P-u (Figure 9). As mentioned above, all samples were tested until failure, according
to the progressive failure method, which is described in detail in [67,73,74], where some
of the results are reported. However, in the current work, the focus is on the analysis
of the buckling state and the determination of the experimental critical forces using the
approximation method. Therefore, the behavior in the low post-critical range is sufficient
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for the analysis (Figure 10). As shown in Figure 10, the experimental results and FEM
curves show good agreement in terms of both quantity and quality.
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The experimental post-critical equilibrium paths served as a basis for determining
the critical load using the straight-lines intersection method. The key problem with this
approach is that the measuring range must be selected correctly in order to describe the post-
buckling equilibrium path, as this has a direct impact on the results. If the approximation
procedures are inappropriate, the experimental critical loads will significantly differ from
the numerical values. In addition, for a sufficient compliance of the approximation function
with the experimental curve, the approximation range should be selected in such a way as
to maintain a high value of the correlation coefficient R2 (R2 ≥ 0.85).

In the straight-lines intersection method, the post-buckling equilibrium path P-u was
approximated using two linear functions. The first one was used in the initial interval of
the experimental path (buckling), while the other was applied after a visible change in the
characteristic (post-buckling). The critical load value was determined as a horizontal line,
projecting the intersection point of the approximation functions onto the vertical axis of the
diagram (load axis). The critical load values obtained using the straight-lines intersection
method are given in Figure 11.
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The critical loads obtained using the approximation method were compared with the
eigenvalues determined through numerical analysis. The experimental and FEM critical
loads are listed in Table 3.

Table 3. Comparison of FEM and experimental critical loads.

Method 45◦_20 × 100 45◦_30 × 100 45◦_40 × 100 45◦_30 × 120 30◦_40 × 100 60◦_40 × 100

FEM [N] 735 444 333 394 533 247
straight-lines

intersection [N] 705 422 330 370 494 244

Difference [N] 20 22 3 24 39 3

Figure 12 shows a bar chart with the FEM and experimental critical loads obtained for
the tested samples. The highest agreement between the experimental and numerical results
was obtained for the 45◦_40 × 100 plate, while the lowest for the 30◦_40 × 100 plate.

It must be remembered that the numerical load values obtained through solving the
eigenproblem are upper estimates of the critical load. The agreement between the approxi-
mation and numerical critical loads causing a buckling of the thin-walled flat plates weak-
ened by a central cut-out ranges between 0.9% and 7.32% (Table 4). The greatest difference
between the experimental and numerical results was obtained for the 30◦_40 × 100 mm
plate. The smallest difference, of 0.9%, was obtained for the 45◦_40 × 100 sample. The
average error of the critical loads obtained using the FEM/EXP methods is ~4%, which is
an acceptable value as the experimental results represent a lower estimate of the buckling
state. The numerical and experimental results show high quantitative agreement, which
proves the correctness of the applied approximation method.
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Figure 11. Buckling loads determined for the tested plates by the straight-lines intersection
method: (a) 45◦_20 × 100 mm, (b) 45◦_30 × 100 mm, (c) 45◦_40 × 100 mm, (d) 45◦_30 × 120 mm,
(e) 30◦_40 × 100 mm, (f) 60◦_40 × 100 mm.
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Table 4. Difference [in %] between numerical and experimental critical loads.

Difference [%] 45◦_20 × 100 45◦_30 × 100 45◦_40 × 100 45◦_30 × 120 30◦_40 × 100 60◦_40 × 100

FEM/
straight-lines
intersection

4.08% 4.95% 0.9% 6.09% 7.32% 1.21%

5. Conclusions

In this study, the behavior of axially compressed thin-walled plate elements weakened
by a central cut-out was investigated. An attempt was made to determine the critical load
value based on the experimental post-buckling paths obtained using the straight-lines
intersection method. The experimental results were then compared with the numerical
critical load value determined using the finite element method. The comparison showed
high agreement between the experimental and numerical critical loads. This agreement
confirms that the proposed procedure can be employed to determine the critical load values
for real structures. The correctly determined critical load value of a thin-walled flat plate is
of vital importance for operational reasons because it helps prevent structural buckling.

The study has shown that the accuracy of the results strongly depends on the applied
approximation parameters. This particularly concerns the selection of an appropriate
approximation range and a high value of the correlation coefficient R2 in order to ensure
agreement between the experimental structural characteristics and approximation function.

The results provide important information about modelling thin-walled structures
made of composite materials. At the same time, they confirm that the numerical models are
designed correctly and are thus effective for both eigenproblem calculations and nonlinear
static analysis of an early post-buckling response. The results confirm that the numerical
model was designed correctly and thus made it possible to simulate the buckling and
post-buckling behavior of the compressed plates with a central cut-out.
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