Microstructure-Based Multiscale Modeling of Deformation in MarBN Steel under Uniaxial Tension: Experiments and Finite Element Simulations
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Uniaxial Tension and Microstructure
3. Multiscale Constitutive Modeling
3.1. Microstructure-Based Macro Constitutive Formulation
3.1.1. Constitutive Formulation Development
Element | |||
---|---|---|---|
α-Fe | 0.2482 | 81.6 | 0.29 |
γ-Fe | 0.2503 | 81.6 | 0.29 |
Cr | 0.2520 | 115.3 | 0.21 |
Al | 0.2863 | 26.3 | 0.35 |
Co | 0.2507 | 82 | 0.31 |
Mn | 0.2667 | 79.5 | 0.24 |
Mo | 0.2725 | 125.6 | 0.31 |
Ni | 0.2492 | 76 | 0.31 |
Nb | 0.2858 | 37.5 | 0.4 |
Si | 0.3830 | 39.7 | 0.42 |
Ti | 0.2951 | 45.6 | 0.32 |
V | 0.2624 | 46.7 | 0.37 |
W | 0.2741 | 160.6 | 0.28 |
3.1.2. Finite Element Model
3.2. Crystal Plasticity-Based Constitutive Formulation
3.2.1. Constitutive Law and Finite Element Model
3.2.2. Material Properties and Boundary Condition for Micromechanical
4. Results and Discussion
4.1. Mesh Size Sensitive and Model Calibration
4.2. Macromechanical Response and Strength Contribution
4.3. Micromechanical Response and Failure Mechanism
4.4. Failure Mechanism Evaluation and Microstructure Characteristics
5. Conclusions
- (1)
- The macromechanical response can be simulated by the physically based yield strength model, where solid strengthening, grain boundaries, and dislocation density played a more crucial role than others.
- (2)
- The micromechanical response can be addressed by the crystal plasticity model considering realistic grain orientation based on the RVE model, where the elastic strain is inhomogeneous due to the grain orientation, and many grains show higher elastic strain than others. Furthermore, the higher equivalent strain leads to the strain bands with around 45 degrees, resulting in tensile shear failure.
- (3)
- Regarding coupling simulation and microstructure by EBSD, the microstructure evolution can be well explained by the micromechanical model. As well, plastic strain can occur close to the grain boundaries and decline into the grain, resulting in higher KAM and GNDs in the grain boundaries proved by EBSD, resulting in crack initiation and shear failure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Lu, D.; Pei, Y.; Chen, T.; Zou, T.; Wang, T.; Wang, X.; Liu, Y.; Wang, Q. Tensile behavior, microstructural evolution, and deformation mechanisms of a high Nb-TiAl alloy additively manufactured by electron beam melting. Mater. Des. 2023, 225, 111503. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, H.; Liu, C.; Gong, X.; Pei, Y.; Zou, Y.; Liu, Y.; Wang, Q. Effect of temperature on tensile behavior, fracture morphology and deformation mechanisms of Nickel-based single crystal CMSX-4. J. Alloys Compd. 2022, 912, 165175. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Q.; Gong, X.; Wang, T.; Zhang, W.; Chen, K.; Wang, C.; Liu, Y.; Wang, Q. Dependence on temperature of compression behavior and deformation mechanisms of nickel-based single crystal CMSX-4. J. Alloys Compd. 2021, 866, 158878. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, Q.; Liu, M.; Jiang, Y.; Zou, T.; Wang, Y.; Li, Q.; Pei, Y.; Zhang, H.; Liu, Y.; et al. Tensile Behavior, Constitutive Model, and Deformation Mechanisms of MarBN Steel at Various Temperatures and Strain Rates. Materials 2022, 15, 8745. [Google Scholar] [CrossRef]
- Benaarbia, A.; Xu, X.; Sun, W.; Becker, A.; Osgerby, S. Characterization of cyclic behavior, deformation mechanisms, and microstructural evolution of MarBN steels under high temperature conditions. Int. J. Fatigue 2020, 131, 105270. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Benaarbia, A.; Allen, D.; Jepson, M.A.; Sun, W. Investigation of microstructural evolution and creep rupture behaviour of 9% Cr MarBN steel welds. Mater. Sci. Eng. A 2020, 791, 139546. [Google Scholar] [CrossRef]
- Liu, L.; Huang, W.; Ruan, M.; Chen, Z. Effects of temperatures on microstructure evolution and deformation behavior of Fe–32Ni by in-situ EBSD. Mater. Sci. Eng. A 2023, 875, 145097. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method for Solid and Structural Mechanics, 6th ed.; Butterworth-Heinemann: Oxford, UK, 2005. [Google Scholar]
- Barrett, R.A.; O’Donoghue, P.E.; Leen, S.B. A physically-based high temperature yield strength model for 9Cr steels. Mater. Sci. Eng. A 2018, 730, 410–424. [Google Scholar] [CrossRef]
- Dong, Z.; Xie, X.-F.; Jiang, W.; Wan, Y.; Zhai, X.; Zhao, X. Microstructure-based multiscale and heterogeneous elasto-plastic properties of 2205 duplex stainless steel welded joints: Experimental and modeling. Int. J. Plast. 2022, 159, 103474. [Google Scholar] [CrossRef]
- Kan, Q.; Zhang, Y.; Xu, Y.; Kang, G.; Yu, C. Tension-compression asymmetric functional degeneration of super-elastic NiTi shape memory alloy: Experimental observation and multiscale constitutive model. Int. J. Solids Struct. 2023, 280, 112384. [Google Scholar] [CrossRef]
- Tang, Z.; Yang, X.; Liu, Q.; Pan, Y.; Kong, L.; Zhuge, H. Elastoplastic hysteretic behavior and constitutive models of in-service structural steel considering fatigue-induced pre-damages. Constr. Build. Mater. 2023, 392, 131912. [Google Scholar] [CrossRef]
- Lindroos, M.; Isakov, M.; Laukkanen, A. Crystal plasticity modeling of transformation plasticity and adiabatic heating effects of metastable austenitic stainless steels. Int. J. Solids Struct. 2021, 236–237, 111322. [Google Scholar] [CrossRef]
- Yalçinkaya, T.; Çakmak, S.O.; Tekoğlu, C. A crystal plasticity based finite element framework for RVE calculations of two-phase materials: Void nucleation in dual-phase steels. Finite Elem. Anal. Des. 2021, 187, 103510. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Gong, X.; Li, Q.; Liu, Y.; Wang, Q.; Zhang, H.; Wang, Q. Low cycle fatigue properties, damage mechanism, life prediction and microstructure of MarBN steel: Influence of temperature. Int. J. Fatigue 2020, 144, 106070. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Q.; Gong, X.; Wang, T.; Pei, Y.; Zhang, W.; Liu, Y.; Wang, C.; Wang, Q. Comparisons of low cycle fatigue response, damage mechanism, and life prediction of MarBN steel under stress and strain-controlled modes. Int. J. Fatigue 2021, 149, 106291. [Google Scholar] [CrossRef]
- Gong, X.; Wang, T.; Li, Q.; Liu, Y.; Zhang, H.; Zhang, W.; Wang, Q.; Wang, Q. Cyclic responses and microstructure sensitivity of Cr-based turbine steel under different strain ratios in low cycle fatigue regime. Mater. Des. 2021, 201, 109529. [Google Scholar] [CrossRef]
- ISO6892-2:2018; Metallic Materials—Tensile Testing—Part 2: Method of Test at Elevated Temperature. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO6892-1:2016; Metallic Materials—Tensile Testing—Part 1: Method of Test At Room Temperature. International Organization for Standardization: Geneva, Switzerland, 2016.
- Kim, S.-H.; Kim, J.-B.; Lee, W.-J. Numerical prediction and neutron diffraction measurement of the residual stresses for a modified 9Cr–1Mo steel weld. J. Mater. Process. Technol. 2009, 209, 3905–3913. [Google Scholar] [CrossRef]
- Esmaeili, S.; Lloyd, D.; Poole, W. A yield strength model for the Al-Mg-Si-Cu alloy AA6111. Acta Mater. 2003, 51, 2243–2257. [Google Scholar] [CrossRef]
- Grong, H.R. Shercliff, Microstructural modelling in metals processing. Prog. Mater. Sci. 2002, 47, 163–282. [Google Scholar] [CrossRef]
- Hosseini-Benhangi, P.; Mazinani, M.; Haddad-Sabzevar, M. Physically Based Model of the Yield Strength for an Al-Mg-Si-Cu-Zn Alloy. Met. Mater. Trans. A 2015, 46, 5407–5417. [Google Scholar] [CrossRef]
- Kocks, U.F.; Argon, A.S.; Ashby, M.F. Thermodynamics and Kinetics of Slip; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Li, Q. Modeling the microstructure–mechanical property relationship for a 12Cr–2W–V–Mo–Ni power plant steel. Mater. Sci. Eng. A 2003, 361, 385–391. [Google Scholar] [CrossRef]
- Labusch, R. A Statistical Theory of Solid Solution Hardening. Phys. Status Solidi (b) 1970, 41, 659–669. [Google Scholar] [CrossRef]
- Zhao, Q.; Holmedal, B.; Li, Y.; Sagvolden, E.; Løvvik, O.M. Multi-component solid solution and cluster hardening of Al–Mn–Si alloys. Mater. Sci. Eng. A 2015, 625, 153–157. [Google Scholar] [CrossRef]
- Kelly, A.J.; Nicholson, R.S. Strengthening Methods in Crystals; Elsevier Publishing Company: Amsterdam, The Netherlands, 1971. [Google Scholar]
- Feltham, P. Solid solution hardening of metal crystals. J. Phys. D Appl. Phys. 1968, 1, 303. [Google Scholar] [CrossRef]
- Anderson, P.M.; Hirth, J.P.; Lothe, J. Theory of Dislocations; Cambridge Press: Cambridge, UK, 2017. [Google Scholar]
- Shao, Q.; Liu, L.; Fan, T.; Yuan, D.; Chen, J. Effects of solute concentration on the stacking fault energy in copper alloys at finite temperatures. J. Alloys Compd. 2017, 726, 601–607. [Google Scholar] [CrossRef]
- Smithells, C.J.; Brandes, E.A.; Brook, G.B. 6-Crystal chemistry. In Smithells Metals Reference Book, 7th ed.; Brandes, E.A., Brook, G.B., Eds.; Butterworth-Heinemann: Oxford, UK, 1992; pp. 6-1–6-71. [Google Scholar]
- Nabarro, F.R.N. Dislocations in a simple cubic lattice. Proc. Phys. Soc. 1947, 59, 256. [Google Scholar] [CrossRef]
- Sakui, S.; Sakai, T. The Effect of Strain Rate, Temperature and Grain Size on the Lower Yield Stress and Flow Stress of Polycrystalline Pure Iron. Tetsu-To-Hagane 1972, 58, 1438–1455. [Google Scholar] [CrossRef] [Green Version]
- Sakui, S.; Sakai, T. The Effect of Grain Size on High Temperature Plastic Deformation of Polycrystalline Pure Iron. J. Jpn. Inst. Met. Mater. 1976, 40, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, K.; Sawada, K.; Koike, J.-I. Advances in Physical Metallurgy and Processing of Steels. Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel. ISIJ Int. 2001, 41, 641–653. [Google Scholar] [CrossRef]
- Naylor, J.P. The influence of the lath morphology on the yield stress and transition temperature of martensitic-bainitic steels. Met. Trans. A 1979, 10, 861–873. [Google Scholar] [CrossRef]
- Funakawa, Y.; Ujiro, T. Tensile Properties of Chromium-bearing Extra Low Carbon Steel Sheets. ISIJ Int. 2010, 50, 1488–1495. [Google Scholar] [CrossRef] [Green Version]
- Seok, M.-Y.; Choi, I.-C.; Moon, J.; Kim, S.; Ramamurty, U.; Jang, J.-I. Estimation of the Hall–Petch strengthening coefficient of steels through nanoindentation. Scr. Mater. 2014, 87, 49–52. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, J.; Huang, J.; Bei, H.; Nieh, T. Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals. Scr. Mater. 2013, 68, 118–121. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Q.; Gong, X.; Wang, T.; Zhang, W.; Li, L.; Liu, Y.; He, C.; Wang, C.; Zhang, H. A comparative study of low cycle fatigue behavior and microstructure of Cr-based steel at room and high temperatures. Mater. Des. 2020, 195, 109000. [Google Scholar] [CrossRef]
- Gladman, T. Precipitation hardening in metals. Mater. Sci. Tech.-Lond. 1999, 15, 30–36. [Google Scholar] [CrossRef]
- Krauss, G. Martensite in steel: Strength and structure. Mater. Sci. Eng. A 1999, 273–275, 40–57. [Google Scholar] [CrossRef]
- Berkenpas, M.; Barnard, J.; Ramanujan, R.; Aaronson, H. A critique of activation energies for nucleation growth and overall transformation kinetics. Scr. Met. 1986, 20, 323–328. [Google Scholar] [CrossRef]
- Yan, P.; Liu, Z. Toughness evolution of 9Cr–3W–3Co martensitic heat resistant steel during long time aging. Mater. Sci. Eng. A 2016, 650, 290–294. [Google Scholar] [CrossRef]
- Dassault Systems, Abaqus Unified Fea Complete Solutions for Realistic Simulation. 2018. Available online: https://www.3ds.com/products-services/simulia/products/abaqus/ (accessed on 13 May 2023).
- Abaqus User, M. Abaqus Analysis User’s Guide; Version 6.14; Dassault Systems Simulia Corp.: Waltham, MA, USA, 2014. [Google Scholar]
- Lee, E.H. Elastic–plastic deformation at finite strains. J. Appl. Mech. 1969, 36, 1–6. [Google Scholar] [CrossRef]
- Peirce, D.; Asaro, R.J.; Needleman, A. Material rate dependence and localized deformation in crystalline solids. Acta Metall. 1983, 31, 1951–1976. [Google Scholar] [CrossRef]
- Asaro, R.J. Crystal Plasticity. J. Appl. Mech. 1983, 50, 921–934. [Google Scholar] [CrossRef]
- Yeratapally, S.R. A Microstructure Based Fatigue Life Prediction Framework and Its Validation; Purdue University: West Lafayette, IN, USA, 2015. [Google Scholar]
- Dawson, P.R.; Boyce, D. FEpX—Finite Element Polycrystals: Theory, Finite Element Formulation, Numerical Implementation and Illustrative Examples. arXiv 2015, arXiv:1504.03296. [Google Scholar]
- Quey, R.; Dawson, P.R.; Barbe, F. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 2011, 200, 1729–1745. [Google Scholar] [CrossRef] [Green Version]
- Poshadel, A.C.; Gharghouri, M.A.; Dawson, P.R. Initiation and Propagation of Plastic Yielding in Duplex Stainless Steel. Met. Mater. Trans. A 2019, 50, 1202–1230. [Google Scholar] [CrossRef] [Green Version]
- Fukui, D.; Kawahito, Y.; Miyazawa, N.; Nakada, N. Anisotropic cleavage fracture caused by transformation-induced internal stress in an as-quenched martensite. Mater. Charact. 2022, 191, 112157. [Google Scholar] [CrossRef]
- Takaki, S.; Masumura, T.; Tsuchiyama, T. Young’s Modulus of Single Crystalline Iron and Elastic Stiffness. Tetsu-To-Hagane 2020, 106, 679–682. [Google Scholar] [CrossRef]
- Park, T.; Hector, L.G.; Hu, X.; Abu-Farha, F.; Fellinger, M.R.; Kim, H.; Esmaeilpour, R.; Pourboghrat, F. Crystal plasticity modeling of 3rd generation multi-phase AHSS with martensitic transformation. Int. J. Plast. 2019, 120, 1–46. [Google Scholar] [CrossRef]
- Liu, W.; Lian, J.; Aravas, N.; Münstermann, S. A strategy for synthetic microstructure generation and crystal plasticity parameter calibration of fine-grain-structured dual-phase steel. Int. J. Plast. 2020, 126, 102614. [Google Scholar] [CrossRef]
- Fujita, N.; Ishikawa, N.; Roters, F.; Tasan, C.C.; Raabe, D. Experimental–numerical study on strain and stress partitioning in bainitic steels with martensite–austenite constituents. Int. J. Plast. 2018, 104, 39–53. [Google Scholar] [CrossRef]
- Poshadel, A.C.; Gharghouri, M.A.; Dawson, P.R. Sensitivity of Crystal Stress Distributions to the Definition of Virtual Two-Phase Samples. Met. Mater. Trans. A 2019, 50, 1231–1249. [Google Scholar] [CrossRef]
- Kim, D.-K.; Kim, E.-Y.; Han, J.; Woo, W.; Choi, S.-H. Effect of microstructural factors on void formation by ferrite/martensite interface decohesion in DP980 steel under uniaxial tension. Int. J. Plast. 2017, 94, 3–23. [Google Scholar] [CrossRef]
- Geuzaine, C.; Remacle, J.-F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Bachmann, F.; Hielscher, R.; Schaeben, H. Texture Analysis with MTEX–Free and Open Source Software Toolbox. Solid State Phenom. 2010, 160, 63–68. [Google Scholar] [CrossRef] [Green Version]
Composition | Cr | W | Co | Ni | V | Mo | Mn | C | Nb | Si | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
proportion (wt.%) | 9.16 | 2.95 | 2.82 | 0.40 | 0.20 | 0.20 | 0.20 | 0.10 | 0.08 | 0.06 | 0.02 | rest |
Phase | Type | C11 (MPa) | C12 (MPa) | C13 (MPa) |
---|---|---|---|---|
BCC | ||||
Phase | m | |||||
---|---|---|---|---|---|---|
M | 0.05 | 0.001 | 40,000 | 680 | 700 | 1 |
α | 0.05 | 0.001 | 4500 | 200 | 370 | 1 |
Curve | Elastic Limit (MPa) | Maximum Stress (MPa) | Maximum Stress Difference (MPa) | Relative Error |
---|---|---|---|---|
rcl = 0.3 | 500.09 | 950.23 | 99.00 | 0.116 |
rcl = 0.4 | 498.78 | 810.34 | 40.89 | 0.048 |
rcl = 0.6 | 502.12 | 882.13 | 30.90 | 0.036 |
rcl = 1.0 | 501.34 | 927.34 | 76.11 | 0.089 |
Experimental curve | 652.32 | 851.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, H.; Zou, T.; Liu, M.; Wang, Q.; Pei, Y.; Liu, Y.; Wang, Q. Microstructure-Based Multiscale Modeling of Deformation in MarBN Steel under Uniaxial Tension: Experiments and Finite Element Simulations. Materials 2023, 16, 5194. https://doi.org/10.3390/ma16145194
Zhang Y, Zhang H, Zou T, Liu M, Wang Q, Pei Y, Liu Y, Wang Q. Microstructure-Based Multiscale Modeling of Deformation in MarBN Steel under Uniaxial Tension: Experiments and Finite Element Simulations. Materials. 2023; 16(14):5194. https://doi.org/10.3390/ma16145194
Chicago/Turabian StyleZhang, Yida, Hong Zhang, Tongfei Zou, Meng Liu, Quanyi Wang, Yubing Pei, Yongjie Liu, and Qingyuan Wang. 2023. "Microstructure-Based Multiscale Modeling of Deformation in MarBN Steel under Uniaxial Tension: Experiments and Finite Element Simulations" Materials 16, no. 14: 5194. https://doi.org/10.3390/ma16145194
APA StyleZhang, Y., Zhang, H., Zou, T., Liu, M., Wang, Q., Pei, Y., Liu, Y., & Wang, Q. (2023). Microstructure-Based Multiscale Modeling of Deformation in MarBN Steel under Uniaxial Tension: Experiments and Finite Element Simulations. Materials, 16(14), 5194. https://doi.org/10.3390/ma16145194