Hydrothermal Pretreatment of KOH for the Preparation of PAC and Its Adsorption on TC
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Preparation of Activated Carbon
2.2.2. Characterisation of Activated Carbon
2.2.3. Tetracycline Adsorption Experiments
2.2.4. Adsorption Isotherms and Kinetic Models
- (a)
- Adsorption Kinetic Model
- (b)
- Adsorption Isotherm Model
3. Results and Discussion
3.1. Characterization Analysis of PAC
3.1.1. Specific Surface Area and Pore Size Distribution of PAC
3.1.2. SEM of PAC
3.1.3. FTIR of PAC
3.2. Analysis of Tetracycline Adsorption on Activated Carbon
3.2.1. Effect of Adsorption Time
3.2.2. Effect of Adsorption Temperature
3.2.3. Effect of PAC Dose
3.2.4. Adsorption Kinetics
3.2.5. Adsorption Isotherms
3.3. Sorption Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, B.; Huang, D.; Zheng, Q.; Yan, C.; Feng, J.; Gao, H.; Fu, H.; Liao, Y. Enhanced adsorption capacity of tetracycline on porous graphitic biochar with an ultra-large surface area. RSC Adv. 2023, 13, 10397–10407. [Google Scholar] [CrossRef] [PubMed]
- Adeleye, A.S.; Xue, J.; Zhao, Y.; Taylor, A.A.; Zenobio, J.E.; Sun, Y.; Han, Z.; Salawu, O.A.; Zhu, Y. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. J. Hazard. Mater. 2022, 424, 127284. [Google Scholar] [CrossRef]
- Hu, P.; Shao, J.; Qian, G.; Adeleye, A.S.; Hao, T. Removal of tetracycline by aerobic granular sludge from marine aquaculture wastewater: A molecular dynamics investigation. Bioresour. Technol. 2022, 355, 127286. [Google Scholar] [CrossRef]
- Shao, S.; Wu, X. Microbial degradation of tetracycline in the aquatic environment: A review. Crit. Rev. Biotechnol. 2020, 40, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Leichtweis, J.; Vieira, Y.; Welter, N.; Silvestri, S.; Dotto, G.L.; Carissimi, E. A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic. Process Saf. Environ. Prot. 2022, 160, 25–40. [Google Scholar] [CrossRef]
- Roy, M.; Saha, R. Dyes and their removal technologies from wastewater: A critical review. In Intelligent Environmental Data Monitoring for Pollution Management; Academic Press: Cambridge, MA, USA, 2021; pp. 127–160. [Google Scholar]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Bai, Y.; Si, W.; Mao, W.; Gao, Y.; Liu, S. Heterogeneous photo-Fenton system of novel ternary Bi2WO6/BiFeO3/g-C3N4 heterojunctions for highly efficient degrading persistent organic pollutants in wastewater. J. Photochem. Photobiol. A Chem. 2021, 404, 112856. [Google Scholar] [CrossRef]
- Amangelsin, Y.; Semenova, Y.; Dadar, M.; Aljofan, M.; Bjørklund, G. The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics 2023, 12, 440. [Google Scholar] [CrossRef]
- Choi, K.-J.; Kim, S.-G.; Kim, S.-H. Removal of antibiotics by coagulation and granular activated carbon filtration. J. Hazard. Mater. 2008, 151, 38–43. [Google Scholar] [CrossRef]
- Forghani, M.; Azizi, A.; Livani, M.J.; Kafshgari, L.A. Adsorption of lead (II) and chromium (VI) from aqueous environment onto metal-organic framework MIL-100 (Fe): Synthesis, kinetics, equilibrium and thermodynamics. J. Solid State Chem. 2020, 291, 121636. [Google Scholar] [CrossRef]
- Xi, M.; He, C.; Yang, H.; Fu, X.; Fu, L.; Cheng, X.; Guo, J. Predicted a honeycomb metallic BiC and a direct semiconducting Bi2C monolayer as excellent CO2 adsorbents. Chin. Chem. Lett. 2022, 33, 2595–2599. [Google Scholar] [CrossRef]
- Beni, F.A.; Gholami, A.; Ayati, A.; Shahrak, M.N.; Sillanpää, M. UV-switchable phosphotungstic acid sandwiched between ZIF-8 and Au nanoparticles to improve simultaneous adsorption and UV light photocatalysis toward tetracycline degradation. Microporous Mesoporous Mater. 2020, 303, 110275. [Google Scholar] [CrossRef]
- Ahmed, M.J. Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons. J. Environ. Manag. 2017, 190, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Ayati, A.; Tanhaei, B.; Beiki, H.; Krivoshapkin, P.; Krivoshapkina, E.; Tracey, C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. Chemosphere 2023, 323, 138241. [Google Scholar] [CrossRef]
- Xiang, Y.; Xu, Z.; Wei, Y.; Zhou, Y.; Yang, X.; Yang, Y.; Yang, J.; Zhang, J.; Luo, L.; Zhou, Z. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. J. Environ. Manag. 2019, 237, 128–138. [Google Scholar] [CrossRef]
- Jia, F.; Zhao, D.; Shu, M.; Sun, F.; Wang, D.; Chen, C.; Deng, Y.; Zhu, X. Co-doped Fe-MIL-100 as an adsorbent for tetracycline removal from aqueous solution. Environ. Sci. Pollut. Res. 2022, 29, 55026–55038. [Google Scholar] [CrossRef]
- Ranjbari, S.; Tanhaei, B.; Ayati, A.; Khadempir, S.; Sillanpää, M. Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: Mechanism, kinetic, isotherms and thermodynamic study. Int. J. Biol. Macromol. 2020, 155, 421–429. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, L.; Qi, C.; Zhang, M. Highly effective removal of tetracycline from water by hierarchical porous carbon: Batch and column adsorption. Ind. Eng. Chem. Res. 2019, 58, 20036–20046. [Google Scholar] [CrossRef]
- Wang, H.; Fang, C.; Wang, Q.; Chu, Y.; Song, Y.; Chen, Y.; Xue, X. Sorption of tetracycline on biochar derived from rice straw and swine manure. RSC Adv. 2018, 8, 16260–16268. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, X.; Luo, J.; Li, Y.; Guo, T.; Gao, B. Performance of lignin impregnated biochar on tetracycline hydrochloride adsorption: Governing factors and mechanisms. Environ. Res. 2022, 215, 114339. [Google Scholar] [CrossRef]
- Mahawong, S.; Dechtrirat, D.; Watcharin, W.; Wattanasin, P.; Muensit, N.; Chuenchom, L. Mesoporous magnetic carbon adsorbents prepared from sugarcane bagasse and Fe2+ and Fe3+ via simultaneous magnetization and activation for tetracycline adsorption. Sci. Adv. Mater. 2020, 12, 161–172. [Google Scholar] [CrossRef]
- Yang, Q.; Tang, W.; Li, L.; Huang, M.; Ma, C.; He, Y.-C. Enhancing enzymatic hydrolysis of waste sunflower straw by clean hydrothermal pretreatment. Bioresour. Technol. 2023, 383, 129236. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem.–A Eur. J. 2009, 15, 4195–4203. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, M.; Broniek, E.; Fierro, V.; Celzard, A. An evaluation of the impact of the amount of potassium hydroxide on the porous structure development of activated carbons. Materials 2021, 14, 2045. [Google Scholar] [CrossRef]
- Ninh, P.T.T.; Dat, N.D.; Nguyen, M.L.; Dong, N.T.; Chao, H.-P.; Tran, H.N. Two-stage preparation of highly mesoporous carbon for super-adsorption of paracetamol and tetracycline in water: Important contribution of pore filling and π-π interaction. Environ. Res. 2023, 218, 114927. [Google Scholar] [CrossRef]
- Tran, H.N.; Tomul, F.; Ha, N.T.H.; Nguyen, D.T.; Lima, E.C.; Le, G.T.; Chang, C.-T.; Masindi, V.; Woo, S.H. Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. J. Hazard. Mater. 2020, 394, 122255. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Liu, Y.; Liu, S.; Zeng, G.; Tan, X.; Huang, B.; Tang, X.; Wang, S.; Hua, Q.; Yan, Z. Competitive adsorption of Pb (II), Cd (II) and Cu (II) onto chitosan-pyromellitic dianhydride modified biochar. J. Colloid Interface Sci. 2017, 506, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, M.; Broniek, E. Computer Analysis of the Porous Structure of Activated Carbons Derived from Various Biomass Materials by Chemical Activation. Materials 2021, 14, 4121. [Google Scholar] [CrossRef]
- Chen, T.; Luo, L.; Deng, S.; Shi, G.; Zhang, S.; Zhang, Y.; Deng, O.; Wang, L.; Zhang, J.; Wei, L. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresour. Technol. 2018, 267, 431–437. [Google Scholar] [CrossRef]
- Archana, K.; Pillai, N.G.; Rhee, K.Y.; Asif, A. Super paramagnetic ZIF-67 metal organic framework nanocomposite. Compos. Part B Eng. 2019, 158, 384–389. [Google Scholar] [CrossRef]
- Cao, M.; Liu, X.; Wang, W.; Gao, M.; Li, Y.; Yang, H. Functionalized Zn/Al N-doped carbon nanocomposites with tunable morphology: Synergistic ultrafast low-temperature synthesis and tetracycline adsorption. Sep. Purif. Technol. 2021, 278, 119548. [Google Scholar] [CrossRef]
- Zhu, X.; Li, C.; Li, J.; Xie, B.; Lü, J.; Li, Y. Thermal treatment of biochar in the air/nitrogen atmosphere for developed mesoporosity and enhanced adsorption to tetracycline. Bioresour. Technol. 2018, 263, 475–482. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, X.; Sun, K.; He, F.; Zhao, Y.; Lin, C. Competitive Sorption of Metsulfuron-Methyl and Tetracycline on Corn Straw Biochars. J. Environ. Qual. 2012, 41, 1906–1915. [Google Scholar] [CrossRef]
- Lian, F.; Song, Z.; Liu, Z.; Zhu, L.; Xing, B. Mechanistic understanding of tetracycline sorption on waste tire powder and its chars as affected by Cu2+ and pH. Environ. Pollut. 2013, 178, 264–270. [Google Scholar] [CrossRef]
- Özcan, Ö.; İnci, İ.; Aşçı, Y.S.; Bayazit, Ş.S. Oxalic acid removal from wastewater using multi-walled carbon nanotubes: Kinetic and equilibrium analysis. J. Dispers. Sci. Technol. 2017, 38, 65–69. [Google Scholar] [CrossRef]
- Costa, L.R.d.C.; Féris, L.A. Use of functinalized adsorbents for tetracycline removal in wastewater: Adsorption mechanism and comparison with activated carbon. J. Environ. Sci. Health Part A 2020, 55, 1604–1614. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhou, Y.; Wang, J.; Lu, J.; Zhou, Y. Polydopamine modified cyclodextrin polymer as efficient adsorbent for removing cationic dyes and Cu2+. J. Hazard. Mater. 2020, 389, 121897. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wu, S.; Wu, Y.; Yang, W.; Li, Y.; He, J.; Hong, P.; Nie, M.; Xie, C.; Wu, Z. High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: Dynamics, thermodynamics, and mechanisms. Appl. Surf. Sci. 2020, 518, 146226. [Google Scholar] [CrossRef]
- Peiris, C.; Gunatilake, S.R.; Mlsna, T.E.; Mohan, D.; Vithanage, M. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. Bioresour. Technol. 2017, 246, 150–159. [Google Scholar] [CrossRef]
- Valizadeh, K.; Bateni, A.; Sojoodi, N.; Rafiei, R.; Behroozi, A.H.; Maleki, A. Preparation and characterization of chitosan-curdlan composite magnetized by zinc ferrite for efficient adsorption of tetracycline antibiotics in water. Int. J. Biol. Macromol. 2023, 235, 123826. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Nguyen, T.-B.; Chen, C.-W.; Hung, C.-M.; Huang, C.; Dong, C.-D. Cobalt-impregnated biochar (Co-SCG) for heterogeneous activation of peroxymonosulfate for removal of tetracycline in water. Bioresour. Technol. 2019, 292, 121954. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Ma, Y.; Yang, Y.; Zhu, X. Effect of iron impregnation ratio on the properties and adsorption of KOH activated biochar for removal of tetracycline and heavy metals. Bioresour. Technol. 2023, 380, 129081. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yuan, C.; Zafar, F.F.; Wei, M.; Marrakchi, F.; Cao, B.; Fu, Y. Facile synthesis of chlorella-derived autogenous N-doped porous biochar for adsorption on tetracycline. Environ. Pollut. 2023, 330, 121717. [Google Scholar] [CrossRef]
- Tang, J.; Ma, Y.; Deng, Z.; Li, P.; Qi, X.; Zhang, Z. One-pot preparation of layered double oxides-engineered biochar for the sustained removal of tetracycline in water. Bioresour. Technol. 2023, 381, 129119. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Hu, C.; Zuo, C.; Wang, P.; Chen, W.; Ao, T. Efficient removal of tetracycline by a hierarchically porous ZIF-8 metal organic framework. Environ. Res. 2021, 198, 111254. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Cao, L.; Huang, X.; Li, Y. Preparation of Reusable Porous Carbon Nanofibers from Oxidized Coal Liquefaction Residue for Efficient Adsorption in Water Treatment. Materials 2023, 16, 3614. [Google Scholar] [CrossRef]
- Perreault, F.; De Faria, A.F.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015, 44, 5861–5896. [Google Scholar] [CrossRef]
- Yi, L.; Zuo, L.; Wei, C.; Fu, H.; Qu, X.; Zheng, S.; Xu, Z.; Guo, Y.; Li, H.; Zhu, D. Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-π and π-π electron-donor-acceptor (EDA) interactions. Sci. Total Environ. 2020, 719, 137389. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.M.; Yoo, S.; Choi, Y.-K.; Park, S.; Kan, E. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresour. Technol. 2018, 259, 24–31. [Google Scholar] [CrossRef]
- Fan, Z.; Fang, J.; Zhang, G.; Qin, L.; Fang, Z.; Jin, L. Improved Adsorption of Tetracycline in Water by a Modified Caulis spatholobi Residue Biochar. ACS Omega 2022, 7, 30543–30553. [Google Scholar] [CrossRef]
Kinetic Models | Equations | Simplified Equations |
---|---|---|
PFO | ||
PSO | ||
W-M | ||
Boyd |
Isotherm Models | Equations | Simplified Equations |
---|---|---|
Langmuir | , | |
Freundlich | ||
Temkin | ||
R-P |
Samples | Specific Surface Area (m2·g−1) | Total Hole Volume (cm3·g−1) | Average Pore Size (nm) | DFT Hole Volume (cm3·g−1) | HK Microporous Volume (cm3·g−1) |
---|---|---|---|---|---|
K6-PAC | 1744.659 | 1.080 | 1.167 | 0.998 | 0.769 |
F6-PAC | 1668.427 | 1.006 | 1.165 | 0.921 | 0.741 |
PAC | K6-PAC | F6-PAC | |
---|---|---|---|
Kinetic Models | |||
PFO | |||
0.00275 | 0.00284 | ||
2152.962 | 2334.166 | ||
0.59022 | 0.56839 | ||
PSO | |||
0.0000053 | 0.0000056 | ||
833.333 | 815.4516 | ||
0.99312 | 0.98961 | ||
W-M | |||
4.64527 | 4.08544 | ||
c | 472.91256 | 481.69209 | |
0.98646 | 0.96885 | ||
Boyd | |||
1.82567 × 10−4 | 1.55997 × 10−4 | ||
0.99245 | 0.96118 |
PAC | K6-PAC | F6-PAC | |
---|---|---|---|
Isotherm Models | |||
Langmuir | |||
833.3333 | 815.4516 | ||
0.92088 | 2.36153 | ||
0.97599 | 0.91892 | ||
Freundlich | |||
429.00876 | 460.55071 | ||
n | 3.43607 | 5.07460 | |
0.86336 | 0.79174 | ||
Temkin | |||
0.86826 | 0.79027 | ||
12.32002 | 67.58946 | ||
0.96682 | 0.91452 | ||
R-P | |||
A | 758.68979 | 1730.56841 | |
B | 0.73178 | 2.13001 | |
g | 0.94905 | 0.91666 | |
0.98506 | 0.94846 |
Sorbents | Experimental Conditions | Maximum Adsorption Capacity (mg/g) | References |
---|---|---|---|
Zinc ferrite/chitosan-curdlan | Co-precipitation approach at 120 °C | 371.40 | [41] |
Cobalt-impregnated biochar | NaOH impregnation and pyrolysis at 700 °C | 370.37 | [42] |
Magnetic biochars | Pyrolysis accompanied by KOH activation | 405.01 | [43] |
Chlorella biochar | Two-step pyrolysis at 800 °C | 310.70 | [44] |
Mg-Al-LDOs-tailed biochar | One-pot co-precipitation at 600 °C | 250.60 | [45] |
Pinecone-based activated carbon | KOH impregnation and two-step pyrolysis at 700 °C | 840.62 | This article |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wu, L.; Wang, L.; Zhou, J.; Ma, H.; Chen, D. Hydrothermal Pretreatment of KOH for the Preparation of PAC and Its Adsorption on TC. Materials 2023, 16, 4966. https://doi.org/10.3390/ma16144966
Wang S, Wu L, Wang L, Zhou J, Ma H, Chen D. Hydrothermal Pretreatment of KOH for the Preparation of PAC and Its Adsorption on TC. Materials. 2023; 16(14):4966. https://doi.org/10.3390/ma16144966
Chicago/Turabian StyleWang, Shouqi, Linkai Wu, Liangcai Wang, Jianbin Zhou, Huanhuan Ma, and Dengyu Chen. 2023. "Hydrothermal Pretreatment of KOH for the Preparation of PAC and Its Adsorption on TC" Materials 16, no. 14: 4966. https://doi.org/10.3390/ma16144966
APA StyleWang, S., Wu, L., Wang, L., Zhou, J., Ma, H., & Chen, D. (2023). Hydrothermal Pretreatment of KOH for the Preparation of PAC and Its Adsorption on TC. Materials, 16(14), 4966. https://doi.org/10.3390/ma16144966