Fly Ash-Based Na-X Zeolite Application in Separation Process of Bovine Serum Albumin from Aqueous Solution in the Presence of Organic Substances with Anionic Character
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Adsorbent Characteristics
2.3. Surface and Electrokinetic Measurements
2.4. Adsorption Measurements
2.5. Stability Measurements
3. Results and Discussion
3.1. Physicochemical Properties of the Adsorbent
3.2. Surface and Electrokinetic Studies
3.3. Adsorption Study
3.4. Aggregation and Stability Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jakkula, V.S.; Wani, S.P. Zeolites: Potential soil amendments for improving nutrient and water use efficiency and agriculture productivity. Sci. Rev. Chem. Commun. 2018, 8, 1–15. [Google Scholar]
- Motsi, T.; Rowson, N.A.; Simmons, M.J.H. Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 2009, 92, 42–48. [Google Scholar] [CrossRef]
- Jiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Res. 2018, 144, 145–161. [Google Scholar] [CrossRef]
- Bertolini, T.C.R.; Fungaro, D.A.; Mahmoud, A.E.D. The influence of separately and combined bentonite and kaolinite as binders for pelletization of NaA zeolite from coal fly ash. Cerâmica 2022, 68, 375–384. [Google Scholar] [CrossRef]
- Jiménez-Reyes, M.; Almazán-Sánchez, P.T.; Solache-Ríos, M. Radioactive waste treatments by using zeolites. A Short Review. J. Environ. Rad. 2021, 233, 106610. [Google Scholar] [CrossRef] [PubMed]
- Joseph, I.V.; Tosheva, L.; Doyle, A.M. Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash. J. Environ. Chem. Eng. 2020, 8, 103895. [Google Scholar] [CrossRef]
- Kandil, H.; Nour, S.A.; Amin, A. Promising antimicrobial material based on hyperbranched polyacrylic acid for biomedical applications. Int. J. Polym. Mater. Polym. Biomater. 2023, 72, 739–749. [Google Scholar] [CrossRef]
- Devine, D.M.; Devery, S.M.; Lyons, J.G.; Geever, L.M.; Kennedy, J.E.; Higginbotham, C.L. Multifunctional polyvinylpyrrolidinone-polyacrylic acid copolymer hydrogels for biomedical applications. Int. J. Pharm. 2006, 326, 50–59. [Google Scholar] [CrossRef]
- Zhang, Y.; Geißen, S.U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, J.; Pu, R. The enhanced removal and phytodegradation of sodium dodecyl sulfate (SDS) in wastewater using controllable water hyacinth. Int. J. Phytoremediat. 2019, 21, 1080–1089. [Google Scholar] [CrossRef]
- Yüksel, E.; Şengil, İ.A.; Özacar, M. The removal of sodium dodecyl sulfate in synthetic wastewater by peroxi-electrocoagulation method. Chem. Eng. J. 2009, 152, 347–353. [Google Scholar] [CrossRef]
- Kathi, S.; Singh, S.; Yadav, R.; Singh, A.; Mahmoud, A.E.D. Wastewater and sludge valorisation: A novel approach for treatment and resource recovery to achieve circular economy concept. Front. Chem. Eng. 2023, 5, 1129783. [Google Scholar] [CrossRef]
- Park, H.; Park, K. Biocompatibility Issues of Implantable Drug Delivery Systems. Pharm. Res. 1996, 13, 1770–1776. [Google Scholar] [CrossRef] [PubMed]
- Tathe, A.; Ghodke, M.; Nikalje, A.P. A brief review: Biomaterials and their application. Int. J. Pharm. Pharm. Sci. 2010, 2, 19–23. [Google Scholar]
- Bixler, G.D.; Bhushan, B. Biofouling: Lessons from nature. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2012, 370, 2381–2417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsericsdotter, H.; Oscarsson, S.; Buijs, J. Structure, stability, and orientation of BSA adsorbed to silica. J. Colloid Interface Sci. 2005, 289, 26–35. [Google Scholar] [CrossRef]
- Baier, G.; Costa, C.; Zeller, A.; Baumann, D.; Sayer, C.; Araujo, P.H.H.; Mailäander, V.; Musyanovych, A.; Landfester, K. BSA Adsorption on Differently Charged Polystyrene Nanoparticles using Isothermal Titration Calorimetry and the Influence on Cellular Uptake. Macromol. Biosci. 2011, 11, 628–638. [Google Scholar] [CrossRef]
- Zhao, Z.-P.; Wang, Z.; Wang, S.-C. Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane. J. Membr. Sci. 2003, 217, 151–158. [Google Scholar] [CrossRef]
- Swain, S.K.; Sarkar, D. Study of BSA protein adsorption/release on hydroxyapatite nanoparticles. Appl. Surf. Sci. 2013, 286, 99–103. [Google Scholar] [CrossRef]
- Panek, R.; Medykowska, M.; Wiśniewska, M.; Szewczuk-Karpisz, K.; Jędruchniewicz, K.; Franus, M. Simultaneous Removal of Pb2+ and Zn2+ Heavy Metals Using Fly Ash Na-X Zeolite and its Carbon Na-X(C) Composite. Materials 2021, 14, 2832. [Google Scholar] [CrossRef]
- Janusz, W. Electrical Double Layer at Metal Oxide-Electrolyte Interface in ‘Interfacial Forces and Fields Theory and Applications’; Marcel Dekker: New York, NY, USA, 1999. [Google Scholar]
- Oshima, H. A simple expansion for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J. Colloid Interface Sci. 1994, 168, 269–271. [Google Scholar] [CrossRef]
- Wen, M.-G.; Zhang, X.-B.; Tian, J.-N.; Ni, S.-H.; Bian, H.-D.; Huang, Y.-L.; Liang, H. Binding Interaction of Xanthoxylin with Bovine Serum Albumin. J. Solut. Chem. 2009, 38, 391–401. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Nowicki, P.; Urban, T. Influence of surfactants with different ionic character on the structure of poly(acrylic acid) adsorption layer on the activated biocarbons surface—Electrokinetic and stability studies. J. Mol. Liq. 2021, 332, 115872. [Google Scholar] [CrossRef]
- Babajide, O.; Musyoka, N.; Petrik, L.; Ameer, F. Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production. Catal. Today 2012, 190, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Chen, S.; Seo, D.; Deng, S. Evaluation and optimization of VPSA processes with nanostructured zeolite NaX for post-combustion CO2 capture. Chem. Eng. J. 2019, 371, 693–705. [Google Scholar] [CrossRef]
- Hartvig, R.A.; Van de Weert, M.; Ostergaard, J.; Jorgensen, L.; Jensen, H. Protein adsorption at charged surfaces: The role of electrostatic interactions and interfacial charge regulation. Langmuir 2011, 27, 2634–2643. [Google Scholar] [CrossRef] [PubMed]
- Kopac, T.; Bozgeyik, K.; Yener, J. Effect of pH and temperature on the adsorption of bovine serum albumin onto titanium dioxide. Colloids Surf. A Physicochem. Eng. Asp. 2008, 322, 19–28. [Google Scholar] [CrossRef]
- Jodeh, S.; Abdelwahab, F.; Jaradat, N.; Warad, I.; Jodeh, W. Adsorption of diclofenac from aqueous solution using Cyclamen persicum tubers based activated carbon (CTAC). Arab J. Basic Appl. Sci. 2016, 20, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Kishima, C.; Zhang, H.; Miyamoto, N.; Kano, N. Removal of Chromium(VI) by Chitosan Beads Modified with Sodium Dodecyl Sulfate (SDS). Appl. Sci. 2010, 10, 4745. [Google Scholar] [CrossRef]
- Medykowska, M.; Wiśniewska, M.; Szewczuk-Karpisz, K.; Panek, R. Management of hazardous fly-ash energy waste in the adsorptive removal of diclofenac by the use of synthetic zeolitic materials. Environ. Sci. Pollut. Res. 2023, 30, 36068–36079. [Google Scholar] [CrossRef]
- Rezwan, K.; Meier, L.P.; Rezwan, M.; Vörös, J.; Textor, M.; Gauckler, L.J. Bovine Serum Albumin Adsorption onto Colloidal Al2O3Particles: A New Model Based on Zeta Potential and UV–Vis Measurements. Langmuir 2004, 20, 10055–10061. [Google Scholar] [CrossRef]
- Medykowska, M.; Wiśniewska, M.; Katarzyna-Szewczuk-Karpisz, K.; Panek, R. Study on electrical double layer nanostructure on zeolitic materials’ surface in the presence of impurities of different nature. Appl. Nanosci. 2023. [Google Scholar] [CrossRef]
- Szewczuk-Karpisz, K.; Wiśniewska, M. Adsorption Properties of the Albumin–Chromium(III) Oxide System—Effect of Solution Ph and Ionic Strength. Soft Mater. 2014, 12, 268–276. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Song, Y.; Cai, H. Bovine serum albumin (BSA) adsorption with Cibacron Blue F3GA attached chitosan microspheres. React. Funct. Polym. 2006, 66, 916–923. [Google Scholar] [CrossRef]
- Sankaran, R.; Show, P.L.; Ooi, C.W.; Ling, T.C.; Chen, S.J.; Chen, S.Y.; Chang, Y.K. Feasibility assessment of removal of heavy metals and soluble microbial products from aqueous solutions using eggshell wastes. Clean Technol. Environ. Policy 2020, 22, 773–786. [Google Scholar] [CrossRef]
- Suh, C.W.; Kim, M.Y.; Choo, J.B.; Kim, J.K.; Kim, H.K.; Lee, E.K. Analysis of protein adsorption characteristics to nano-pore silica particles by using confocal laser scanning microscopy. J. Biotechnol. 2004, 112, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lenhart, J.J.; Walker, H.W. Aggregation Kinetics and Dissolution of Coated Silver Nanoparticles. Langmuir 2011, 28, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Gelardi, G.; Flatt, R.J. Working mechanisms of water reducers and superplasticizers. In Science and Technology of Concrete Admixtures; Woodhead Publishing: New York, NY, USA, 2016; pp. 257–278. [Google Scholar]
Sample | BET Surface Area [m2/g] | Pore Volume [cm3/g] | Mean Pore Diameter [nm] | Reference |
---|---|---|---|---|
Na-X | 727.9 | 0.31 | 1.7 | This study |
CM/NaX (commercial zeolite) | 802 | 3.62 | - | [25] |
FA/NaX (South African class F fly ash-based zeolite) | 320 | 1.40 | - | [25] |
MZ | 518.66 | 0.349 | - | [26] |
NZL-400 | 672.09 | 0.459 | - | [26] |
Adsorbent | pzc without Adsorbates | pzc with BSA | pzc with PAA | pzc with BSA and PAA | pzc with DCF | pzc with BSA and DCF | pzc with SDS | pzc with BSA and SDS |
---|---|---|---|---|---|---|---|---|
Na-X | 9.0 | 8.7 | 8.0 | 7.6 | 8.5 | 7.8 | 9.2 | 9.2 |
Sample | Adsorption Capacity [mg/g] | Experimental Conditions | Reference |
---|---|---|---|
Na-X | 77.45 102.15 83.33 29.61 | pH = 3 pH = 5 pH = 9 pH = 11 | This study |
CBF-CS (Cibacron Blue F3GA-attached chitosan) | 95.2 | pH = 5 | [35] |
ES-Zn (eggshell–zinc complex) | 32.57 | pH = 5 | [36] |
ES-Cu (eggshell–copper complex) | 30.12 | pH = 6 | [36] |
ES-Co (eggshell–cobalt complex) | 2.56 | pH = 7 | [36] |
ES-Ni (eggshell–nickel complex) | 0.28 | pH = 8 | [36] |
HA (hydroxyapatite) | 28 | neutral pH | [19] |
100 °C-treated TiO2 200 °C-treated TiO2 | 40.6 44.4 | pH = 4 | [28] |
Nanopore sillica | 84.3 | neutral pH | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medykowska, M.; Wiśniewska, M.; Chibowski, S. Fly Ash-Based Na-X Zeolite Application in Separation Process of Bovine Serum Albumin from Aqueous Solution in the Presence of Organic Substances with Anionic Character. Materials 2023, 16, 5201. https://doi.org/10.3390/ma16145201
Medykowska M, Wiśniewska M, Chibowski S. Fly Ash-Based Na-X Zeolite Application in Separation Process of Bovine Serum Albumin from Aqueous Solution in the Presence of Organic Substances with Anionic Character. Materials. 2023; 16(14):5201. https://doi.org/10.3390/ma16145201
Chicago/Turabian StyleMedykowska, Magdalena, Małgorzata Wiśniewska, and Stanisław Chibowski. 2023. "Fly Ash-Based Na-X Zeolite Application in Separation Process of Bovine Serum Albumin from Aqueous Solution in the Presence of Organic Substances with Anionic Character" Materials 16, no. 14: 5201. https://doi.org/10.3390/ma16145201
APA StyleMedykowska, M., Wiśniewska, M., & Chibowski, S. (2023). Fly Ash-Based Na-X Zeolite Application in Separation Process of Bovine Serum Albumin from Aqueous Solution in the Presence of Organic Substances with Anionic Character. Materials, 16(14), 5201. https://doi.org/10.3390/ma16145201