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Abstract: Shot peening is a process wherein the surface of a material is impacted by small, spherical
metal shots at high velocity to create residual stresses. Nickel-based superalloy is a material with high
strength and hardness along with excellent corrosion and fatigue resistance, and it is therefore used
in nuclear power plants and aerospace applications. The application of shot peening to INCONEL, a
nickel-based superalloy, has been actively researched, and the measurement of residual stresses has
been studied as well. Previous studies have used methods such as perforation strain gauge analysis
and X-ray diffraction (XRD) to measure residual stress, which can be evaluated with high accuracy,
but doing so damages the specimen and involves critical risks to operator safety due to radiation.
On the other hand, ultrasonic testing (UT), which utilizes ultrasonic wave, has the advantage of
relatively low unit cost and short test time. One UT method, minimum reflection measurement,
uses Rayleigh waves to evaluate the properties of material surfaces. Therefore, the present study
utilized ultrasonic minimum reflectivity measurements to evaluate the residual stresses in INCONEL
specimens. Specifically, this study utilized ultrasonic minimum reflection measurements to evaluate
the residual stress in INCONEL 718 specimens. Moreover, an estimation equation was assumed
using exponential functions to estimate the residual stress with depth using the obtained data, and
an optimization problem was solved to determine it. Finally, to evaluate the estimated residual stress
graph, the residual stress of the specimen was measured and compared using the XRD method.

Keywords: residual stress; shot peening; minimum reflection; INCONEL 718; nondestructive evaluation

1. Introduction

Nuclear power plants are being installed worldwide as a solution to climate change
and energy depletion. Inconel, a major material for nuclear power plants and aerospace, is
a representative heat-resistant alloy that has excellent strength and hardness compared to
other alloys and maintains mechanical properties even at high temperatures. Due to the
properties of this material, it is frequently exposed to extreme environments, something
which causes material degradation and causes defects. Therefore, shot peening has been
implemented and studied for a long time to increase the properties of this material [1–4].

Shot peening is one of the peening processes wherein high velocity small, spherical
metal shots are used to impact the surface of a material with the end goal of plastic de-
formation. The deformation generated by this process creates residual stress layers on the
surface of the material, a phenomenon which greatly increases the fatigue life and resistance
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of metal parts, therefore improving overall durability and reliability [5]. Therefore, residual
stress evaluation for shot peened material directly related to safety is very important
and essential.

Residual stress is typically evaluated through destructive testing and nondestructive
testing, and a representative method of destructive testing is perforation strain gauge anal-
ysis [6]. Although this method can be used to evaluate residual stress with high accuracy, it
damages the specimen. Among methods that measure residual stress using nondestructive
testing, the most representative are X-ray diffraction (XRD), Eddy current testing (ECT),
and Ultrasonic testing (UT). With XRD, high-accuracy residual stress evaluation can be
achieved, but since radiation must be used, it has locational limitations as well as a high
inspection unit cost. In the case of ECT, mechanical property evaluation studies on the
surface area of materials are being actively conducted, but there is a need for additional
research into residual stress measurement [7,8].

Meanwhile, UT has the advantages of low unit price, short inspection time, and
enabling the evaluation of not only the surface but also the inside of a material. Among
them, Rayleigh waves are one of the ultrasonic wave types used in UT and are mainly
used when inspecting the surface of a specimen [9]. When Rayleigh waves propagate
along the surface of a specimen, various phenomena such as back-scattered beam, null
field, Schoch displacement, and leaky wave are observed on the surface [10,11]. Research
has been conducted to evaluate the surface area characteristics of Rayleigh waves with
these phenomena [12–15]. In addition, studies on the dispersion of Rayleigh waves, surface
treatment of specimens, and prediction of residual stress using Rayleigh waves have been
conducted [16,17], and the measurement of Rayleigh wave velocity has been studied
with contact transducers, non-contact sensors, and minimum reflection measurement
methods [17–21]. As such, many studies on residual stress evaluation using Rayleigh
waves have been conducted nondestructively, but research on residual stress estimation
using Rayleigh waves is insufficient and additional research is needed [17,22].

In this paper, in order to predict the residual stress distribution within the specimen
surface, Rayleigh wave velocity dispersion data for Inconel 718 specimens were obtained
through ultrasonic minimum reflection experiments, and a graph of residual stress distri-
bution in the depth direction of the specimen was estimated using these data. Moreover,
an expression consisting of an exponential function was assumed for the estimation, and
an optimization problem was defined and solved to determine this assumed expression.
Finally, the estimated residual stress distribution profile obtained was compared with the
residual stress distribution obtained by depth using X-ray diffraction of the specimen.

2. Theory
2.1. Characteristics of Residual Stress by Shot Peening

The shot peened material surface undergoes various changes, including structural
changes in the grain due to plastic deformation, geometric changes due to dimples caused
by small shots, and changes in the residual stress profile according to depth [1,22]. As a
result of these changes, compression residual stress is formed on the surface, and tensile
residual stress occurs under the compression residual stress to maintain equilibrium inside
the material. Figure 1 shows the residual stress profile according to the depth direction of
the specimen.

Compressive stresses appear at the surface (Z = 0) of the stressed media, maximum
compressive residual stress (σCOMP) occurs at a point slightly deeper than the surface, and
compressive residual stresses disappear with increasing depth due to equilibrium, and
tensile residual stresses occur.
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Figure 1. Characteristics of residual stress by shot peening according to depth (the schematization
was based on [23]).

2.2. Minimum Reflection Method and Measurement

Ultrasonic waves that propagate are obliquely generated by a transducer at the in-
terface between media 1 and media 2, where attenuation exists and causes reflection,
refraction, and mode conversion at the interface. Figure 2 shows a schematic diagram of
the waves that are incident obliquely on the interface of different media.
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Figure 2. Schematic diagram of a wave incident at an angle to the interface of different media.

A represents the refracted transverse wave, γ21 represents the angle, B represents the
refracted longitudinal wave, and γ11 represents the angle. C represents the longitudinal
wave transmitted through the specimen, γ12 represents the angle, D represents the trans-
verse wave transmitted through the specimen, γ22 represents the angle, E represents the
path of the incident wave through the same media (impedance difference = 0), and γ11
represents the angle. Some of the energy is reflected at the same angle as the incident angle,
and the other part of the energy is converted to a Rayleigh wave that propagates along the
surface; most of the energy is distributed within one wavelength depth from the surface.
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As shown in Figure 3, the reflection coefficient at the interface between media 1 and media
2 can be obtained using Equations (1) and (2) as follows [24]:

RP;P(ω) =
cos2 2γ22 +

(
C22
C12

)2
sin2γ12sin2γ22 +

ρ1c11sinγ12
ρ1c12sinγ11

cos2 2γ22 +
(

C22
C12

)2
sin2γ12sin2γ22 − ρ1c11sinγ12

ρ1c12sinγ11

(1)

cij =
vij

1− iαijvij
ω

(i = 1, 2 j = 1, 2) (2)

where vij is the ultrasonic velocity of the media i and j, and αij is the attenuation coefficient
of the media i and j. Based on Equations (1) and (2), Figure 3 below shows the reflection
coefficient when the attenuation of the specimen exists and the reflection coefficient when
the attenuation of the specimen does not exist.
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Figure 3. Reflection coefficient with and without attenuation at the water-steel interface [10].

Figure 3 is a graph comparing the reflection coefficient (solid line) of the specimen
with attenuation and the reflection coefficient of the specimen without attenuation. In the
case of a specimen with attenuation, it can be seen that the reflection coefficient decreases
rapidly at a specific angle, which is called the minimum reflection, and the angle at that
time is the Rayleigh angle (θR). Therefore, a Rayleigh angle at which a Rayleigh wave is
generated occurs in a material in which attenuation exists. The method used to measure
the minimum reflection is the pitch–catch setup consisting of a transducer and a receiver,
and this method measures the energy change in ultrasonic waves by changing the incident
angle. Figure 4 schematically depicts the measurement of the minimum reflection.
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2.3. Relationship between Minimum Reflection and Rayleigh Wave Velocity

Ultrasonic waves propagated obliquely at the interface between water and specimen
cause refraction due to the differences in impedance between the two media. The angle of
refraction of the longitudinal and shear wave in the test piece can be obtained by Snell’s
law as shown in the following Equation (3):

Ci
sin (θi)

=
CL

sin (θL)
=

CS
sin (θS)

(3)

where Ci is the velocity of the ultrasonic wave in water, CL is the longitudinal wave velocity
in the specimen, Cs is the shear wave in the specimen, θi is the incident angle, θL is the
longitudinal wave refraction angle, and θS is the shear wave refraction angle. When
θi changes θR, most of the energy of the incoming ultrasonic wave is transformed into a
Rayleigh wave that propagates along the surface without reflection to the specular direction,
and the Rayleigh wave travels with a speed that can be obtained using Equation (4):

CR =
Ci

sin (θR)
(4)

where CR is the Rayleigh wave velocity, which is obtained using Snell’s law.

2.4. Relation between Rayleigh Wave Dispersion and Residual Stress Change According to Depth

D. Husson et al. [12] and J. J. Ditri et al. [13] studied the relationship between residual
stress and surface waves using the perturbation theory of surface waves. According to the
perturbation theory [12,13], the phase shift of the Rayleigh wave which propagates along
the surface on the specimen can be calculated using Equation (5):

δ∅ = − ω

4P

∫
GdV (5)

where δ∅ is the phase shift of the Rayleigh wave, ω is the circular frequency, V is the
volume of the specimen,

∫
G can be expressed by second (λ, µ) and third (l, m, n) order

elastic constants of the media along with initial deformation gradients caused by the
Rayleigh wave, and P is the average of the power carried per unit width in the direction
perpendicular to the direction of propagation of the Rayleigh wave during one time period,
which can be expressed as shown in Equation (6):

P = ωρ0V0
2

 1
V2

0
+K2

s

2Ks
− 2

K2
V2

0
+K4K2

s

Ks+Kl
+

K2
2

V2
0
+K2

4K2
s

2Kl


Ks =

√
1

V2
0
− 1

V2
s

, Kl =
√

1
V2

0
− 1

V2
l

K2 = 2KsKl(
1

V2
0
+K2

s

) , K4 = 2
(1+V2

0 K2
s )

(6)

where ρ0 is the density of the specimen, V0 is the velocity of the Rayleigh wave, and Vs and
Vl are transverse wave and longitudinal wave velocity, respectively, corresponding to the
unstressed media.

G in Equation (5) can be expressed as ai and bi (i ∈ {1, 2, 3}) as follows [13]:

G ≡ ∂bm
∂am

{(2l + λ)[A(a2, w) + B(a2, w) + C(a2, w)] + (λ + m)D(a2, w) + mE(a2, w)}
+ ∂b2

∂a2
{(2λ + 6µ + 4m)A(a2, w) + µ[2D(a2, w) + E(a2, w)]}

+ ∂b3
∂a3
{(2λ + 6µ + 4m)B(a2, w) + µ[2D(a2, w) + E(a2, w)]}

− ∂b1
∂a1
{
( n

2
)
[D(a2, w) + E(a2, w)] + (λ + 2m− n)C(a2, w)}

(7)
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where functions A(a2, w) through E(a2, w) depend upon the gradients of the displacement
field of the Rayleigh wave that propagates on the unstressed media. The distribution profile
of residual stress along the depth of the uniform field can be represented as a function
of depth as σ33(a2), as was proposed by J. J. Ditri [13]. Equation (5), therefore, can be
expressed as Equations (8) and (9) [13]:

δ∅33(ω) = − L0ω

4P

∫ ∞

0
α
‖
i Fi(a2, ω)σ33(a2)da2 (8)

Fi(a2, ω) = ω2
{

fi1e−2ωKsa2 + fi2e−2ωKl a2 + fi3e−ω(Kl+Ks)a2
}

(9)

where fij, according to perturbation theory [13], as well as index i ∈ {1, . . . , 5} and
j ∈ {1, 2, 3}, are given as follows:

f11 =
(

Ks
V0

)2
, f12 =

(
K1K2

V0

)2
, f13 = −

2KSKl K2
V2

0
f21 = f11; f22 = K2

4 f21, f23 = −2K4 f21

f31 = −2 f11; f32 = Kl K2K4 f31
Ks

, f33 = −
[
K4 +

Kl K2
Ks

]
f31

f41 = 1
V4

0
+ K4

s ; f42 =
K2

2
V4

0
+ (KsKlK4)

2, f43 = −2
[

K2
V4

0
+ K3

s KlK4

]
f51 = 2 f11; f52 = Kl K2K4 f51

Ks
, f53 = −

[
Kl K4

Ks
+ K2

]
f51

According to the perturbation theory [13], the constants α
‖
i in Equation (8) are given

as follows:
α
‖
1 ≡

1
(3λ+2µ)

{λ + 2l − λ(2λ+6µ+4m)
2µ }

α
‖
2 ≡

1
(3λ+2µ)

{λ + 2l − (λ+µ)(2λ+6µ+4m)
µ }

α
‖
3 ≡

1
(3λ+2µ)

{
λ + 2l − λ(λ+2m−n)

2µ

}
α
‖
4 ≡

1
(3λ+2µ)

{
3λ + 2µ + m− λ(2µ− n

2 )
2µ

}
α
‖
5 ≡

1
(3λ+2µ)

{
λ + µ + m− λ(µ− n

2 )
2µ

}
Therefore, the results for the change in phase and the propagation in the direction

parallel to the specimen surface can be converted to change in phase velocity using the
following Equation (9):

∆V
V0

= ε33 −
δ∅33V0

ωL0
(10)

where ε33 denotes the surface strain in the direction of propagation and ∆V
V0

denotes the
relative change in phase velocity of the surface wave propagating along the surface of the
stressed media [13].

Using Equation (10), an inversion can be performed to estimate the residual stress
σ33(a2) on the media. To that end, to describe the major characteristics of the residual stress
distribution along the depth, any kind of suitable curve fitting approach can be used. The
efficiency and the accuracy of such an inversion would be dependent on the adopted curve
fitting approach.

3. Ultrasonic Minimum Reflection Measurement

Figure 5 shows the test specimen, which is made of the material Inconel 718, with shot
peening. The specimen’s dimensions are 20 mm (width)× 20 mm (depth)× 15 mm (height).
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Figure 6. Ultrasonic immersion testing experiment setup with pitch-catch method.

The measurement system equipment is composed of a pulser/receiver, a pair of
transducers for a pitch–catch measurement, and a data acquisition and control computer.
The transducers are planar and circular with a center frequency of 20 MHz and a diameter
of 0.25′′. During the measurement, the incident angles were changed from 30 degrees to
36 degrees with the step of 0.02 degrees. The data acquisition software was home-made
using the LabVIEW 2021 program from National Instrument. We acquired A-scan data in a
specific angle range and Figure 7 shows the data obtained at a specific angle.
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Figure 7 shows the A-scan at the beginning (30 degrees) and end of the angle range
(36 degrees), as well as the angle (31.6 degrees) at which the lowest A-scan signal was
obtained. Figure 8 shows the minimum reflection profile with each peak-to-peak of 300
A-scan data.
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Figure 8. Minimum reflection profile.

As shown in Figure 8, the peak-to-peak voltage decreases rapidly at a specific incident
angle, and it can also be confirmed that the peak-to-peak voltage is lowest at 31.6 degrees,
which is determined by the Rayleigh angle of the specimen. Figure 9 shows the minimum
reflection frequency spectrum at each of the three angles.
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Figure 9. Minimum reflection frequency spectrum.

Figure 9 shows the result of performing Fast Fourier Transform on representative
A-scan data. At 30 degrees and 36 degrees, there is little difference in the magnitude at the
center frequency of 17 MHz, but at the Rayleigh angle of 31.6 degrees, it can be seen that
the magnitude value at the center frequency decreases rapidly. This is attributable to the
fact that most of the energy of the incident angle is converted into a Rayleigh wave at the
Rayleigh angle.

4. Rayleigh Wave Dispersion Determination

In the next step, the specific frequency band from 11 MHz to 18.5 MHz was selected
using the 6 dB drop method. Figure 10 shows a total of 20 standardized minimum reflection
profiles from 11 MHz to 18.5 MHz in the selected frequency range.
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In Figure 10, the upper red circle represents the Rayleigh angle point at 11 MHz, while
the lower blue circle represents the Rayleigh angle point at 18.5 MHz. As shown in Figure 10,
it can be confirmed that the Rayleigh angle increases and the reflectivity decreases as the
frequency increases, while Figure 11 shows the graph of the proportional relationship.
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The graph of the Rayleigh angle change according to the frequency can be obtained as
the phase velocity of the Rayleigh wave according to Equation (4), and Figure 12 shows the
graph of the phase velocity of the Rayleigh wave according to the frequency.
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5. Inverse Analysis

One of the effective curve fitting approaches is in the combination of two exponential
functions, as shown in Equation (11):

σ33(a2) = b(1)eb(2)a2 + b(3)eb(4)a2 (11)

where b(1), b(2), b(3), and b(4) are undefined coefficients. It is organized as a function for
w where the coefficients exist. Using Equation (11), the analytical evaluation of integrals in
Equation (8) can be performed more effectively. Furthermore, when using Equation (11), it
becomes easier to get maximum compression stress in the residual stress graph. For inverse
analysis, the values of the variables in Equation (10) are listed in Table 1 [25].

Table 1. Assumed values for variables.

Variable (Symbol) Assumption Value Variable (Symbol) Assumption Value

V0 2800 [m/s] m −606 [GPa]
Vl 5900 [m/s] n −479 [GPa]
Vs 2900 [m/s] µ 80 [GPa]
l −527 [GPa] λ 121 [GPa]

Substituting Equation (8) into Equation (10), and then using Equation (11) and the
assumptions in Table 1, the equation of w can be obtained with the coefficients as follows:

∆V(w)
V − ε33 = 0.082w3(

1.9∗10−14b(1)
1.86∗10−4w−b(2) +

1.9∗10−14b(3)
1.86∗10−4w−b(4) +

4.07∗10−14b(1)
6.28∗10−4w−b(2) +

4.07∗10−14b(3)
6.28∗10−4w−b(4) +

−4.8∗10−14b(1)
4.07∗10−4w−b(2)+

−4.8∗10−14b(3)
4.07∗10−4w−b(4)

(12)

where the left term is obtained from the data shown in Figure 12 and the right term is the
function to be optimized using the nonlinear optimization. The optimization is solved by
the problem using the nonlinear least square method, which is a technique that estimates
model parameters by minimizing the sum of the squares of the residuals between the
obtained data and model (the right terms) and which is sensitive to the initial values of
the parameters [26]. Therefore, to solve the optimization problem, an objective function is
defined by Equation (12), the initial values were carefully chosen, and ε33 was excluded
for being a constant. Moreover, constraints were set to satisfy the physical phenomenon
of the stressed specimen mentioned in Section 2.1. By solving the optimization problem
where the objective function is minimized, the estimated residual stress profile shown in
Figure 13 is obtained using Equation (11).
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Figure 13. Estimated residual stress profile by solved optimization problem.



Materials 2023, 16, 5075 11 of 13

6. Comparison with XRD Measurement

To compare the estimated residual stress profile with the actual residual stress values,
XRD measurements were performed on the specimens. The specimen was measured using
the equipment shown on the left side of Figure 14, and the results obtained at five different
depths (x = 0 µm, 25 µm, 50 µm, 100 µm, 200 µm) are shown on the right side of the
same figure.
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Figure 14. XRD equipment for residual stress measurement of the specimen [4].

Similar to the physical phenomenon mentioned earlier, it can be seen that compressive
residual stress exists at the surface on the specimen, and that the compressive residual
stress disappears as the depth increases after the maximum compressive residual stress.
Figure 15 is a comparison between the estimated graph and the obtained graph, and it can
be confirmed that the estimated graph has a similar shape of residual stress distribution
and maximum compressive stress value of the measured specimen.
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7. Conclusions

In this study, a robust method was developed to nondestructively estimate the residual
stress distribution along the depth direction of a shot peened specimen from the Rayleigh
wave dispersion data.

For that purpose, first, the Rayleigh wave velocity was measured at different incident
angles by using the ultrasonic minimum reflection measurement in a pitch–catch setup with
the peened specimen immersed in water. Second, the velocity dispersion of the Rayleigh
wave was obtained by applying a frequency analysis to the experimentally measured
ultrasonic reflection data.
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Third, the residual stress distribution along the depth direction was estimated from
these Rayleigh wave dispersion data. For doing that, a relationship, proposed by Ditri
and Hongerholt [13], between Rayleigh wave dispersion and residual stress variation was
considered in this study. In addition, the residual stress distribution was assumed to be
described by a powerful combination of two simple exponential functions. As a result,
a nonlinear optimization problem was formulated. Finally, this nonlinear optimization
problem was solved with carefully chosen initial values of the parameters in the assumed
exponential functions.

From the analyses described above, the residual stress distribution along the depth
of the specimen was successfully estimated with a very good agreement with the residual
stress measured by X-ray diffraction method. This good agreement demonstrates the
robustness of this approach as a nondestructive quality control tool for estimating residual
stress distribution in shot-peened parts in many industrial applications.
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