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Abstract: Due to its high carrier mobility and electron transmission, the phenyl-C61-butyric acid
methyl ester (PC61BM) is usually used as an electron transport layer (ETL) in perovskite solar cell
(PSC) configurations. However, PC61BM films suffer from poor coverage on perovskite active layers
because of their low solubility and weak adhesive ability. In this work, to overcome the above-
mentioned shortcomings, 30 nm thick PC61BM ETLs with different concentrations were modeled.
Using a 30 nm thick PC61BM ETL with a concentration of 50 mg/mL, the obtained performance
values of the PSCs were as follows: an open-circuit voltage (Voc) of 0.87 V, a short-circuit current
density (Jsc) of 20.44 mA/cm2, a fill factor (FF) of 70.52%, and a power conversion efficiency (PCE) of
12.54%. However, undesired fine cracks present on the PC61BM surface degraded the performance of
the resulting PSCs. To further improve performance, multiple different thicknesses of ZnO interface
layers were deposited on the PC61BM ETLs to release the fine cracks using a thermal evaporator. In
addition to the pavement of fine cracks, the ZnO interface layer could also function as a hole-blocking
layer due to its larger highest occupied molecular orbital (HOMO) energy level. Consequently, the
PCE was improved to 14.62% by inserting a 20 nm thick ZnO interface layer in the PSCs.

Keywords: perovskite solar cells; PC61BM electron transport layer; ZnO interface layer; time-resolved
photoluminescence spectroscopy

1. Introduction

In the modern era, fossil-energy-based environmental pollution caused by the pro-
cesses of industrial development and production has posed serious problems worldwide.
Therefore, research on clean, pollution-free, sustainable energy has drawn rapidly increas-
ing attention [1]. Among the possible alternative energies, solar energy is undoubtedly
the most valued energy source, and it might completely replace fossil energy in order
to mitigate environmental pollution in the future [2]. There are several kinds of solar
cells, such as organic solar cells [3,4], inorganic solar cells [5,6], perovskite solar cells
(PSCs) [7–12], and so on. Nevertheless, in view of their advantages in terms of inexpen-
siveness, good flexibility, high carrier mobility, long carrier diffusion length, and high
performance, organic–inorganic halide perovskite solar cells have become the most promis-
ing and attractive candidates for alternative energy sources [13,14].Over the past few years,
the power conversion efficiency (PCE) of perovskite solar cells has increased from 3.8% to
25.5%, which is very close to the current PCE of crystalline silicon (c-Si) solar cells [15].

Recently, due to their advantages such as high carrier mobility and outstanding charge
transport properties [16,17], phenyl-C61-butyric acid methyl ester (PC61BM) films have
been widely used as electron transport layers (ETLs) in p-i-n perovskite solar cells. The
incorporation of an appropriate ETL material will not only improve electron transportation
between the cathode and the perovskite active layer but also suppress the carrier recombi-
nation in solar cells [18]. Moreover, because PC61BM films can be easily deposited using the
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spin-coating technique and a low annealing temperature, their associated manufacturing
cost is significantly lower than that of comparable materials [19]. Therefore, traditional
titanium dioxide (TiO2) ETLs have been gradually replaced by PC61BM ETL because the
manufacture of TiO2 ETLs requires high temperatures for sintering [20,21]. However, due
its low solubility and weak adhesive ability, PC61BM not only covers the perovskite active
layer incompletely but also renders the resulting film easily prone to generating undesired
fine surface cracks when it is coated on the perovskite active layer [22]. Several methods
have been used to overcome the shortcomings of using PC61BM films as coatings [23,24].
Among these methods, the method consisting of the sandwiching of the zinc oxide (ZnO)
interface layer not only filled the fine cracks on the surface of the PC61BM ETL but also
ensured that the energy levels between the PC61BM ETL and silver (Ag) cathode were
closely matched, thus reducing energy loss during carrier transportation. Moreover, the
ZnO interface layer functioned as a hole-blocking layer owing to its larger highest occu-
pied molecular orbital (HOMO) energy level [25–27]. In this work, to determine a suitable
PC61BM ETL for use in perovskite solar cells, PC61BM solutions with various concentrations
were mixed and investigated. Furthermore, ZnO interface layers of various thicknesses
were deposited on the PC61BM ETL to study the features of the passivated fine cracks
on the surface of the PC61BM ETL. As a result, perovskite solar cells were fabricated to
investigate their related performance and compared.

2. Materials and Methods
2.1. Materials

In this work, indium-tin-oxide (ITO)-coated glass substrate, poly(3,4-ethylenedioxythio
phene):poly(styrenesulfonate) (PEDOT:PSS) conductive solution (1.3–1.7 wt%), Methylam-
monium iodide (CH3NH3I, MAI, Uni-onward Corp., New Taipei City, Taiwan) powder
(98%), and PC61BM powder (99.5%) were purchased from Uni-onward Corp., New Taipei
City, Taiwan. Vanadium target was purchased from Admat Inc., Norristown, PA, USA.
Lead iodide (PbI2) powder (99%) and ZnO powder (99%) were purchased from Alfa Aesar,
Haverhill, MA, USA. Isobutyl alcohol (IBA) solvent (99%), dimethylsulfox (DMSO) solvent
(99.9%), γ-butyrolactone (GBL) solvent (99%), and chlorobenzene (CB) solvent (99.8%) were
purchased from Sigma-Aldrich, St. Louis, MI, USA.

2.2. Manufacture

Three-dimensional schematic configurations and a corresponding energy level dia-
gram of the perovskite solar cell with PC61BM ETL and ZnO interface layer are shown
in Figure 1a,b, respectively. At first, the 260 nm thick ITO-coated glass substrates were
soaked in acetone, methanol, and deionized water and then cleaned using an ultrasonic
cleaner for 5 min. Using a vanadium target, a 20 nm thick vanadium oxide (VOx) film
was deposited on the ITO anode electrode as an interface modification layer (IML) along
with an electron-blocking layer using a radio frequency magnetron-sputtering system. The
VOx IML enabled a greater degree of energy level matching between the work function
of the ITO anode electrode and the highest occupied molecular orbital (HOMO) of the
PEDOT:PSS hole transport layer (HTL) [28]. Next, a 50 nm thick IBA doped PEDOT:PSS
(PEDOT:PSS:IBA, 1 mL:0.1 mL) HTL was spin-coated on the VOx IML and annealed in
a N2 ambient atmosphere at 120 ◦C for 15 min. MAI (0.395 g) and PbI2 (1.157 g) were
mixed into DMSO solvent (1 mL) and GBL solvent (1 mL) to form a methylammonium
lead iodide (CH3NH3PbI3, MAPbI3) perovskite solution. The perovskite solution was
then spun on the PEDOT:PSS:IBA HTL via spin coating and annealed in a N2 ambient
atmosphere at 90 ◦C for 20 min to form a 300 nm thick MAPbI3 active layer. Subsequently,
to obtain various-concentration-developed PC61BM ETLs, the PC61BM material solutions
were prepared by mixing CB (1 mL) with PC61BM (30, 50, and 70 mg), respectively. The
various prepared PC61BM solutions were then spun on the MAPbI3 active layers and
annealed in a N2 ambient atmosphere at 90 ◦C for 5 min to form a 30 nm thick PC61BM ETL.
Finally, ZnO interface layers of various thicknesses (10, 20, and 30 nm) and a 100 nm thick



Materials 2023, 16, 5061 3 of 13

Ag cathode electrode were sequentially evaporated on the PC61BM ETL using a thermal
evaporator. In this study, the thicknesses of the individual layers of the resulting PSCs were
confirmed using Alpha-Step (Alpha-Step D-300, KLA, Milpitas, CA, USA). Figure 1c shows
the field emission scanning electron microscopy (FE-SEM, AURIGA, ZEISS, Oberkochen,
Germany) cross-section images of the PSCs with a 20 nm thick ZnO interface layer. The
measurement results of the thicknesses of the individual layers in the PSCs from the SEM
cross-section images corresponded to the measurement results obtained using alpha step.
Accordingly, the accuracy of the thicknesses of the resulting PSCs could be verified using
the two different kinds of analysis mentioned above.
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Figure 1. (a) Three-dimensional schematic configuration, (b) energy level diagram of perovskite solar
cells with PC61BM electron transport layer and ZnO interface layer, and (c) SEM cross-section image
of PSCs with 20 nm thick ZnO interface layer.

In this study, each parameter with various PC61BM concentrations and various ZnO
thicknesses of the PSCs had been manufactured for over five rounds. Six pieces of the
PSC samples were constructed each round, and six independent devices were resided on
each piece of the PSC samples. In total, there were over 180 devices for each fabrication
condition for the PSCs. Moreover, every PSC was measured to confirm the fabrication
parameters. Furthermore, the yield rate of our fabrication was around 95%; thus, most of
the PSCs we produced under the same parameters had similar performance. The statistical
data also illustrated the good reproducibility of our fabrication parameters.
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The optical transmission of the various-concentration-formed PC61BM ETLs was
measured using a UV–Visible–NIR spectrophotometer (U-4100, HITACHI, Tokyo, Japan).
The surface morphologies of the PC61BM and ZnO films were observed using FE-SEM.
The current density–voltage (J-V) characteristics of the various perovskite solar cells were
measured using a Keithley 2400 (Keithley Instruments, Cleveland, OH, USA) under an
AM1.5G solar simulator (100 mW/cm2) (Forter Technology Corp., Taichung, Taiwan).
The external quantum efficiency (EQE) spectra of the various perovskite solar cells were
measured using an Xe lamp source with 150 W of power and a monochromator (QE-3000,
Zolix, Beijing, China).

3. Results

Figure 2 provides the SEM images of the MAPbI3 films and the various-concentration-
formed PC61BM ETLs/MAPbI3 active layers. As shown in Figure 2a, the MAPbI3 active
layer spun on the PEDOT:PSS:IBA HTL exhibited a uniform surface. According to the
SEM image shown in Figure 2b, since only some PC61BM material regions were observed,
it could be deduced that the PC61BM ETL with a concentration of 30 mg/mL did not
fully cover the MAPbI3 active layer owing to its poor adhesion. All the area that circled
by red line in Figure 2b represents the covered area of PC61BM material as the PC61BM
concentration of 30 mg/mL. In Figure 2c, when the concentration of the PC61BM material
increased to 50 mg/mL, the PC61BM ETL uniformly and completely covered the MAPbI3
active layer. However, upon further increasing the concentration of the PC61BM material to
70 mg/mL, many cracks and pinholes were observed, as shown in Figure 2d. In general,
due to the strong Van der Waals forces between the molecules of the PC61BM fullerene
derivative, the distance between the PC61BM molecules decreased with an increase in the
PC61BM concentration [29]. Therefore, the probability of the aggregation of the PC61BM
molecules was further enhanced [30]. Consequently, cracks and pinholes were easily
generated and clearly observable on the surface of the PC61BM ETL with a concentration
of 70 mg/mL. According to the SEM images shown in Figure 2, the surface morphology
of the PC61BM ETL was seriously affected by its own concentration. Due to the uniform
coverage over the MAPbI3 active layer and the lack of cracks and pinholes, it was deduced
that 50 mg/mL was the optimal concentration of the PC61BM ETL.
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Figure 2. SEM images of (a) MAPbI3 films and PC61BM/MAPbI3 films with various PC61BM
concentrations of (b) 30, (c) 50, and (d) 70 mg/mL.
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Photoluminescence (PL) spectroscopy using a He-Cd laser source with a wavelength
of 325 nm (Kimmon Koha Corp., Tokyo, Japan) and time-resolved photoluminescence
(TRPL) spectroscopy using a laser diode source with a wavelength of 375 nm (LDH-P-C
375, PicoQuant, Berlin, Germany) were used to explore the carrier recombination and
the separation in the boundary between the MAPbI3 active layer and the PC61BM ETL.
Figure 3a shows the PL spectra of the MAPbI3 active layer and the various-concentration-
formed PC61BM ETLs/MAPbI3 active layers. As shown in Figure 3a, the MAPbI3 active
layer presented the strongest PL peak intensity at the wavelength of 770 nm. On the
other hand, the PL peak intensity of the resulting PC61BM ETLs/MAPbI3 active layers
significantly dropped. This phenomenon was attributed to the fact that the electron–hole
pairs excited using the He-Cd laser were generated in the MAPbI3 active layer and that the
optically generated electrons could quickly transmit to the PC61BM ETL. Consequently, the
recombination probability of electrons and holes in the MAPbI3 active layer was reduced,
which caused the peak PL intensity of the MAPbI3 active layer to decrease. To confirm that
the PL spectra at the wavelength of 770 nm emitted by the MAPbI3 active layer had not been
absorbed by the PC61BM ETL, the transmittance values of various-concentration-formed
PC61BM ETLs were measured; they are shown in the inset figure in Figure 3a. It was highly
evident that all the PC61BM ETLs with various concentrations experienced highly smooth
changes in transmittance from the wavelength of 300 nm to 1000 nm. The transmittance at
the wavelength of 770 nm did not exhibit a significant change. This phenomenon indicated
that the reduction in the peak PL intensity at the wavelength of 770 nm in the PC61BM
ETL/MAPbI3 active layer was not caused by the absorption of the PC61BM ETL.
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Figure 3. (a) PL spectra and (b) TRPL spectra of MAPbI3 active layer and various-concentration-
formed PC61BM ETLs/MAPbI3 active layers. The inset figure in Figure 3a shows transmission spectra
of various-concentration-formed PC61BM ETLs.

Figure 3b shows the TRPL spectra of the MAPbI3 active layer and the various-
concentration-formed PC61BM ETLs/MAPbI3 active layers. The TRPL spectra were fitted
using the following exponential equation (Formula (1)) [31]:

I = A × exp
(
− t

τ

)
(1)

where I denotes light intensity, A is the maximum light intensity, t is time, and τ denotes
carrier lifetime. The carrier lifetime is the interval time when the light intensity decreases
to 1/e of the maximum light intensity. The carrier lifetimes of the PC61BM ETL/MAPbI3
active layer with PC61BM concentrations of 30, 50, and 70 mg/mL were 2.00 ns, 1.51 ns, and
1.55 ns, respectively. The carrier lifetime of the MAPbI3 active layer was 2.41 ns, which was
longer than the carrier lifetimes of all the PC61BM ETLs/MAPbI3 active layer structures.
This result demonstrated that the PC61BM ETL could effectively transfer the electrons
from the MAPbI3 active layer [32–34]. The shortest carrier lifetime of the various PC61BM
ETLs/MAPbI3 active layers was yielded when a PC61BM concentration of 50 mg/mL was
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used, which was also quite well fixed the above-mentioned measurement results of the PL
spectra and SEM images.

Figure 4a,b illustrate the current density–voltage (J-V) and dark current density–
voltage performances of the PSCs using the various-concentration-formed PC61BM ETLs
without ZnO interface layer covered. The open-circuit voltage (Voc), short-circuit current
density (Jsc), fill factor (FF), and power conversion efficiency (PCE) of the resulting PSCs
are listed in Table 1. It was found that the best characteristics of the PSCs, including a Voc
of 0.87 V, a Jsc of 20.44 mA/cm2, an FF of 70.52%, and a PCE of 12.54%, were obtained
when using the PC61BM ETL with a concentration of 50 mg/mL. Since the best coverage
on the MAPbI3 surface was achieved using the PC61BM ETL with a concentration of 50
mg/mL, the carrier recombination probability was reduced, which resulted in the lowest
dark current density. As shown in Figure 2b, since the PC61BM ETL with the concentration
of 30 mg/mL exhibited poor adhesion, it did not completely cover the MAPbI3 active
layer, which precluded the function of the PC61BM ETL and degraded the features of
the MAPbI3 active layer due to the direct contact between the Ag cathode electrode and
the MAPbI3 active layer [35]. Therefore, the carrier recombination rate was inevitably
increased, while the electrical conductivity was reduced. These results not only reduced the
Jsc and FF but also increased the dark current density. When the concentration of PC61BM
was increased from 50 mg/mL to 70 mg/mL, the number of cracks increased due to the
excessive aggregation of the PC61BM molecules, as shown in Figure 2d. The increased
number of cracks increased the possibility of carrier recombination and affected electron
transmission capacity. Consequently, compared to the PC61BM concentration of 50 mg/mL,
the performance of the PSCs with a PC61BM concentration of 70 mg/mL was inferior. The
external quantum efficiency (EQE) was an important characteristic parameter of the PSCs.
Figure 4c shows the EQE and the integrated Jsc as a function of wavelength (300–800 nm)
for the PSCs using the various-concentration-formed PC61BM ETLs. As shown in Figure 4c,
the PSCs using the PC61BM ETL with a concentration of 50 mg/mL achieved the highest
EQE. The trend of the EQE results also presented a significant improvement on the above-
mentioned Jsc measurement trend of the PSCs using the various-concentration-formed
PC61BM ETLs. This was due to the fact that the best adhesion and coverage of the PC61BM
ETL (50 mg/mL) was achieved on the MAPbI3 active layer, which decreased the number
of cracks and pinholes on the PC61BM surface and led to a reduced carrier recombination
possibility and an increase in EQE. Moreover, according to the EQE results, the integrated
Jsc values of the PSCs using the PC61BM ETLs with concentrations of 30, 50, and 70 mg/mL
were 18.22, 19.89, and 19.00 mA/cm2, respectively. The values and trends of the integrated
Jsc were all similar to the Jsc obtained from the J-V curve, thus verifying the Jsc from our
perovskite solar cells and that the optimal concentration of the PC61BM ETL was 50 mg/mL.

Based on the above-mentioned experimental results, the best PSC performance was
obtained using the PC61BM ETL with a concentration of 50 mg/mL. However, the PC61BM
films still suffered from the shortcomings of low solubility and poor adhesion. To further
observe the surface morphology of the PC61BM ETL/MAPbI3 active layer structure formed
using 50 mg/mL, the SEM image shown in Figure 2c was extended, with the result shown
in Figure 5a. It is worth noting that there were some fine cracks on the PC61BM surface. To
overcome this problem and further improve the resulting PSCs, in this work, ZnO interface
layers of various thicknesses were deposited on the PC61BM ETLs with a concentration
of 50 mg/mL using a thermal evaporator. The morphologies of the 10, 20, and 30 nm
thick ZnO interface layers/PC61BM ETL/MAPbI3 active layer structures were observed
using SEM, with the resulting images shown in Figure 5b–d, respectively. As seen in the
SEM image shown in Figure 5b, although the passivation function of the 10 nm thick ZnO
interface layer was achieved, there were still a few areas that were not covered by the 10 nm
thick ZnO interface layer. According to the images shown in Figure 5c,d, few fine cracks
could be observed on the surface when the thicknesses of the ZnO interface layer were 20
nm and 30 nm. Therefore, as the thickness of the ZnO interface layer surpassed 20 nm, the
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fine cracks on the PC61BM ETL vanished completely, which was expected to enhance the
carrier transportation ability and improve the performance of the resulting PSCs.

Figure 6a,b show the PL spectra and the TRPL spectra of the MAPbI3 active layer itself,
the PC61BM ETL/MAPbI3 active layer formed using 50 mg/mL, and the 20 nm thick ZnO
interface layer/PC61BM ETL/MAPbI3 active layer structures formed using 50 mg/mL,
respectively. Among the PL spectra, the spectrum corresponding to the 20 nm thick ZnO
interface layer exhibited the lowest PL intensity. This result was attributed to the following
phenomena: the fine cracks on the PC61BM surface were passivated by the ZnO interface
layer, and the electrons could be quickly transmitted from the MAPbI3 active layer and
passed through the PC61BM ETL to the ZnO interface layer, which could reduce the carrier
recombination possibility and thus lower the PL emission intensity [36,37]. Figure 6b shows
that the carrier lifetime of the ZnO/PC61BM/MAPbI3 structure was 1.15 ns, which was
much shorter than that of 2.41 ns for the MAPbI3 active layer alone and 1.51 ns for the
PC61BM/MAPbI3 structure. Based on the TRPL results, the carrier lifetimes of the different
structures demonstrate the benefits offered by the ZnO interface layer. They also show
that the ZnO interface layer can prevent carrier recombination and shorten the carrier
transmission time. Based on the results regarding the SEM images, PL spectra, and TRPL
spectra, it was certified that the performance and structures of the PSCs could benefit from
the use of an ZnO interface layer.
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Figure 4. (a) Current density–voltage, (b) dark current density–voltage, and (c) external quantum
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Table 1. Characteristics of PSCs with PC61BM ETL formed using various PC61BM concentrations.

PC61BM
Concentra-

tion
(mg/mL)

Voc
(V)

Jsc
(mA/cm2)

FF
(%)

PCE
(%)

Integrated
Jsc

(mA/cm2)

30 0.85 18.79 67.81 10.83 18.22
50 0.87 20.44 70.52 12.54 19.89
70 0.86 19.28 69.48 11.52 19.00
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Figure 6. (a) PL spectra and (b) TRPL spectra of MAPbI3, PC61BM/MAPbI3, and 20 nm thick 
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Figure 6. (a) PL spectra and (b) TRPL spectra of MAPbI3, PC61BM/MAPbI3, and 20 nm thick
ZnO/PC61BM/MAPbI3 structures.

Figure 7a,b illustrate the current density–voltage and dark current density–voltage
performance of the PSCs with PC61BM ETL formed using 50 mg/mL and ZnO interface
layers of various thicknesses. The related performance values of the resulting PSCs are
listed in Table 2. It was found that the performances of the PSCs were improved by
inserting the ZnO interface layer. This was because the coverage of the ZnO interface
layer could effectively passivate the fine cracks on the PC61BM surface and prevent carrier
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recombination. Moreover, the ZnO interface layer increased the degree to which the
energy levels between the PC61BM ETL and the Ag cathode matched, thus improving the
performance of the resulting PSCs. As shown in Figure 5, improved passivation features
were exhibited when the 20 nm thick ZnO interface layer was used in comparison to the
layer with a thickness of 10 nm. Consequently, the best performance was obtained when
the 20 nm thick ZnO interface layer was used, yielding a PCE of 14.62%, a Voc of 0.88 V, a
Jsc of 22.57 mA/cm2, and an FF of 73.61%. However, as the thickness of the ZnO interface
layer was increased to 30 nm, the PCE of the perovskite solar cells decreased to 14.42%.
This was attributed to the fact that the series resistance (Rs) of the PSCs with the 30 nm thick
ZnO layer (as calculated from the J-V curve in Figure 7a) was increased from 6.02 Ω-cm2

to 6.30 Ω-cm2 in comparison to the PSCs with the 20 nm thick ZnO layer, which caused
the deteriorating of carrier transmission. Figure 7c shows the EQE and integrated Jsc as a
function of wavelength (300—800 nm) for the PSCs with the PC61BM ETL formed using 50
mg/mL and with ZnO interface layers of various thicknesses. The trend of EQE results
also constituted a significant improvement from the above-mentioned Jsc measurement
trend of the PSCs using the PC61BM ETL formed using 50 mg/mL and the ZnO interface
layers of various thicknesses. This was attributed to the fact that the coverage of the ZnO
interface layer and the series resistance affected the electron transport ability at the same
time, which made the Jsc and EQE of the PSCs with the 20 nm thick ZnO interface layer
larger than the one with the 10 nm thick and 30 nm thick ZnO interface layers. Moreover,
the integrated Jsc values of the PSCs using the ZnO interface layer with thicknesses of 0,
10, 20, and 30 nm were 19.89, 20.33, 21.26, and 20.75 mA/cm2, respectively. The values
and trends of the integrated Jsc of the PSCs using the ZnO interface layer with various
thicknesses were all similar to those of the Jsc obtained from the J-V curve. The calculation
results also proved that the optimal thickness of the ZnO interface layer was 20 nm. Thus,
adding a ZnO interface layer with a suitable thickness can improve the performance of
the resulting PSCs. The performance of the PSCs with a 20 nm thick ZnO interface layer
was superior to that of the PSCs without a ZnO interface layer, and the associated PCE
increased from 12.54% to 14.62%. The improved performance was attributed to the fact
that the optimized ZnO interface layer could effectively retouch the PC61BM ETL surface
to passivate the fine cracks and reduce the carrier recombination rate.

Finally, the reverse scan and forward scan of the J-V curve for the PSCs without and
with a 20 nm thick ZnO interface layer were measured and shown in Figure 8. The device
characteristics are listed in Table 3. According to the results, the Voc, Jsc, and FF of the
resulting PSCs were increased during the reverse scan. This was because the deficiencies
between the layers would trap the ionic charges and enhance or deteriorate the built-in
field (EB) during the reverse scan and forward scan, respectively, leading to the difference
in the device performance [38]. Furthermore, based on the forward scan and reverse scan of
the J-V curve for the solar cells, the hysteresis index (HI) of the device could be calculated,
which represented the interface quality of the device. The hysteresis index was calculated
using Formula (2), as follows:

Hysteresis index(HI) =
PCEreverse − PCEforward

PCEreverse
(2)

where PCEreverse is the power conversion efficiency of the PSCs during a reverse scan
(V ≥ Voc to V ≤ 0), and PCEforward is the PCE of the PSCs during a forward scan (V ≤ 0
to V ≥ Voc). In this work, along with the covering of the ZnO interface layer, the cracks
and pinholes on the PC61BM ETL were retouched, and the interface quality was improved,
thereby decreasing the hysteresis index. Compared with the PSCs without a ZnO interface
layer, the hysteresis index of the PSCs using the 20 nm thick ZnO interface layer decreased
from 7.52% to 4.88%. This result also verified the passivation function of the ZnO interface
layer [39].
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Figure 7. (a) Current density–voltage, (b) dark current density–voltage, and (c) external quantum 
efficiency and integrated Jsc characteristics of PSCs with various ZnO interface layer thicknesses. 
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Figure 7. (a) Current density–voltage, (b) dark current density–voltage, and (c) external quantum
efficiency and integrated Jsc characteristics of PSCs with various ZnO interface layer thicknesses.

Table 2. Characteristics of PSCs with various ZnO interface layer thicknesses.

ZnO
Thickness

(nm)

Voc
(V)

Jsc
(mA/cm2)

FF
(%)

PCE
(%)

Integrated
Jsc

(mA/cm2)

0 0.87 20.44 70.52 12.54 19.89
10 0.88 21.62 72.74 13.84 20.33
20 0.88 22.57 73.61 14.62 21.26
30 0.88 22.29 73.51 14.42 20.75

Materials 2023, 16, x FOR PEER REVIEW 11 of 14 
 

 

where PCEreverse is the power conversion efficiency of the PSCs during a reverse scan (V ≥ 
Voc to V ≤ 0), and PCEforward is the PCE of the PSCs during a forward scan (V ≤ 0 to V ≥ Voc). 
In this work, along with the covering of the ZnO interface layer, the cracks and pinholes 
on the PC61BM ETL were retouched, and the interface quality was improved, thereby de-
creasing the hysteresis index. Compared with the PSCs without a ZnO interface layer, the 
hysteresis index of the PSCs using the 20 nm thick ZnO interface layer decreased from 
7.52% to 4.88%. This result also verified the passivation function of the ZnO interface layer 
[39]. 

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

C
ur

re
nt

 d
en

sit
y 

(m
A

/c
m

2 )

Voltage (V)

Forward  Reverse
                w/o ZnO interface layer
               with ZnO interface layer

 
Figure 8. J-V curve during reverse scan and forward scan of PSCs without and with 20 nm thick 
ZnO interface layer. 

Table 3. Characteristics and hysteresis index of PSCs without and with 20 nm thick ZnO interface 
layer during reverse scan and forward scan. 

Structure 
(Scan Direction) 

Voc 
(V) 

Jsc 
(mA/cm2) 

FF 
(%) 

PCE 
(%) 

Hysteresis Index 
(%) 

Without ZnO (Forward) 0.87 20.44 70.52 12.54 
7.52 

Without ZnO (Reverse) 0.89 21.43 71.10 13.56 

With 20 nm ZnO (Forward) 0.88 22.57 73.61 14.62 
4.88 

With 20 nm ZnO (Reverse) 0.89 23.29 74.14 15.37 

4. Conclusions 
In summary, using various-concentration-formed PC61BM ETLs to cover the MAPbI3 

active layers in the PSCs, it was found that the best performance could be obtained using 
the PC61BM ETL with a concentration of 50 mg/mL. According to the SEM images, the 
PC61BM ETL with the concentration of 50 mg/mL could uniformly and completely cover 
the MAPbI3 active layer and did not present cracks and pinholes on the surface. The PL 
and TRPL results also demonstrated that the PC61BM ETL with the concentration of 50 
mg/mL had the best electron transportation ability and the lowest carrier recombination 
probability. However, the performance of the PSCs still suffered due to the appearance of 
some fine cracks on the PC61BM ETL surface. Therefore, to achieve further performance 
improvements of the PSCs by precluding the formation of fine cracks, the ZnO interface 
layer was deposited on the PC61BM ETL using a thermal evaporator. The additional ZnO 
interface layer not only effectively passivated the fine cracks on the surface but also im-
proved the degree to which the energy levels between the PC61BM ETL and the Ag cathode 

Figure 8. J-V curve during reverse scan and forward scan of PSCs without and with 20 nm thick ZnO
interface layer.



Materials 2023, 16, 5061 11 of 13

Table 3. Characteristics and hysteresis index of PSCs without and with 20 nm thick ZnO interface
layer during reverse scan and forward scan.

Structure
(Scan Direction)

Voc
(V)

Jsc
(mA/cm2)

FF
(%)

PCE
(%)

Hysteresis Index
(%)

Without ZnO
(Forward) 0.87 20.44 70.52 12.54

7.52
Without ZnO

(Reverse) 0.89 21.43 71.10 13.56

With 20 nm ZnO
(Forward) 0.88 22.57 73.61 14.62

4.88
With 20 nm ZnO

(Reverse) 0.89 23.29 74.14 15.37

4. Conclusions

In summary, using various-concentration-formed PC61BM ETLs to cover the MAPbI3
active layers in the PSCs, it was found that the best performance could be obtained using
the PC61BM ETL with a concentration of 50 mg/mL. According to the SEM images, the
PC61BM ETL with the concentration of 50 mg/mL could uniformly and completely cover
the MAPbI3 active layer and did not present cracks and pinholes on the surface. The
PL and TRPL results also demonstrated that the PC61BM ETL with the concentration of
50 mg/mL had the best electron transportation ability and the lowest carrier recombination
probability. However, the performance of the PSCs still suffered due to the appearance of
some fine cracks on the PC61BM ETL surface. Therefore, to achieve further performance
improvements of the PSCs by precluding the formation of fine cracks, the ZnO interface
layer was deposited on the PC61BM ETL using a thermal evaporator. The additional
ZnO interface layer not only effectively passivated the fine cracks on the surface but also
improved the degree to which the energy levels between the PC61BM ETL and the Ag
cathode matched, thus improving the performance of the PSCs. Consequently, the PSCs
with the 20 nm thick ZnO interface layer presented the best performance because they had
a superior passivation function compared with that of the PSCs with other ZnO interface
layer thicknesses. The power conversion efficiency of the resulting PSCs increased from
12.54% to 14.62%. Moreover, the hysteresis index of the PSCs with the 20 nm thick ZnO
interface layer decreased from 7.52% to 4.88% compared with that of the PSC without a
ZnO interface layer. This finding proved that the covering of ZnO interface layers could
indeed passivate the fine cracks on the PC61BM ETL and promote its carrier transportation
ability. According to the experimental results, optimizing the PC61BM ETL and the ZnO
interface layer can effectively improve the performance of PSCs.
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