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Abstract: The forging–healing of the internal porosity defects affects the tensile, impact and fatigue
properties of heavy forgings. In the present work, the effect of deformation process on the microstruc-
ture in the joint area as well as the tensile strength, impact toughness and fatigue strength was studied
experimentally. It is shown that the tensile strength is restored once the porosity defects were healed,
and the impact toughness is recovered when the flat grain band is eliminated. The fatigue strength
can be restored if a uniform grain structure can be achieved in both the joint area and the matrix,
whereafter precipitate become the key factor affecting the fatigue strength. A complete healing of
the porosity defects, a uniform grain structure in the joint area and the matrix, and a fully controlled
precipitate are essential to guarantee the mechanical properties and in-service performance of the
heavy forgings.

Keywords: plastic deformation; heavy forgings; mechanical properties; defect healing

1. Introduction

As load-bearing components, forgings are widely used in energy equipment manu-
facturing, shipbuilding and other important fields. The quality and performance of the
forgings determine the reliability of the equipment. The mechanical properties of the
forgings depend on their chemical composition and structures. Therefore, it is very im-
portant to study the influence of plastic deformation processes on the structures as well as
their corresponding effects on the tensile, impact and fatigue properties, which is essen-
tial for providing guidelines to formulate appropriate forging processes to guarantee the
comprehensive mechanical properties and service life of the forgings [1–5].

Nowadays, ingots produced using double vacuum smelting process are used to
produce heavy forgings, where inclusions are normally well controlled. However, due to
the solidification shrinkage or the thermal expansion of the materials, cavity or porosity
defects exist in the ingots inevitably, and with the increase in the size of the ingots, it
becomes more difficult to control the porosity defects. The forging–healing of the porosity
defects has remarkable influences on the tensile, impact and fatigue properties of the
forgings, especially for super heavy forgings. Accordingly, a precise control of the healing
quality becomes the key factor ensuring the internal quality, load bearing capacity and
service performance of the forgings. A508.3 steel is generally used to manufacture pressure
vessel forgings for nuclear reactors. The comprehensive mechanical properties of forgings,
such as tensile strength, impact toughness, fatigue strength, etc., play an important role in
reactor safety, which has attracted great attention.

It is the most feasible and efficient method of hot plastic deformation for mechanical
properties required in the actual production of heavy forgings. Han et al. [6] found that
the mechanism of recovery process was the diffusion and migration of metal atoms by
using the experimental modelling in 20MnMo steel specimens with inner crack at high
temperature. Yu et al. [7] pointed out that the recovery degree of the internal crack increased
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when increasing heating temperature, holding time and reduction ratio and decreased
with the increase in deformation passes and strain rate, by studying the influence of
different process parameters on crack healing in low-carbon steel specimens under hot
deformation. Wei et al. [8] studied the morphology evolution of steel specimens with
internal cracks by quasi in situ observation and pointed out that the crack healing at
crack tips could be achieved after healing at 1100 ◦C for 120 min. Zhang et al. [9] studied
the microstructure and hardness with artificially created internal cracks and found that,
by using hot compression and heat treatment, the ferrite grains assembled along the
boundary of the crack, and sub-grains had higher hardness in the healing ranges than
the matrix. Recently, the crack healing mechanism in metallic materials were also studied
by a molecular dynamics model [10,11]. Some investigations on mechanical properties
recovered after crack healing are reported recently. In our previous study [12–14], we found
the relationship between tensile strength, impact toughness and changes in grain structure
at the interface of porous defects. Xin et al. [12] discovered the phenomena that when
internal microcracks disappeared completely under heat treatment healing technique, the
tensile properties of the crack healing zone recovered completely, but the impact toughness
could only partially be restored. Qiu and Liu et al. [13,14] pointed out that dynamic
load performance recovery such as impact toughness not only requires the elimination of
porosity defects but also requires the grain structure of the repair interface to be basically
the same as the matrix structure. By using the experimental modeling and simulation, the
influence of process parameters such as plastic deformation, insulation temperature, repair
time and deformation rate on impact toughness was obtained.

However, the study about the recovery of mechanical properties under dynamic load,
which is important for actual service condition of heavy forgings, is still not enough, and it
is essential to carry out further research on crack healing methods to improve mechanical
properties recovery. The effects of deformation modes and quenching and tempering (Q&T)
process on internal crack healing in SA 508-3 steel were studied, which laid the foundation
to further study optimum internal crack healing strategy.

For a certain steel grade with a particular chemical composition, the forging process
parameters including deformation amount, temperature and deformation rate determine
the microstructure of the forgings. It is of significance to investigate the relationship among
the process parameters, microstructures and the mechanical properties under static and
dynamic loads, i.e., tensile strength, impact toughness and fatigue strength, which is a
knowledge base for exploring approaches to increase the load bearing performance and
improve the in-service safety of the forgings.

In the present work, the forging–healing of the internal porosity defects was studied as
well as the effect of the deformation process parameters and microstructures on the tensile
strength, impact toughness and fatigue strength of the forgings.

2. Material and Experimental Method

An experimental method called butt-joint and high-temperature compression method
was employed to simulate the forging–healing process, by which the effect of the process
parameters and microstructure on the tensile strength, impact toughness and fatigue
strength was studied. SA508.3 forged steel was chosen as the experimental material and
cylindrical pieces with a diameter of 120 mm and a height of 60 mm were cut from the
forged material. The chemical composition (%, mass fraction) of the material cut from the
SA508.3 steel forging is C 0.19, Si 0.22, Mn 1.4, P 0.006, S 0.006, Cr 0.12, Mo 0.53, Ni 0.53
and the balance is Fe. The high-temperature forging experiment was conducted by using
two cylindrical pieces welded at the edges. The geometry of the cylindrical piece and the
forging experiment process are shown in Figure 1.
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and a U-shaped notch was created at the middle position of the length of the specimen, 

Figure 1. The geometry of the cylindrical pieces and the sampling illustration for property test.

In order to evaluate the forging–healing effectiveness, experiments for the purpose
of comparison were designed and conducted, which means that for any experiment, a
counterpart forging experiment was carried out under the same deformation condition.
We may consider the joint interface between the two cylindric pieces to be an artificial
crack, and in the counterpart experiment, the work piece is a single bulk of the material
without any artificial crack. In addition, a term ‘percentage of recovery’ was defined
as the ratio of the property value measured in the experiment to that measured in the
counterpart experiment.

Figure 2 shows the morphology of the original joint zone in the cylindrical pieces. The
width of the original internal joint area was about 0.5 µm in the middle part.
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Figure 2. SEM micrograph of the joint zone before the plastic deformation.

The cylindric work pieces were forged under designed processes, held at a certain
temperature and cooled to room temperature. Specimens for mechanical property test
were taken from the forged work piece by using wire cutting along the axial direction of
the piece.
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The geometry and dimensions of the tensile test specimens are shown in Figure 3a
according to the China National Standard GB/T228.1 ‘Tensile Test of Metallic Materials
Part 1: Room Temperature Test Method’ [15]. The tensile tests at room temperature were
carried out on a 30-ton universal material test machine.
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Figure 3. The geometry and dimensions of the mechanical property test specimens. (a) The tensile
test specimen, (b) The impact test specimen, (c) The low cycle fatigue test specimen.

According to the China National Standard GB/T229 ‘Metallic Materials Charpy Impact
Test Method’ [16], the size of the impact test specimen is 10 mm × 10 mm × 55 mm, and a
U-shaped notch was created at the middle position of the length of the specimen, where
the joint interface or healed crack is located, as shown in Figure 3b. The impact test was
carried out on a 300 J pendulum impact test machine.

According to the China National Standard GB/T 15248-2008 ‘Axial Constant Ampli-
tude Low Cycle Fatigue Test Method for Metallic Materials’ [17], the specimens for fatigue
test with geometry and dimensions shown in Figure 3c were prepared. The fatigue test was
carried out using an INSTRON low cycle fatigue test machine. In the test, a constant strain
triangular wave load was employed, where the constant strain amplitude is 0.006, the load
frequency is 0.83 Hz, the strain rate is 0.02 s−1, and the load ratio Rs is −1. The specimen
was broken when the load dropped to 25% of the stable load.
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3. The Effect of Deformation Process Parameters on the Tensile Strength
3.1. Effect of Tensile Strength Recovery under Different Deformation Conditions

The specimens were heated to 950, 1050 and 1150 ◦C for upsetting deformation, and
the upsetting reduction rates were 10%, 20% and 30%, respectively. After the forging is
completed, keep it at the deformation temperature for 60 min, and then air cool it to room
temperature. According to the method and location in Figure 1, the specimen is sectioned
for tensile deformation, and the tensile strength is obtained as shown in Table 1. The
percentage recoveries of room-temperature tensile strength under different deformation
modes are shown in Figure 4.

Table 1. Test results of tensile strength of fracture joint zone under different deformation modes.

Temperature [◦C] 950 1050 1150

Upsetting rate (%) 10 20 30 10 20 30 10 20 30
Tensile strength of joint zone [MPa] 320 545 575 370 575 598 340 590 595

Standard deviation of tensile strength [MPa] 25 31 30 27 33 48 29 53 49
Tensile strength of reference specimen [MPa] 610 592 598 636 588 615 585 625 590

Standard deviation of tensile strength of reference specimen [MPa] 46 50 36 56 43 66 36 71 76
Recovery rate of tensile strength % 52.4 92.1 96.2 58.2 97.8 97.2 58.1 94.4 100.8

The tensile strength is the average value of three tests.
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The tensile strength of the specimen decreases with the increase in deformation tem-
perature. When the deformation temperature is the same and the upsetting reduction rate
is 20%, the tensile strength of the material can basically recover to the initial structure state.
Under the experimental temperature conditions, the effect of temperature on the recovery
of tensile strength is not significant.

3.2. The Effect of Deformation Amount on the Tensile Property

The cylindrical piece was heated to 1050 ◦C and held at this temperature for 60 min,
followed by upsetting deformation and natural cooling to room temperature. Figure 5
shows the SEM image of the microstructure of the joint area.

As shown in Figure 5a,b, when the reduction rate of the cylindrical piece is less than
10%, the gap of the joint interface reduced gradually, and the microstructure of the joint
area is composed of fine grains, and the width of the fine grain structure band is about
10 µm. However, micropores remained in the fine grain band (see Figure 5b). When the
reduction rate reaches 20% (Figure 5c), the micropores in the joint area disappeared, and
the microstructure in this area became finer. When the reduction rate reaches 30%, the fine
grain structure almost disappeared, as shown in Figure 5d, where no apparent difference
between the joint area and the matrix was observed. This means that the high reduction
rate makes the joint interface fully healed. Tensile test showed that the tensile strength is
almost the same as that of the counterpart experiment where the forged material does not
have any artificial crack, i.e., the tensile strength was restored after the porosity defect was
healed by forging.

The comparison of the structure state shows that the tensile strength basically recovers
after the elimination of internal porosity defects. Temperature and plastic deformation are
important factors that affect the forging of internal porous defects to improve the tensile
strength. The effect is mainly reflected by the existence of porous defects.

3.3. The Effect of the Deformation Rate on Crack Healing

The cylindrical piece was compressed by the reduction rate of 30% at 1050 ◦C with
different strain rates, and the microstructure of the joint area is shown in Figure 6.



Materials 2023, 16, 5205 7 of 20
Materials 2023, 16, x FOR PEER REVIEW 7 of 20 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 5. The microstructure of the joint area of SA508.3 steel after forging–healing with different 
reduction rate, where the temperature is 1050 °C and the deformation rate is 0.1 s−1. (a) 5%, (b) 10%, 
(c) 20%, (d) 30%. 

The comparison of the structure state shows that the tensile strength basically recov-
ers after the elimination of internal porosity defects. Temperature and plastic deformation 
are important factors that affect the forging of internal porous defects to improve the ten-
sile strength. The effect is mainly reflected by the existence of porous defects. 

3.3. The Effect of the Deformation Rate on Crack Healing 
The cylindrical piece was compressed by the reduction rate of 30% at 1050 °C with 

different strain rates, and the microstructure of the joint area is shown in Figure 6. 
When the strain rate is 1 s−1, the joint interface area is uneven, and there are many 

small pores in it, as shown in Figure 6a. This was mainly caused by the high strain rate 
that made the work piece deform rapidly. The accumulated strain and energy cannot be 
released through recrystallization in the joint area. When the applied strain rate is 0.01 s−1, 
the unevenness in the joint area was significantly reduced, as shown in Figure 6b, and 
there are no micropores in the area while the microstructure is still different from the ma-
trix. With the decrease in the applied strain rate, the width of the fine grain structure band 
increased, the pores in the band decreased even disappeared, and the unevenness of the 
joint area decreased as well. 

Under the condition of the same reduction, a decrease in the strain rate means an 
increase in the deformation time, which allows a longer time for recrystallization nuclea-
tion and growth in the joint area. The recrystallized grains fill the cracks and pores, thus 
reducing the unevenness in the joint area. 

It was found that the thermoplastic deformation resulted in the healing of the joint 
interface; however, microstructure differences still exist between the joint area and the 

Figure 5. The microstructure of the joint area of SA508.3 steel after forging–healing with different
reduction rate, where the temperature is 1050 ◦C and the deformation rate is 0.1 s−1. (a) 5%, (b) 10%,
(c) 20%, (d) 30%.

Materials 2023, 16, x FOR PEER REVIEW 8 of 20 
 

 

matrix. Therefore, for the steel SA508.3, a treatment of holding at 1050 °C for a period of 
time is necessary to promote homogenization and reduce the microstructure difference 
between the joint area and the matrix, though the tensile strength does not have a notice-
able change in this process. 

  
(a) (b) 

Figure 6. The microstructure of the joint area with different strain rate, the reduction rate 30% and 
deformation temperature 1050 °C. (a) 1 s−1 and (b) 0.01 s−1. 

Based on the above results shown in Figures 5 and 6, it was found that the forging–
healing and the recrystallization achieved a microstructure bonding in the joint area, the 
tensile strength of the joint restored to strength level of the matrix of the material, and a 
slight change in the microstructure does not cause obvious change in the tensile strength. 

At this time, typical defect repair tissues were cut for impact test, as shown in Figure 
7. The corresponding impact toughness recovery value is about 60% of the comparative 
value. The grain boundary distribution of metal structure with “I” shape is an important 
cause of impact damage. 

  

Figure 7. Critical state of tensile strength of typical porous structure. 

4. The Effect of the Microstructure in Joint Area on the Impact Toughness 
The cylindrical pieces were heated to 950, 1050 and 1150 °C, respectively, followed 

by holding at the temperatures for 60 min, and then the pieces were treated with the fol-
lowing processes: upsetting, upsetting–drawing–upsetting and upsetting–drawing–up-
setting–drawing, respectively. The reduction rate of the upsetting is 20%, and the reduc-
tion sequence in each drawing cycle is 0°→180°→90°→270°. One drawing operation is 
composed of four reduction cycles, and a full anvil reduction was applied with reduction 
rate of 20% for each pressing. After the forging process, the pieces were holding at the 
deformation temperature for 60 min, and then were cooled naturally to room temperature. 

Figure 6. The microstructure of the joint area with different strain rate, the reduction rate 30% and
deformation temperature 1050 ◦C. (a) 1 s−1 and (b) 0.01 s−1.



Materials 2023, 16, 5205 8 of 20

When the strain rate is 1 s−1, the joint interface area is uneven, and there are many
small pores in it, as shown in Figure 6a. This was mainly caused by the high strain rate
that made the work piece deform rapidly. The accumulated strain and energy cannot be
released through recrystallization in the joint area. When the applied strain rate is 0.01 s−1,
the unevenness in the joint area was significantly reduced, as shown in Figure 6b, and there
are no micropores in the area while the microstructure is still different from the matrix.
With the decrease in the applied strain rate, the width of the fine grain structure band
increased, the pores in the band decreased even disappeared, and the unevenness of the
joint area decreased as well.

Under the condition of the same reduction, a decrease in the strain rate means an
increase in the deformation time, which allows a longer time for recrystallization nucleation
and growth in the joint area. The recrystallized grains fill the cracks and pores, thus
reducing the unevenness in the joint area.

It was found that the thermoplastic deformation resulted in the healing of the joint
interface; however, microstructure differences still exist between the joint area and the
matrix. Therefore, for the steel SA508.3, a treatment of holding at 1050 ◦C for a period of
time is necessary to promote homogenization and reduce the microstructure difference
between the joint area and the matrix, though the tensile strength does not have a noticeable
change in this process.

Based on the above results shown in Figures 5 and 6, it was found that the forging–
healing and the recrystallization achieved a microstructure bonding in the joint area, the
tensile strength of the joint restored to strength level of the matrix of the material, and a
slight change in the microstructure does not cause obvious change in the tensile strength.

At this time, typical defect repair tissues were cut for impact test, as shown in Figure 7.
The corresponding impact toughness recovery value is about 60% of the comparative value.
The grain boundary distribution of metal structure with “I” shape is an important cause of
impact damage.

Materials 2023, 16, x FOR PEER REVIEW 8 of 20 
 

 

matrix. Therefore, for the steel SA508.3, a treatment of holding at 1050 °C for a period of 
time is necessary to promote homogenization and reduce the microstructure difference 
between the joint area and the matrix, though the tensile strength does not have a notice-
able change in this process. 

  
(a) (b) 

Figure 6. The microstructure of the joint area with different strain rate, the reduction rate 30% and 
deformation temperature 1050 °C. (a) 1 s−1 and (b) 0.01 s−1. 

Based on the above results shown in Figures 5 and 6, it was found that the forging–
healing and the recrystallization achieved a microstructure bonding in the joint area, the 
tensile strength of the joint restored to strength level of the matrix of the material, and a 
slight change in the microstructure does not cause obvious change in the tensile strength. 

At this time, typical defect repair tissues were cut for impact test, as shown in Figure 
7. The corresponding impact toughness recovery value is about 60% of the comparative 
value. The grain boundary distribution of metal structure with “I” shape is an important 
cause of impact damage. 

  

Figure 7. Critical state of tensile strength of typical porous structure. 

4. The Effect of the Microstructure in Joint Area on the Impact Toughness 
The cylindrical pieces were heated to 950, 1050 and 1150 °C, respectively, followed 

by holding at the temperatures for 60 min, and then the pieces were treated with the fol-
lowing processes: upsetting, upsetting–drawing–upsetting and upsetting–drawing–up-
setting–drawing, respectively. The reduction rate of the upsetting is 20%, and the reduc-
tion sequence in each drawing cycle is 0°→180°→90°→270°. One drawing operation is 
composed of four reduction cycles, and a full anvil reduction was applied with reduction 
rate of 20% for each pressing. After the forging process, the pieces were holding at the 
deformation temperature for 60 min, and then were cooled naturally to room temperature. 

Figure 7. Critical state of tensile strength of typical porous structure.

4. The Effect of the Microstructure in Joint Area on the Impact Toughness

The cylindrical pieces were heated to 950, 1050 and 1150 ◦C, respectively, followed
by holding at the temperatures for 60 min, and then the pieces were treated with the
following processes: upsetting, upsetting–drawing–upsetting and upsetting–drawing–
upsetting–drawing, respectively. The reduction rate of the upsetting is 20%, and the
reduction sequence in each drawing cycle is 0◦→180◦→90◦→270◦. One drawing operation
is composed of four reduction cycles, and a full anvil reduction was applied with reduction
rate of 20% for each pressing. After the forging process, the pieces were holding at the
deformation temperature for 60 min, and then were cooled naturally to room temperature.
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4.1. Impact Toughness Recovery under Different Deformation Modes

According to the test, the recovery of the impact properties of the section bonding
zone under different deformation modes is shown in Table 2. The percentage recoveries
of room-temperature impact properties under different deformation modes are shown
in Figure 8.

Table 2. Test results of impact properties of fracture joint zone under different deformation modes.

Temperature [◦C] 950 1050 1150

Deformation Mode Upsetting
Two

Upsetting–
Drawing

Two
Upsetting

Two
Drawing

Upsetting
Two

Upsetting–
Drawing

Two
Upsetting

Two
Drawing

Upsetting
Two

Upsetting–
Drawing

Two Up-
setting

Two
Drawing

Impact toughness of joint area [J] 15.9 5.3 38.6 24.2 15.0 33.8 8.9 19.4 19.2
Standard deviation of impact

toughness of joint area [J] 3.6 3.5 5.9 3.9 3.8 6.6 3.2 5.2 4.2

Impact toughness of the reference
specimen [J] 37.5 40.1 38.2 27.1 34.8 32.5 14.5 17.9 18.2

Standard deviation of impact
toughness of the reference specimen [J] 8.2 6.2 5.3 4.8 7.7 5.4 4.6 4.3 7.2

Recovery rate of impact toughness % 42.4 13.2 98.5 88.3 43.1 104.0 61.4 108.4 105.5

The tensile strength is the average value of three tests.

When the deformation mode is the same, the impact property of the control specimen
decreases with the increase in deformation temperature. When the deformation temper-
ature is the same, the impact absorption energy of the comparison specimen after two
upsetting and one drawing deformation is significantly increased compared with that of
the first upsetting, and the impact absorption energy of the simulated defect specimen
returns to the initial state at 1150 ◦C. The impact absorbing energy of the specimen after two
upsetting and two drawing deformation is basically the same as the impact performance
of the comparison specimen, which indicates that the impact performance of the defect is
basically recovered.

It can be seen from this that temperature and plastic deformation are important factors
that affect the forging of internal porosity defects to improve the impact performance.
Obviously, it is more difficult to repair the dynamic mechanical properties such as impact
than the static mechanical properties such as tension and compression.
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4.2. The Microstructure of the Joint Area with Impact Toughness Recovered

Figure 9 shows the microstructure near the fracture area of the specimen of which the
impact absorption energy was approximately recovered to that of the matrix material.

It can be seen from Figure 9 that the joint interface of the specimen features a discontin-
uous wave morphology, which increases the difficulty for crack propagation and thus leads
to the impact absorption energy recovery. Inclusions containing Al and Si were found in
the joint area, which is considered a factor having a negative effect on the recrystallization
and the recovery of the impact absorption energy.
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By comparing with the reported work [6], we may understand that when the defor-
mation mode is upsetting the microstructure of the joint area is mainly a relatively flat
grain band. When the deformation mode is upsetting–drawing–upsetting, the grains in
the band have particular orientation and their size has a large difference with the matrix,
which is also called mixed crystals, and with the increase in the process temperature, the
impact absorption energy and the recovery rate of impact energy are increased. In both
these processes, the microstructure are uneven while the upsetting–drawing–upsetting
process has a better effectiveness.

When the deformation mode is the same, the impact absorption energy of the speci-
men decreases with the increase in the deformation temperature. When the deformation
temperature is the same, the impact absorption energy of the specimen processed by
upsetting–drawing–upsetting was increased significantly as compared with that by only
one upsetting. When the deformation temperature is 1150 ◦C, the impact absorption energy
of the specimen was fully restored. When the upsetting–drawing–upsetting–drawing
process was applied, the impact absorption energy of the specimen was also fully restored,
and it was noticed that the microstructure of the joint area is almost the same as that in the
counterpart experiments.

The deformation temperature, amount and time are the important factors affecting the
healing of internal porosity defects and changing the impact property, and the microstruc-
ture of the joint area, a bridge of the process and property, accounts for the difference in the
recovery mechanism in the tensile and impact properties.

4.3. The Requirements for Deformation Amount

Figure 10 shows the microstructure of SA508.3 steel after upsetting deformation at
1050 ◦C where the deformation strains are 0.1, 0.3 and 0.7 calculated by the finite element
method, respectively. In the early stage of deformation, the grain boundaries were bended,
and recrystallization appears at some triple grain boundaries, as shown in Figure 10a. With
the increase in the strain, a large number of dynamic recrystallized nuclei appeared along
the original grain boundaries and began to grow into the grains (see Figure 10b). When the
deformation strain reached 0.7, the original structure was completely replaced by newly
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generated dynamic recrystallized grains, as shown in Figure 10c. The evolution of the
microstructure can be divided into the following three stages.
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Figure 10. The microstructure of SA508.3 steel deformed at 1050 ◦C under different strain conditions.
(a) 0.1, (b) 0.3, (c) 0.7.

1. In the early stage of the deformation, the strain was small and the grain boundaries
began to bend, which created conditions of energy and structure for the nucleation of
dynamic recrystallization.

2. With the increase in the strain, a large quantity of sub-grains were formed near the origi-
nal grain boundaries, and the sub-grains formed the nuclei of dynamic recrystallization.

3. In the consequent deformation process, the recrystallized nuclei grew up through the mi-
gration of large angle grain boundaries and finally replaced the original grain structure.

It implies that sufficient plastic deformation and time are required to achieve a similar
grain size in both the matrix and the joint area. In other words, the recovery of the impact
property requires sufficient plastic deformation and holding time for homogenization.

The microstructure of the joint surface of the two upsetting and two drawing forgings
is shown in Figure 9. After the microstructure is uniform, the impact toughness is restored.
Figure 11 shows the fracture of the specimen with the impact property restored. The
morphology of the fracture is characterized by dimples and cleavage facets, and the fraction
of dimples is higher, thus resulting in a high impact absorption energy.
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5. The Effect of Defect Healing on the Fatigue Property

The cylindrical pieces were heated to 950, 1050 and 1150 ◦C, respectively, followed by
holding at the temperatures for 60 min, and then the pieces were treated with the processes
of upsetting–drawing–upsetting–drawing. The reduction rate of the upsetting is 20%,
and the reduction sequence in each drawing cycle is 0◦→180◦→90◦→270◦. One drawing
operation is composed of four reduction cycles, and a full anvil reduction was applied
with reduction rate of 20% for each pressing. After the forging process, the pieces were
holding at the deformation temperature for 1 h, and then were cooled naturally to the
room temperature. Counterpart experiments were conducted for evaluating the recovery
percentage of the fatigue property.

For the pieces deformed at 950 ◦C and 1150 ◦C, the fatigue cycles show a remarkable
difference under the test condition with the strain amplitude of 0.0064. The number of
fatigue cycles of the pieces deformed at 950 ◦C is 3566, while that of the pieces deformed
at 1150 ◦C is 26,522. It was noticed that the fracture does not always appear in the joint
area, which indicates that the fatigue property of the joint area has no difference from that
of the matrix. Inclusions and carbides were found in the fracture and there is an apparent
difference in microstructure of the joint area of the pieces deformed at 950 ◦C and 1150 ◦C.

5.1. Recovery Effect of Fatigue Properties under Different Deformation Modes

By using the same conditions as the impact toughness test, the recovery of fatigue
stress cycles in the junction area of the section under different deformation modes is
shown in Table 3. The percentage recoveries of room-temperature impact properties under
different deformation modes are shown in Figure 12.

Table 3. Test results of fatigue stress cycles of fracture joint zone under different deformation modes.

Temperature [◦C] 950 1050 1150

Deformation Mode Upsetting

Two
Upsetting

Two
Drawing

Upsetting
Two

Upsetting–
Drawing

Two
Upsetting

Two
Drawing

Upsetting

Two
Upsetting

Two
Drawing

Fatigue stress cycles of the
joint areas [t] 876 16,855 1362 15,866 17,655 1476 16,858

Standard deviation of fatigue
stress cycles of the joint

areas [t]
2.3 × 102 3.2 × 103 5.6 × 102 4.3 × 103 5.1 × 103 7.9 × 102 6.3 × 103

Fatigue stress cycles of the
reference specimen [t] 15,511 17,986 15,876 16,783 17,511 15,686 17,522

Standard deviation of fatigue
stress cycles of the reference

specimen [t]
1.8 × 103 2.9 × 103 4.2 × 103 5.7 × 103 5.4 × 103 4.3 × 103 3.0 × 103

Recovery rate of fatigue stress
cycles % 5.6 93.7 8.1 94.5 100.8 9.4 96.2

The fatigue stress cycles is the average value of three tests.

When the deformation mode is the same, the fatigue performance of the control
specimen increases with the increase in deformation temperature. When the deformation
temperature is the same, the number of fatigue stress cycles of the comparison specimen
after two upsetting and one drawing deformations is significantly higher than that of the
first upsetting, and the number of fatigue stress cycles of the simulated defect specimen
returns to the initial state at 1150 ◦C. The number of fatigue cycles of the specimen after
two upsetting and two drawing deformations is basically the same as that of the reference
specimen, indicating that the fatigue strength of the defect is basically recovered. By
comparing with the reported work [18], the number of fatigue cycles is basically the same.
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It can be seen that temperature and plastic deformation are important factors that
affect the forging of internal porosity defects to improve the fatigue strength. The effect
is mainly reflected by the degree of grain structure uniformity, which also explains the
difference in recovery mechanisms of static load properties such as tension and dynamic
load properties such as impact and fatigue. The main reason is the difference in grain
structure uniformity and micro holes. Obviously, it is more difficult to repair the dynamic
mechanical properties such as impact and fatigue than the static mechanical properties
such as tension and compression.

5.2. The Effect of High-Temperature Plastic Deformation on the Fatigue Property

Figure 13 shows the fatigue fracture of the piece heated to 1150 ◦C, held at the tem-
perature and deformed, and it shows that the size of the inclusion and the unhealed dot
is approximately 20 µm. It is much smaller than the equivalent size prescribed in the
technical requirement about ultrasonic and other nondestructive testing for heavy forgings.
Although the existence of these microscopic defects affects the mechanical properties of
the forgings, the technical standards for large forgings have not yet included inspection
requirement for these defects [14].
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Figure 13. The typical defects in fatigue fracture.

Energy spectrum analysis and chemical composition analysis were conducted for
particular positions in the fatigue fracture, and the results are shown in Figure 14. The
atomic percentage of C at position (a) in Figure 14 is 38.01%, and it is inferred that the
inclusions are mainly carbides. The atomic percentages of C, O and Si at the position (b) in
Figure 14 are 64.72%, 9.77% and 0.37%, respectively. It is likely to have some inclusions
such as CaCO3 and SiO2. The inclusions significantly decrease the fatigue strength as
normally cracks initiate at the boundaries of inclusions and propagate in the cyclic loading
process, resulting in fatigue failure. The inclusions at the joint interface and the unhealed
micro pores are the major factor leading to low fatigue strength of the specimen after
thermoplastic deformation.
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The fracture and microstructure analysis demonstrated that the microstructure of the
joint area is almost the same as that of the matrix, and the ‘mixed crystal’ phenomenon of the
joint area and the matrix is eliminated. The tensile, impact and fatigue properties were fully
restored. The fracture presents typical fatigue characteristics. Although the morphology of
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the inclusions in the fracture was not changed noticeably, its impact on the property under
dynamic loads such as fatigue strength and impact toughness is greatly reduced.

6. The Influence of the Plastic Deformation on the Different Mechanical Properties

By referring to the data reported in literatures [12–14], it is found that under the same
deformation temperature, amount and holding conditions, the recovery percentage of the
tensile strength is about 100%, the percentage of the impact toughness is about 80%, and
that of the fatigue strength is less than 10%. After plastic deformation and holding at a high
temperature, the internal porosity defects were almost healed though there are still some
microscopic inclusions and holes, and the mechanical property under static load such as
tensile strength was basically restored. The recovery percentage of the impact toughness is
good; however, the recovery of the fatigue property is poor. It is inferred that the healing
of the porosity defects has different impact on the mechanical properties under static and
dynamic loads because the microscopic inclusions and pore defects have distinct behaviors
under different types of loads. Therefore, the requirements for controlling the internal
defects should be determined by referring to the types of the load the forging bears.

Based on the above discussion, it is concluded that the deformation temperature,
holding time and the deformation amount are important factors determining the healing
effect of internal porosity defects, the evenness of grain structures and morphology of
inclusions, thus affecting the mechanical properties of the forgings.

In the process of high-temperature plastic deformation, the healing of the porosity or
crack defects can be divided into six stages. The first is the formation and contact of the
protrusions on the inner surfaces of the crack. The second is the growth of the protrusions,
changing the initial crack into discrete crack segments, followed by the transition of the
crack segments into micro hole. In the fourth stage, the micro holes disappears, followed
by the fifth stage in which the grain growth happens in the joint area. The final is the stage
in which the microstructures in the joint area and the matrix are homogenized. The first to
the fourth stages can be achieved only by a single upsetting or drawing, while repeated
upsetting and drawing are required if a microstructure adjustment in the last two stages
is desired.

The tensile property can be restored after the porosity defects are eliminated in up-
setting process, while the recovery of the impact and fatigue properties requires not only
the elimination of the porosity defects but also the homogenization of the grain structures
in both the joint area and the matrix. The mechanical properties under dynamic loads
show recovery only after the healing of porosity defects and the homogenizing of the grain
structures, which means that the conditions for recovering the fatigue property are more
stringent than those for recovering the tensile property. Although the adverse effects such
as inclusions and chemical segregation in the material cannot be completely eliminated by
the forging process, porosity defects in the material can be eliminated and microstructure
can be homogenized by forging, which reduces the risk of crack propagation greatly. Suffi-
cient plastic deformation in multiple directions under high-temperature conditions with
guaranteed time for recrystallization helps to achieve fine grains with desired orientations;
however, its technical difficulty undoubtedly increases.

By studying the influence of plastic deformation process on the tensile strength, impact
toughness and fatigue strength, relationship between the recovery of the mechanical prop-
erties under static and dynamic loads and the healing of the porosity defects is established,
as shown in Figure 15.

The performance under static loads such as tensile strength and that under dynamic
loads such as impact toughness and fatigue strength are a pair of contradictions. Generally,
a material with a higher tensile strength has lower impact toughness and fatigue strength.
A process window can be determined to achieve a reasonable balance between the static
and dynamic properties based on a thorough understanding of the critic microstructure for
the property transition.
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Figure 16 shows the correspondence of the variation of the internal structures to the
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structure that is fine and uniform or orderly distributed is the key for the full restoration
of the comprehensive mechanical properties of the forgings. The multi-directional plastic
deformation achieved by the combined process of upsetting and drawing is the effective
way to restore the dynamic mechanical properties.

7. Conclusions

• The tensile strength, impact toughness and fatigue strength can be recovered after the
porosity defect is healed and the microstructure is made uniform.

• The microstructure feature of tensile property recovery is the disappearance of porosity
defects, and the microstructure feature of impact toughness recovery is that the joint
surface is not on the same line, and the microstructure feature of fatigue strength
recovery is uniform. The deformation conditions for various performance recoveries
vary greatly.

• Precipitate becomes the key factor affecting the mechanical properties under dynamic
loads once the porosity defect is healed and the microstructure is homogenized.
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