
Citation: Yan, H.; Zhou, X.; Gao, L.;

Fang, H.; Wang, Y.; Ji, H.; Liu, S.

Prediction of Compressive Strength

of Biomass–Humic Acid Limonite

Pellets Using Artificial Neural

Network Model. Materials 2023, 16,

5184. https://doi.org/10.3390/

ma16145184

Academic Editor: Nicolas

Sbirrazzuoli

Received: 25 June 2023

Revised: 18 July 2023

Accepted: 20 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Prediction of Compressive Strength of Biomass–Humic Acid
Limonite Pellets Using Artificial Neural Network Model
Haoli Yan, Xiaolei Zhou *, Lei Gao *, Haoyu Fang, Yunpeng Wang, Haohang Ji and Shangrui Liu

Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology,
Kunming 650093, China; ximengfunny@163.com (H.Y.); fanghaoyuya1@163.com (H.F.);
wangypeng1997@163.com (Y.W.); jhhkust2022@163.com (H.J.); lsr190608@163.com (S.L.)
* Correspondence: zxl@kust.edu.cn (X.Z.); leigao@kust.edu.cn (L.G.)

Abstract: Due to the detrimental impact of steel industry emissions on the environment, countries
worldwide prioritize green development. Replacing sintered iron ore with pellets holds promise for
emission reduction and environmental protection. As high-grade iron ore resources decline, research
on limonite pellet technology becomes crucial. However, pellets undergo rigorous mechanical actions
during production and use. This study prepared a series of limonite pellet samples with varying
ratios and measured their compressive strength. The influence of humic acid on the compressive
strength of green and indurated pellets was explored. The results indicate that humic acid enhances
the strength of green pellets but reduces that of indurated limonite pellets, which exhibit lower
compressive strength compared to bentonite-based pellets. Furthermore, artificial neural networks
(ANN) predicted the compressive strength of humic acid and bentonite-based pellets, establishing
the relationship between input variables (binder content, pellet diameter, and weight) and output
response (compressive strength). Integrating pellet technology and machine learning drives limonite
pellet advancement, contributing to emission reduction and environmental preservation.

Keywords: neural network; limonite; pelletizing; compressive strength; organic binder

1. Introduction

Many countries worldwide are implementing green development initiatives to reduce
carbon emissions [1,2]. The steel industry, as a heavy industry, generates a significant
amount of exhaust gases, wastewater, and solid waste during the production process,
leading to severe environmental pollution [3,4]. In comparison to sintered ore, pelletized
ore has higher iron content, fewer harmful elements, and good reducibility, which results in
increased production, reduced coke consumption, cost savings, optimized burden structure,
and improved economic benefits in blast furnace smelting. Therefore, it is necessary to
continuously increase the proportion of pelletized ore in the ironmaking process [5,6].

To date, extensive research has been conducted on the preparation of high-grade ore
pellets [7]. However, with the rapid development of the steel industry, the output of rich
ores has decreased, while the extraction of low-grade ores has increased [8–12]. The tech-
nology related to pellet production using low-grade ores is still not mature, necessitating
further research on low-grade ore pellets. Limonite, characterized by low levels of harmful
elements, is an example of low-grade iron ore. However, low-grade ores often contain
numerous impurities, resulting in lower pellet strength when using limonite. Moreover,
pelletized ores undergo multiple handling, transportation, stacking, and movement pro-
cesses before and after entering the blast furnace, experiencing various harsh mechanical
forces such as collisions, impacts, compression, and friction [13]. These mechanical forces
can cause the breakage of some pellets, leading to the generation of fines and affecting
furnace operation and production indicators. To address these challenges, the addition
of binders to the pellets can fill the gaps and cracks between ore particles, bonding them
together to increase the density and mechanical strength of the pellets [14].
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Bentonite, as the main binder for pellets, cannot undergo thermal decomposition
during the smelting process and mostly remains in the pellets, leading to a decrease
in the iron grade of the pelletized ore [15]. Qiu et al. [16] utilized organic binders to
prepare pelletized ore and found that, compared to pellets prepared using bentonite,
the resulting pellets had a higher iron grade and lower impurity content [17]. Humic
acid, as an organic binder and a biomass-derived substance, exhibits strong adsorption
capacity on the surface of iron ore, thereby enhancing the strength of green pellets [18,19].
Currently, there is limited research on the preparation of limonite pellets using humic
acid as a binder, necessitating further investigation into humic acid-based limonite pellets.
However, most studies on pellet compressive strength have relied on single-factor analysis
or orthogonal experiments to qualitatively describe the influencing factors of various
parameters, without considering the interactions among them [20]. Due to the limited
number of experiments, the predictability is relatively poor [21]. Artificial neural networks
(ANNs) offer a promising solution for predicting material properties and have been widely
used in this context [22]. ANNs are often referred to as “black-box” models because they
can make accurate predictions based on training data without providing any physical
explanation behind the phenomena [23,24].

Numerous studies have harnessed the power of Artificial Neural Networks (ANN) in
diverse applications within the field of materials science and metallurgy. Chagas et al. [25]
applied ANN to assess the sensitivity of variables in pellet bed formation, aiding in the
generation of green pellets with reduced fuel and energy consumption and improved final
quality. Dwarapudi et al. [26] developed an ANN model to predict the cold compressive
strength (CCS) of pellets in a straight grate furnace. By considering variations in bentonite,
alkalinity, FeO, and green pellet moisture, the model successfully predicted CCS with an
error margin of less than 3%. Klippel et al. [27] introduced an early detection system for
slope instability risks based on iron ore images, utilizing edge artificial intelligence. The
field test results demonstrated an accuracy rate of 91% and a recall rate of 96%, highlighting
the feasibility of employing deep learning for detecting iron ore types and preventing
slope instability risks. Fan et al. [28] investigated the main factors affecting sintering qual-
ity, such as humidity, fuel ratio, sintering speed, and sintering drum strength. Utilizing
backpropagation ANN, prediction models were constructed and applied in sintering pot
experiments to optimize humidity and fuel ratio, ultimately improving sintering drum
strength. Golmohammadi et al. [29] developed a Quantitative Structure–Property Rela-
tionship (QSPR) using Partial Least Squares (PLS) and ANN to predict the precipitation
of trivalent iron during bioleaching. The neural network model exhibited reliable and
accurate predictive capabilities during the bioleaching process. Li Guo et al. [30] proposed
a novel method to estimate ore feed load directly from images of ore pellets using deep
learning models. The introduction of a weakly supervised learning method and a two-
stage model training algorithm allowed competitive model performance and real-time
estimation of ore feed load in the grinding process optimization. Li et al. [31] developed
an intelligent system named the Group Method of Data Handling (GMDH) for predicting
iron ore prices. Compared to other techniques, the GMDH technique exhibited superior
accuracy with a variance accounted for (VAF) value of 97.89%. Wang et al. [32] successfully
implemented a hybrid ensemble model combining Extreme Learning Machine (ELM) with
an improved AdaBoost. The RT algorithm is used to solve regression problems in sintering
processes. This approach led to significant improvements in energy efficiency and sintering
quality through the analysis of high-priority factors. Yachun Mao et al. [33] introduced
a detection method for the magnetic properties of limonite using the improved Particle
Swarm Optimization–Enhanced Extreme Learning Machine (IPSO–ELM) algorithm and
spectroscopy. The IPSO–ELM predictive model exhibited excellent performance and gen-
eralization capability compared to ELM and PSO–ELM predictive models. Yanwei Yang
et al. [34] successfully integrated laser-induced breakdown spectroscopy (LIBS) and ma-
chine learning for rapid and precise classification of iron ore, providing a novel method for
iron ore selection in the metallurgical industry. Tunckaya et al. [35] utilized ANN, Multiple
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Linear Regression (MLR), and auto-regressive integrated moving average (ARIMA) models
to predict and track the flame temperature of a blast furnace. The computational results
demonstrated satisfactory performance in the selected performance indicators, including
regression coefficients and root mean square errors.

Previous studies on pellet compressive strength mostly relied on single-factor analysis
or orthogonal experiments to qualitatively describe the influencing factors, resulting in
limited predictability. Therefore, this study introduces an innovative approach by applying
an Artificial Neural Network (ANN) for data analysis and optimization, offering a novel
solution for the preparation and sintering process of limonite pellets. This contributes
to enhanced process efficiency, reduced production costs, and mitigated environmental
impact, providing significant practical application value.

2. Experiment
2.1. Experimental Material

The limonite used in this study was obtained from a factory in Yunnan Province,
China. The limonite exhibits a rough surface, porous texture, and low levels of harmful
elements. Its chemical composition is presented in Table 1, showing a high content of total
iron (TFe) at 54.67 wt.%, along with 4.04 wt.% of SiO2 and 3.47 wt.% of MnO. Notably, this
limonite possesses strong adhesive properties and high water absorption capacity.

Table 1. Chemical composition of precious sand limonite (wt.%).

TFe FeO SiO2 S MnO TiO2 Pb Zn K2O Na2O Cu V2O5 LOI

54.67 0.29 4.04 0.048 3.47 0.27 0.009 0.018 0.095 0.001 0.009 0.04 14.84

2.2. Experimental Procedure

The experimental procedure is illustrated in Figure 1:
(1) Pellet Manufacturing: 200 g of experimental material, limonite powder, is weighed.

Binders in different proportions (0.4 wt.%, 0.8 wt.%, 1.2 wt.%, 1.6 wt.%, and 2.0 wt.%) are
added, and the materials are thoroughly mixed using the multiple folding and stirring
method. The balling machine is started, and approximately 2/3 of the mixed material is
added to the machine. Water is slowly dripped onto the surface of the mixture to form
pellets with a diameter of approximately 3 mm over a period of 3 min. Every 3 min, a mist
of water is sprayed onto the surface of the mother pellets, and material is added to the
wetted surface to allow the pellets to continuously roll and grow. The process is generally
controlled within 12 min to achieve pellets of the desired size (9–16 mm). After stopping the
addition of water and material, the pellets are allowed to continue rotating in the balling
machine for approximately 2 min to achieve compaction. The pellets are removed using
a small scoop. The pellets are separated using a vernier caliper, and the pellets with a
diameter of 9–16 mm are considered qualified products, while the remaining pellets are
deemed unqualified.

(2) Pellet Roasting: The manufactured pellets are transferred in batches into crucibles.
The crucibles containing the pellets are placed into a muffle furnace for roasting. The
roasting temperature is set as follows, as shown in Figure 2: Ramp up to 200 ◦C in 20 min
and hold at 200 ◦C for 20 min; Ramp up to 700 ◦C in 20 min and hold at 700 ◦C for 20 min;
ramp up to 1250 ◦C in 40 min and hold at 1250 ◦C for 25 min. Subsequently, the pellets are
gradually cooled to room temperature and removed from the furnace.
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(3) Measurement and Testing: The weight of both the raw pellets and the roasted
pellets is measured using an electronic balance. The compressive strength of the raw pellets
and the roasted pellets is measured using a YAW-100C testing machine. Pellets with a
diameter of 9–16 mm are selected using a vernier caliper. Following the guidelines of YB/T
4848-2020, “Physical Test Methods for Roasted Pellets,” the average compressive strength
of the limonite raw pellets and the roasted pellets is recorded.

3. Results and Discussion
3.1. Effect of Humic Acid on Compressive Strength of Limonite Green Pellets

As shown in Figure 3A, the influence of humic acid content, pellet weight, and
diameter on the compressive strength of limonite pellets is illustrated. The diameter of the
pellets is represented by the size of the purple spheres, and the data for the four parameters
have been normalized. The compressive strength of the pellets increases with the weight,
and larger pellets are predominantly located at the top, while smaller pellets are mainly
located at the bottom. The variation in compressive strength with increasing humic acid
content is not significant and is primarily related to the diameter and weight. Figure 3B,C
present the scatter plot and normal distribution plot illustrating the effect of different
proportions of humic acid on the compressive strength of the pellets. The humic acid
content has a positive correlation with the compressive strength of the pellets. The impact
of different proportions of humic acid on the compressive strength of the pellets is depicted
in Figure 3D; as the proportion of humic acid in the pellet increases from 0.4% to 2.0%, the
average compressive strength of the pellets rises and reaches its maximum value of 18.7 N
when the humic acid content reaches 2.0%.
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When the mineral powder is wetted by water during the rolling process, it forms
pellets of a certain size and imparts them with a certain strength through the combined
action of capillary force, molecular attraction, and frictional force. The pellet size, moisture
content, mechanical strength, and thermal stability of the pellets influence the subsequent
roasting operation and are related to the yield and quality of the pelletized ore.

Dry mineral powders generally exhibit hydrophilic properties. As shown in Figure 4,
under the molecular forces on the particle surface, water molecules are adsorbed onto the
surface of the particles. Due to the action of molecular attraction, a thin film of water is
formed outside the adsorbed water layer. The inner layer of the thin film water, which
is closer to the particles, experiences stronger cohesive forces and is called bound water.
It, together with the adsorbed water, is referred to as maximum dividable water, which
enables the powder to be shaped but still lacks plasticity. The outer layer of the thin film
water is closer to free water and can undergo plastic deformation under external forces.
When the mineral powder is wetted by water, and the amount of water exceeds that of
the thin film water, capillary water appears between the particles, initially in a contact
state, connecting the particles. Further wetting leads to a honeycomb state, where the
particles come closer together under the influence of water surface tension and external
forces. Continued wetting results in the saturation state of capillary water, generating the
strongest capillary forces between the particles.
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As an organic binder, humic acid not only improves the grade of metallic pellets but
also accelerates reduction where possible. It exhibits high particle size at room temperature
and high bonding strength after drying. The addition of a small amount of organic binder
significantly enhances the compressive strength of the pellets. This is because humic acid
contains a considerable amount of carboxylate ions, hydroxyl groups, and other oxygen-
containing functional groups, indicating its strong hydrophilicity. Moreover, carboxyl
groups can form complex or chelation reactions with metal ions and metal hydroxides,
facilitating chemical adsorption between humic acid and the surface of iron ore particles,
resulting in strong binding forces and improved pellet strength.

3.2. Effect of Humic Acid on Compressive Strength of Limonite Roasted Pellets

As shown in Figure 5A, the influence of humic acid content, roasted pellet weight, and
diameter on the compressive strength of roasted limonite pellets is depicted. The size of the
pellets is represented by the size of purple spheres, and the data for the four parameters
have been normalized. The compressive strength of the pellets increases with increasing
weight, with larger pellets mainly distributed towards the upper end and smaller pellets
towards the lower end. With the increase in humic acid content, the compressive strength
of the roasted pellets decreases. Figure 5B,C presents scatter plots and normal distribution
plots illustrating the effect of different proportions of humic acid on the compressive
strength of the roasted pellets. The humic acid content has a significant impact on the
compressive strength of the roasted pellets, showing a negative correlation. The effect of
different proportions of humic acid on the compressive strength of the roasted pellets is
illustrated in Figure 5D; when the proportion of humic acid in the pellet ore increases from
0.4% to 2.0%, the average compressive strength of the roasted pellets decreases, reaching a
minimum value of 417 N at a humic acid content of 2.0%.
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The consolidation of pellet ore primarily relies on solid-state reactions. This includes
the solid-state diffusion consolidation of individual-phase particles at high temperatures
and the formation of compounds or solid solutions through solid diffusion in multicompo-
nent systems. These processes generally occur below their melting temperatures without
the generation of a liquid phase, enabling the consolidation of pellet ore with sufficient
strength. It is important to note that the complete exclusion of a liquid phase is not neces-
sary for pellet ore consolidation, although the presence of a liquid phase is minimal. From
a consolidation principal perspective, pellet ore consolidation can occur without a liquid
phase. Under microscopic observation, the liquid phase in pellet ore typically does not
exceed 5%, although self-melting pellet ore may contain a higher amount of liquid phase.

As the roasting temperature increases, various physical and chemical reactions within
the pellet ore are accelerated, leading to increased particle diffusion and contact area. The
interparticle pores gradually become rounded and reduced. At high temperatures, two pro-
cesses occur within the pellet: recrystallization and grain growth. These processes influence
the microstructure of the pellet, including grain size and pore distribution, resulting in the
formation of a dense sphere and improved strength of the final product. The compressive
strength of the roasted pellet is significantly higher than that of the raw pellet.

When the content of humic acid in the pellet increases, the compressive strength of the
roasted pellet decreases. For humic acid, excessively high solution viscosity has a negative
impact on the compressive strength of the roasted pellet. A high concentration of humic
acid leads to increased solution viscosity, inhibiting particle diffusion within the pellet and
reducing the contact area. This hampers various reactions and also suppresses the recrystal-
lization process within the pellet, thus impeding pellet ore consolidation. Additionally, as
an organic binder, humic acid is prone to volatilization during the pellet roasting process,
leaving behind voids within the pellet, further reducing its compressive strength.

3.3. Effect of Bentonite on Compressive Strength of Limonite Roasted Pellets

As shown in Figure 6A, the influence of bentonite content, roasting pellet weight, and
diameter on the compressive strength of roasted limonite pellets is depicted. The size of the
pellets is represented by the diameter of purple spheres, and the data for these four parameters
have been normalized. The compressive strength of the roasted pellets increases with an
increase in weight, with larger pellets predominantly distributed in the upper range and
smaller pellets in the lower range. On the other hand, as the bentonite content increases, there
is a downward trend observed in the compressive strength of the roasted pellets. Figure 6B,C
illustrates the scatter plot and normal distribution plot, respectively, demonstrating the impact
of different proportions of bentonite on the compressive strength of roasted pellets. The
bentonite content indeed has an effect on the compressive strength of the roasted pellets,
showing an overall negative correlation. Figure 6D presents the effects of different proportions
of bentonite on the compressive strength of roasted pellets. It can be observed that as the
bentonite content in the pellet ore increases from 0.4% to 2.0%, there is an overall decreasing
trend in the average compressive strength of the roasted pellets. The minimum value of
compressive strength is reached at a bentonite content of 1.6%, measuring 1085 N.

As shown in Figure 7, a comparative illustration of the influence of humic acid and ben-
tonite on the compressive strength of roasted limonite pellets is presented. The compressive
strength data is arranged in descending order on both sides, with a total of 360 data points.
It can be observed that the compressive strength of the pellets with bentonite is generally
higher than that of the pellets with humic acid, indicating that the compressive strength of
the pellets produced using humic acid as a binder is inferior to those containing bentonite
after roasting. In comparison to the bentonite pellets, the particles in the humic acid pellets
are more dispersed and smaller in size. To form a connected crystalline structure, it is essen-
tial for the particles to come into contact with each other, which suggests that the particle
contact in the humic acid pellets is not as close as in the bentonite pellets. Additionally, the
generation of a liquid phase by low-melting substances facilitates solid-state diffusion and
promotes crystal growth.
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from input data, enabling tasks such as pattern recognition, data classification, and func-
tion approximation. It exhibits high parallel processing capability and adaptability, capa-
ble of handling complex nonlinear relationships and large-scale datasets. 

In this study, the experimental investigation focused on the impact of binder content, 
pellet diameter, and pellet weight on compressive strength. The ANN model (Figure 8) 
design utilized binder content, pellet diameter, and pellet weight as input layers and com-
pressive strength as the output layer. The experimental dataset was normalized and 
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The difference in particle contact between these two types of pellets is primarily
attributed to the small particle size and good dispersibility of bentonite, which fills the
interstices between mineral particles in a colloidal state, thereby improving the particle size
distribution of the pellet raw materials and reducing the pellet porosity. On the other hand,
during the preheating process, humic acid undergoes combustion and decomposition,
resulting in the formation of micro-pores in the pellets. Furthermore, the mechanisms of
bentonite and humic acid differ. In the pellet formation process, the main binding forces
between particles are interfacial forces and capillary forces. When the voids are completely
filled with liquid, capillary forces play a major role in particle bonding. Bentonite fills the
interstices between particles, reducing the capillary diameter within the green pellets and
increasing capillary forces. It also enhances the molecular bonding forces between particles,
resulting in closer particle arrangement. On the other hand, humic acid dissolves in water,
exhibiting high viscosity and forming a network structure within the pellets to bind the
particles together. However, due to the high viscosity, the liquid is difficult to be expelled
from the capillaries, resulting in high moisture content within the green pellets and less
compact particle arrangement compared to the bentonite pellets.

3.4. Predicting the Compressive Strength of Indurated Pellets Using an Artificial Neural Network
Model

The Artificial Neural Network (ANN) is a computational model inspired by the
biological neural system. It consists of a large number of interconnected artificial neurons
(neuron models), resembling the connections between neurons in the human brain. Each
artificial neuron receives multiple inputs, undergoes weighted processing, and generates
output through an activation function. The training process of ANN resembles human
learning. By iteratively adjusting connection weights, ANN can learn and extract features
from input data, enabling tasks such as pattern recognition, data classification, and function
approximation. It exhibits high parallel processing capability and adaptability, capable of
handling complex nonlinear relationships and large-scale datasets.

In this study, the experimental investigation focused on the impact of binder content,
pellet diameter, and pellet weight on compressive strength. The ANN model (Figure 8)
design utilized binder content, pellet diameter, and pellet weight as input layers and
compressive strength as the output layer. The experimental dataset was normalized and
randomized using Excel’s random function. Subsequently, the dataset was divided into
two parts: a training dataset (top 80%) and a testing dataset (bottom 20%). The model’s
performance was evaluated using the correlation coefficient (R2). The number of epochs is
set to 1000.
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As shown in Figure 9, a scatter plot illustrates the correlation between the target
values (experimental results) and the predicted values for the compressive strength of two
types of indurated pellets, namely, humic acid-based and bentonite-based pellets. Linear
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regression analysis was performed on the data, yielding the linear regression equations
and R-squared values, which were found to be 0.59095 and 0.30088 for humic acid-based
and bentonite-based pellets, respectively.
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Figure 9. Data regression graph using artificial neural network. (A) Humic acid. (B) Bentonite.

Figure 10 depicts the scatter plot of target values (experimental results) versus pre-
dicted values for the compressive strength of the indurated pellets. Each target value
corresponds to an output value, and all target values are arranged in ascending order.
Smaller distances between target values and output values indicate higher predictive accu-
racy and smaller errors. The plot reveals a consistent trend among the 360 target values
and their corresponding output values.
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Furthermore, Figure 11 displays the absolute errors (target value − output value)
between the target values (experimental results) and predicted values for the compressive
strength of the indurated pellets. The errors follow a normal distribution pattern centered
around zero. These findings demonstrate that the artificial neural network model designed
in this study provides highly accurate predictions for the compressive strength of humic
acid-based indurated limonite pellets. Importantly, the model successfully establishes the
relationship between input variables (binder content, pellet diameter, and pellet weight)
and the output variable (compressive strength).
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4. Conclusions

Contributing to the reduction of industrial exhaust emissions and environmental
protection, this study investigates the impact of humic acid on the compressive strength of
limonite pellets, aiming to elucidate the physical properties of these pellets. The results
demonstrate that as the content of humic acid increases, the compressive strength of
raw limonite pellets shows an upward trend, with an increase from 15.7 N/pellet to
18.7 N/pellet. Conversely, the compressive strength of roasted limonite pellets exhibits
a downward trend, decreasing from 1410 N/pellet to 417 N/pellet. Similarly, with an
increase in bentonite content, the compressive strength of roasted limonite pellets shows a
declining trend, decreasing from 1410 N/pellet to 1096 N/pellet. The lower strength of
humic acid-roasted pellets compared to bentonite-roasted pellets can be attributed to the
fewer contact points between particles within the pellets, higher porosity, lower probability
of particle reactions, and fewer low-melting-point substances acting as binders within the
pellets. The R2 values for humic acid-roasted pellets and bentonite-roasted pellets are
0.59095 and 0.30088, respectively. The 360 experimental values align with the predicted
values, and their absolute errors (target values–output values) exhibit a normal distribution
centered around zero. These results indicate that the artificial neural network model
designed in this study achieves high accuracy in predicting the compressive strength of
humic acid-roasted limonite pellets.
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21. Davraz, M.; Kilinçarslan, Ş.; Ceylan, H. Predicting the poisson ratio of lightweight concretes using artificial neural network. Acta
Phys. Pol. A 2015, 128, B-184. [CrossRef]

22. Sitek, W.; Trzaska, J. Practical aspects of the design and use of the artificial neural networks in materials engineering. Metals 2021,
11, 1832. [CrossRef]

23. Yu, H.; Zheng, J.; Lin, Q. Strength prediction of seawater sea sand concrete based on artificial neural network in python. Mater.
Res. Express 2022, 9, 035201. [CrossRef]

24. Kiyohara, S.; Tsubaki, M.; Mizoguchi, T. Prediction of ELNES and Quantification of Structural Properties Using Artificial Neural
Network. Microsc. Microanal. 2020, 26 (Suppl. 2), 2100–2101. [CrossRef]

25. Chagas, M.; Machado, M.L.P.; Souza, J.B.C.; Frigini, E.F.D.J. Use of an Artificial Neural Network in determination of iron ore
pellet bed permeability. REM-Int. Eng. J. 2017, 70, 187–191. [CrossRef]

https://doi.org/10.1088/1755-1315/791/1/012187
https://doi.org/10.1016/j.jclepro.2020.122997
https://doi.org/10.1002/cite.202200046
https://doi.org/10.1088/1742-6596/1992/2/022172
https://doi.org/10.1051/epjconf/20159405003
https://doi.org/10.1016/j.jtice.2023.104925
https://doi.org/10.3390/min7100197
https://doi.org/10.1016/j.apt.2020.05.013
https://doi.org/10.1016/j.cep.2020.108209
https://doi.org/10.1016/j.jmrt.2020.05.097
https://doi.org/10.1016/j.biortech.2020.124172
https://doi.org/10.1016/j.jmrt.2020.09.056
https://doi.org/10.2355/isijinternational.ISIJINT-2022-121
https://doi.org/10.2298/HEMIND160210023J
https://doi.org/10.1017/S1431927613013950
https://doi.org/10.2355/isijinternational.43.20
https://doi.org/10.3390/su15086454
https://doi.org/10.2355/isijinternational.ISIJINT-2022-306
https://doi.org/10.3390/ma15124220
https://www.ncbi.nlm.nih.gov/pubmed/35744283
https://doi.org/10.3390/met8080593
https://doi.org/10.12693/APhysPolA.128.B-184
https://doi.org/10.3390/met11111832
https://doi.org/10.1088/2053-1591/ac5957
https://doi.org/10.1017/S1431927620020449
https://doi.org/10.1590/0370-44672016700032


Materials 2023, 16, 5184 14 of 14

26. Dwarapudi, S.; Rao, S.M. Prediction of iron ore pellet strength using artificial neural network model. ISIJ Int. 2007, 47, 67–72.
[CrossRef]

27. Klippel, E.; Bianchi, A.G.C.; Delabrida, S.; Silva, M.C.; Garrocho, C.T.B.; Moreira, V.d.S.; Oliveira, R.A.R. Deep learning approach
at the edge to detect iron ore type. Sensors 2021, 22, 169. [CrossRef]

28. Fan, X.; Li, Y.; Chen, X. Prediction of iron ore sintering characters on the basis of regression analysis and artificial neural network.
Energy Procedia 2012, 16, 769–776. [CrossRef]

29. Golmohammadi, H.; Rashidi, A.; Safdari, J.S. Prediction of ferric iron precipitation in bioleaching process using partial least
squares and artificial neural network. Chem. Ind. Chem. Eng. Q. 2013, 19, 321–331. [CrossRef]

30. Guo, L.; Peng, Y.; Qin, R.; Liu, B. A new weakly supervised learning approach for real-time iron ore feed load estimation. Expert
Syst. Appl. 2022, 202, 117469. [CrossRef]

31. Li, D.; Moghaddam, M.R.; Monjezi, M.; Armaghani, D.J.; Mehrdanesh, A. Development of a group method of data handling
technique to forecast iron ore price. Appl. Sci. 2020, 10, 2364. [CrossRef]

32. Wang, S.-H.; Li, H.-F.; Zhang, Y.-J.; Zou, Z.-S. A hybrid ensemble model based on ELM and improved AdaBoost. RT algorithm for
predicting the iron ore sintering characters. Comput. Intell. Neurosci. 2019, 2019, 4164296. [CrossRef]

33. Mao, Y.; Liu, C.; Xiao, D.; Wang, J.; Le, B.T. Study of the magnetic properties of haematite based on spectroscopy and the
IPSO-ELM neural network. J. Sens. 2018, 2018, 6357905. [CrossRef]

34. Yang, Y.; Hao, X.; Zhang, L.; Ren, L. Application of scikit and keras libraries for the classification of iron ore data acquired by
laser-induced breakdown spectroscopy (LIBS). Sensors 2020, 20, 1393. [CrossRef] [PubMed]

35. Tunckaya, Y.; Köklükaya, E. Comparative performance evaluation of blast furnace flame temperature prediction using artificial
intelligence and statistical methods. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 1163–1175. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2355/isijinternational.47.67
https://doi.org/10.3390/s22010169
https://doi.org/10.1016/j.egypro.2012.01.124
https://doi.org/10.2298/CICEQ120403066G
https://doi.org/10.1016/j.eswa.2022.117469
https://doi.org/10.3390/app10072364
https://doi.org/10.1155/2019/4164296
https://doi.org/10.1155/2018/6357905
https://doi.org/10.3390/s20051393
https://www.ncbi.nlm.nih.gov/pubmed/32143315
https://doi.org/10.3906/elk-1309-242

	Introduction 
	Experiment 
	Experimental Material 
	Experimental Procedure 

	Results and Discussion 
	Effect of Humic Acid on Compressive Strength of Limonite Green Pellets 
	Effect of Humic Acid on Compressive Strength of Limonite Roasted Pellets 
	Effect of Bentonite on Compressive Strength of Limonite Roasted Pellets 
	Predicting the Compressive Strength of Indurated Pellets Using an Artificial Neural Network Model 

	Conclusions 
	References

