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Abstract: Changes in loading position have a significant impact on the stress field of each vulnerable
area of an orthotropic steel deck (OSD). The arc opening area of the diaphragm and the connecting
area between the U-rib and the diaphragm under the moving load are prone to fatigue cracking. By
comparing the stress responses under different methods, the hot spot stress (HSS) method is used as
the main stress extraction method in fatigue performance evaluation. The control stress of fatigue
cracking was analyzed by comparing the direction of the principal stress field with the crack direction
in this experiment. According to the stress amplitude deviation under the biaxial stress state, a set of
methods for evaluating the effects of in-plane biaxial fatigue was developed. An improved luffing
fatigue assessment S–N curve was applied to analyze the fatigue life of the diaphragm’s arc opening
area. The results show that when the moving load is exactly above the connection of the deck and
the web of the U-rib on one side, it is in the most unfavorable position in the transverse direction,
and the diaphragm is mainly under the in-plane stress state. The longitudinal range of the stress
influence line of the arc opening is approximately twice the diaphragm spacing. Two to three stress
cycles are caused by one fatigue load. Fatigue crack control stress is the principal stress tangential to
the arc opening’s edge in this area. The normal direction of the principal stress in the model test is
roughly consistent with the crack initiation direction. The variation in the stress amplitude deviation
in this area is caused by changes in the action position of the moving load. When the moving load is
at a certain distance from the involved diaphragm, it is reduced to zero, implying that the in-plane
fatigue effect is the greatest in this area.

Keywords: orthotropic steel deck (OSD); diaphragm plate; stress composition; moving load; U-rib;
arc opening

1. Introduction

The orthotropic steel deck (OSD) is frequently used in long-span steel bridges owing
to its light weight, high strength characteristics, and excellent stress properties. Figure 1
shows the main components of the OSD. The diaphragm’s arc opening area is one of the
key fatigue-prone details of an OSD [1]. Fatigue cracking in the diaphragm’s arc opening
area often occurs at the edge of the opening. The stress distribution of the curved cut-outs
is closely related to geometrical parameters such as the diaphragm’s arc opening pattern,
the web thickness of the diaphragm and longitudinal ribs, the presence or absence of an
inner diaphragm, and the welding quality [2,3].

The diaphragm–U-rib joint is a complex and fatigue-prone part, and the stress con-
centration at the weld toe is significant under a moving load [4–7]. In addition, ensuring
welding quality in actual structures is difficult, which may result in fatigue cracking due to
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possible welding defects. According to recent research findings, the relative structural stiff-
ness of the diaphragm web and U-rib, the diaphragm hole-digging type, and the welding
process of their connecting parts all have a significant impact on fatigue performance [8,9].
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Cuninghame J.R. [10] first made a deep mechanism analysis of the causes of fatigue
cracking in the vulnerable area of the structure of Severn Bridge in the UK in 1987, and
summarized the vulnerable parts of the bridge deck with a fatigue cracking risk based on
the calculation results. Robert J. Connor [11] discussed the stress response of orthotropic
plates under load in different test environments, carried out long-term stress monitoring on
the Williamsburg bridge, and summarized the stress amplitude of each vulnerable area from
the data in 2002. Michèle S. Pfeil [12] obtained the stress concentration factor in the local
area of a trapezoidal stiffener based on the measured data of test strain gauges and FEM
(finite element method) simulation results in 2005. John R. Fisher [13] obtained the stress
amplitude of each fatigue detail area of an actual bridge based on field-measured fatigue
test data and then evaluated its fatigue life in 2005. Zhi-Gang Xiao [14] discussed the fatigue
performance of a U-rib butt joint area under constant stress amplitude and compared the
test results with the values calculated based on the linear elastic fracture mechanics theory.
Mustafa Aygül [15] predicted the fatigue life of welded joints between the longitudinal
ribs and diaphragms of orthotropic steel bridge decks in 2012 using common steel bridge
members’ fatigue strength assessment methods. Liu [16] studied the fatigue performance
of the connection area between a deck roof and a U-rib, extracted the stress data using
the method of linear extrapolation of HSS, and focused on the impact of the difference in
moving load location in the transverse direction in 2015. PIETRO [17] evaluated the fatigue
strength of the longitudinal rib diaphragm connection joint, deduced the mathematical
formula used to express the stress intensity factor K by using the Paris law and the J-integral
method, and obtained the actual fatigue life by extrapolating the measured data and
theoretical calculation values. Karlo [18] studied the prediction of residual stress and
structural deformation caused by the welding process during manufacturing. The data
were compared based on the butt welding of two plates and the T-joint fillet welding of
two plates.

However, the cracking mechanism of an OSD with an arc opening has not been ex-
plored yet, and such fatigue cracks are observed during the relevant fatigue tests. Therefore,
the fatigue performance of a diaphragm’s arc opening area based on this phenomenon of fa-
tigue cracking is analyzed in this paper. In this paper, the stress response of the diaphragm’s
arc opening area under the local action of the moving loads is obtained by modeling and
analysis using FEM software known as ABAQUS (2018). The stress composition of the
diaphragm’s arc opening area and the control stresses under the corresponding fatigue
failure mode can be analyzed based on the stress responses. The fatigue properties and
reasons for cracking in this area are also discussed. The fatigue effects of the diaphragm
and its influencing factors are analyzed using the fatigue effect evaluation criteria. The
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research details on the fatigue life are analyzed based on the improved variable amplitude
fatigue assessment S–N curve.

2. Fatigue Assessment Methods of OSD
2.1. HSS Method

Hot spot stress (HSS) refers to the maximum structural stress or the stresses at danger-
ous points on a dangerous section in a structure [19,20]. It includes membrane stress and
bending stress, but nonlinear stress is not considered. The HSS value for fatigue assessment
can be accurately and rapidly extracted only by reasonably dividing the mesh based on the
specific structural form and solution requirements.

The recommended extrapolation rules for HSS are mentioned in the evaluation codes
of various countries. The extrapolation method is illustrated in Figure 2. Some of the
commonly used specifications are as follows [21–24]:
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2.1.1. International Welding Society (IIW) Recommended Method

For two-point linear extrapolation calculation, the stress extraction points at 0.4 t and
1.0 t from the weld toe are as follows:

σhss = 1.67σ0.4t − 0.67σ1.0t (1)

σhss—hot spot stress;
t—plate thickness.

For three-point linear extrapolation calculation, the stress extraction points at 0.4 t,
0.9 t, and 1.4 t from the weld toe are as follows:

σhss = 2.52σ0.4t − 2.24σ0.9t + 0.72σ1.4t (2)

σhss—hot spot stress;
t—plate thickness.

2.1.2. Det Norske Veritas Recommended Method

For two-point linear extrapolation calculation, the stress extraction points at 0.5 t and
1.5 t from the weld toe are as follows:

σhss = 1.5σ0.5t − 0.5σ1.5t (3)

σhss—hot spot stress;
t—plate thickness.
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For three-point linear extrapolation calculation, the stress extraction points at 0.5 t,
1.5 t, and 2.5 t from the weld toe are as follows:

σhss = 3.75σ0.5t − 2.5σ1.5t + 0.375σ2.5t (4)

σhss—hot spot stress;
t—plate thickness.

The reference point is selected to be the stress extraction point 0.5 t from the weld toe:

σhss = 1.125σ0.5t (5)

σhss—hot spot stress;
t—plate thickness.

2.1.3. HSS Analysis Process

The hot spot types can be roughly categorized into the following three categories: A, B,
and C, as shown in Figure 3, for the stress analysis of the weld toe area of welded structures.
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Figure 3. Hot spot types.

On the motherboard, near the junction where the attached board’s end meets the
motherboard, are type A hot spots. Type B [25] hot spots can be noted on the attachment
board, in the same area as the type A hot spots. Type C hot spots can be found on either
the motherboard or the attachment board in the non-end motherboard junction area of the
attachment plate.

The type A and C hot spots can be determined using the above Equations (1)–(5). The
thickness of the steel component is not discussed in the stress analysis because the type B
hot spot’s crack growth mode gradually extends along the edge of the steel component.
The following is a quick explanation of the calculation concept [26].

1. When the mesh division is fine, the distances of the stress extraction points are taken
at 4 mm, 8 mm, and 12 mm. The HSS value is then calculated using the following
formula using three reference points (6):

σhss = 3σ4mm − 3σ8mm + σ12mm (6)

σhss—hot spot stress;
σ4mm—stress at 4 mm;
σ8mm—stress at 8 mm;
σ12mm—stress at 12 mm.

2. When the mesh division is rough, the distances of the stress extraction points are
taken at 5 mm and 15 mm. Then, the HSS value is calculated using the following
formula using two reference points (7):

σhss = 1.5σ5mm − 0.5σ15mm (7)

σhss—hot spot stress;
σ5mm—stress at 5 mm;
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σ15mm—stress at 15 mm.

2.2. Fatigue Stress Evaluation Criteria
2.2.1. Stress Amplitude Deviation Value

The principal stress direction and the crack propagation direction are typically par-
allel [27]. When the principal stress is the major stress component, the crack propagation
direction is perpendicular to the coordinate axis of the established reference coordinate
system. The structure is currently under a complex multiaxial stress state, which deviates
from this ideal scenario. The relationship between fatigue crack growth, the primary stress,
and the major stress components needs to be analyzed. The numerical changes in the
primary stress and the major stress components are used to assess the spatial fatigue effect
of the local area. Therefore, in the numerical analysis, the method of the absolute maximum
principal stress is used.

The calculation and analysis of fatigue cracking in steel plates fall within the elasticity
range, so the following formula can be used to solve for the principal stress at a point
in three dimensions using the elasticity theory [27]. The symbols in the formulas in this
section have the same meanings as those in linear elasticity.

σ3 − ϕ1σ2 + ϕ2σ− ϕ3 = 0
ϕ1 = σx + σy + σz

ϕ2 = σxσy + σyσz + σxσz − τxy
2 − τ2

yz − τzx
2

ϕ3 = σxσyσz − σxτyz
2 − σyτzx

2 − σzτxy
2 + 2τxyτyzτzx

(8)

σ is the principal stress;
ϕ1 ∼ ϕ3 is the stress tensor invariant.

Both the principal stress and the major stress components are vectors. The relationship
between the principal stress and the major stress components includes the magnitude
and direction of the stresses. The formula for solving the cosines of the principal stress
directions at a certain point in elasticity is as follows [27].

(σx − σi)li + τyxmi + τzxni = 0
τxyli +

(
σy − σi

)
mi + τzyni = 0

τxzli + τyzmi + (σz − σi)ni = 0
l2
i + m2

i + n2
i = 1

(9)

li, mi and ni are the direction cosines of principal stresses σi, where i = 1~3.
According to Equation (9), if li, mi, and ni are the solutions of the equations, then

−li, −mi, and −ni can also be the solutions of the equations. The actual calculation can
be carried out by using positive numbers. Equation (10) illustrates the mathematical
expression of a positive numerical solution.

li =
Ai√

A2
i +B2

i +C2
i

mi =
Bi√

A2
i +B2

i +C2
i

ni =
Ci√

A2
i +B2

i +C2
i

(10)

In Equation (10): 
τxy = τyz = τzx = 0

Bi = τxyτzx − (σx − σi)τyz

Ci = (σx − σi)
(
σy − σi

)
− τ2

xy

(11)
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The formula above is straightforward, but it is not a universal one. It is not applicable
if all of τxy, τyz, τzx are zero or if two of them are zero. If either τxy = τyz = τzx = 0 or both
of them are zero, the following is the special solution.

If τxy = τyz = τzx = 0, then σx, σy, σz are the principal stresses. In this case,
Equation (9) changes to the following:

(σx − σi)li = 0(
σy − σi

)
mi = 0

(σz − σi)ni = 0
l2
i + m2

i + n2
i = 1

(12)

If σi = σx, then li = 1, mi = ni = 0 of σi.
If σi = σy, then mi = 1, li = ni = 0 of σi.
If σi = σz, then ni = 1, li = mi = 0 of σi.
The above solution formula should be used to avoid a situation in which any two

principal stresses are equal in li, mi, ni due to their equal principal stress values when the
three principal stresses are equal or when both of them are equal.

3. If τxy = τyz = 0, τzx 6= 0, then σy is the principal stress. Under this condition,
Equation (9) becomes the following.

(σx − σi)li + τzxni = 0(
σy − σi

)
mi = 0

τxzli + (σz − σi)ni = 0
l2
i + m2

i + n2
i = 1

(13)

If σi = σy, then mi = 1, li = ni = 0 of σi.

If σi 6= σy, then mi = 0 of σi, ki = − (σx−σi)
τxz

is achieved through Equation (13) to obtain
li = 1√

1+k2
i
, mi = 0, ni = kili of σi.

The cases of τzx = τyz = 0, τxy 6= 0 and τzx = τxy = 0, τyz 6= 0 are the same and are not
repeated herein.

2.2.2. Uniaxial Load

Steel specimens subjected to uniaxial loads only bear unidirectional normal or shear
stress. It is advised to set the normal stress as σx by the selection of the reference coordinate
system if it only bears uniaxial normal stress. σx could also be used as the main stress
component. The three-dimensional principal stress values are σx, 0, and 0, respectively,
when σx 6= 0 is added to the previous Equation (8). The principal stress with the largest
absolute value is σx. The direction cosine value corresponding to σx is solved by substituting
σi = σx into the previous Equation (9): ±1, 0, 0.

If the specimen is applied only to uniaxial shear stress and is in a pure shear stress
state, the shear stress may be set to τxy. σx1 in the direction of reference coordinate axis x1
is the main stress component. After coordinate transformation, σx1 = τxy is obtained.

The three-dimensional principal stress values are τxy, 0, and −τxy, respectively, when
τxy 6= 0 is added to the previous Equation (8). The principal stress with the largest absolute
value is obviously τxy. σi = τxy is added to the previous Equation (9).

The direction cosine value is then solved, corresponding to τxy:
√

2
2 ,

√
2

2 , 0,−
√

2
2 , −

√
2

2 , 0.

2.2.3. Biaxial Stress State

In the actual operation stage, steel members are typically in a biaxial stress state. The
maximum principal stress deviates from the major stress components, and at least two of
the six stress components are not zero. The ratio of the maximum value of stress amplitude
is used to quantify the deviation between the maximum principal stress and the major
stress components because the maximum value of stress amplitude ∆σ accounts for the
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largest proportion of fatigue damage in one stress process. The introduction of deviation
value δ [27] is as follows:

δ =
∆σn

∆σm

(14)

∆σn is the maximum major stress amplitude at all levels and ∆σm is the maximum
principal stress amplitude in the formula above. The expression for δ shows that the
deviation between σm and σn increases as the difference between δ and 1 grows. If δ = 1, it
is included in the category of uniaxial fatigue.

The above analysis shows that the major stress component is the principal stress with
the largest absolute value under uniaxial stress. Under the biaxial stress state, the principal
stress with the largest absolute value and the major stress component is typically different.
The larger the gap, the more severe the multiaxial fatigue effect is.

According to the analysis in Section 5, the diaphragm can be regarded as a thin plate.
The second and third principal stresses are located within the thin plate and are in-plane
stresses. As shown in Figure 4, σprincipal1 points towards the Z direction of the thin plate,
which is the out-of-plane stress, basically 0. Under biaxial compression, the diaphragm
can be considered as being in a biaxial stress state. The fatigue crack trend at the curved
openings of the diaphragm is not perpendicular to the Y-axis. This reveals that using
the stress component in the Y direction to evaluate fatigue performance is ineffective.
σprincipal3(max) should be used for evaluation, approximately perpendicular to the direction
of fatigue crack growth. Additionally, the stress amplitude deviation can be used to evaluate
the spatial fatigue effect of changing moving load positions.
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2.3. Finite Element Modeling Method

By using finite element simulation calculation methods, the accuracy of the HSS
method and fatigue stress assessment criteria can be improved. The different parame-
ters of the finite element simulation method have a significant impact on the simulation
calculation results.

2.3.1. Modeling Process

The U-rib’s size and diaphragm’s arc opening form used in the numerical simulation
in this section are consistent with those used in the fatigue test in the previous section. The
size parameters of the U-rib are highlighted in Figure 5.
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Figure 5. Schematic diagram of U-rib and opening size (mm).

The model has three transverse diaphragms running longitudinally and seven U-ribs
running transversely. ABAQUS (2018) FEM software is used for modeling and analysis.
Figure 6 shows the FEM model and constraints. The top plates, U-ribs, and diaphragms
in the model are made of C3D8R solid elements with a mesh size of 20 mm. The joints
between the U-ribs and diaphragms are modeled as common nodes, and the element
mesh is densified around the relevant details with a mesh size of 1 mm. The boundary
condition is that the longitudinal ends are simply supported. The diaphragm is restrained
by six degrees of freedom. The material in the model is Q345D steel. The steel’s density is
7850 kg/m3, the steel elastic modulus, E, is 206 GPa, and the Poisson’s ratio, µ, is 0.3.
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of the structural details are determined. The following analysis depicts that the stress in-
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Figure 6. FEM model.

2.3.2. Selection and Application of Fatigue Loads

The local stress effect of a moving load on the structural details of an OSD in the vertical
and horizontal directions is prominent, which can be seen from the existing research results.
The fatigue load is based on the principle of loading a single fatigue vehicle. During the
FEM analysis, special attention is paid to the local fatigue-vulnerable area of the structure
under the most unfavorable longitudinal and transverse loading of the fatigue vehicle.

The fatigue evaluation herein is based on AASHTO LRFD [28]. Figure 7 represents the
simplified standard fatigue vehicle HS15 in this specification. The transverse track width
of the fatigue car is 1.8 m, the middle and rear axles both weigh 108 kN, and the load area
is 0.51 m (transverse) × 0.25 m (longitudinal). Furthermore, the vehicle impact coefficient
is considered to be 0.15 for the fatigue load.
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Since the calculation model and fatigue test model have the same structural design
parameters, the application size and action area of the standard vehicle moving load are
scaled according to the corresponding proportion (1:2). The actual stress response results
of the structural details are determined. The following analysis depicts that the stress
influence line of the vulnerable area of the curved cuts of the diaphragm is relatively short.
The distance between the adjacent diaphragms of the model is 1.35 m, which is less than
the wheelbase of the front and middle axles of the fatigue vehicle, and is 4.5 m less than the
wheelbase of the middle and rear axles (the size of the fatigue vehicle is scaled with the
scale of the test model). Therefore, the moving load is only loaded by the middle axle of
the fatigue vehicle. The contact area after the moving load diffuses to the bridge deck at
45 degrees is 0.305 m × 0.175 m, and the wheel pressure value is 291 kPa.

3. Model Experiment of OSD
3.1. Experiment Model

The scale of the experiment model is 1:2, wherein seven longitudinal ribs are included
in the transverse direction, three diaphragms are considered in the longitudinal direction,
and 10 mm thick steel plate heads are at the end. The spacing of each diaphragm is 1.35 m,
the thickness of the deck’s top plate is 7 mm, the thickness of U-rib web is 4 mm, and
the thickness of the diaphragm stiffener is 5 mm. A 120.9 mm high, 2400 mm long, and
450 mm wide steel box was fabricated to support the bridge deck structure to keep it
in the horizontal plane. To approximate the actual stress condition of the OSD model,
a trapezoidal steel plate with welded side ribs was spliced at the bottom of the middle
diaphragm HGB2. The structural size selection and boundary condition setting were
designed according to the basic principle of similarity theory. The specific size design of the
experiment model is represented in Figure 8, and the installation picture of the experiment
model is given in Figure 9.

3.2. Arrangement of Strain Measuring Points of Experimental Model

The strain gauges at the measuring points of the steel deck model were mainly placed
in the webs, the diaphragm plates, the U-ribs, and the deck plates. At the bottom of the
model, displacement measuring points were also placed. The experimental model has
157 strain gauges and 6 displacement measuring points installed. The structural details of
the middle diaphragm (HGB2) are mainly noticeable since the points with large stresses
are typically located in the webs of the middle diaphragm.

The layout of the stress measuring points on the web of diaphragm plates is shown in
Figure 10a. The diaphragm’s longitudinal and transverse stresses are close to one another,
according to preliminary calculation results, which can be expressed as a planar effect.
As a result, three-way strain rosettes at a 45-degree angle were mainly set up. Auxiliary
measuring points were added on the trapezoidal plate to help with the analysis in order to
eliminate the diaphragm plate’s warping effect at the bottom of HGB2 and to accurately
simulate the actual bridge.
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Figure 10. Layout of measuring points on diaphragm and U-ribs: The symbol ‘#’ is used to indicate
the numerical order in this paper. E.g., the 6th Rib is the 6#Rib.

Figure 10b shows the layout of the stress measuring points on the U-ribs. The one-way
measuring point was adopted at the bottom and the three-dimensional strain rosette was
adopted at the top of the U-ribs due to the obvious tension at the bottom and the complex
stresses at the top. A unidirectional strain gauge was installed at the wheel compression
edge because the deck plate showed local large unidirectional tensile and compressive
stresses as it was subjected to moving loads. To measure the deflection changes, three
electronic displacement indicators, S01, S02, and S03, were arranged at an equal distance at
the bottom.
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3.3. Experimental Loading Process

The bridge deck of the experimental model is first applied to a secondary-stage dead
load of 15 kN, and a live load of 47.7 kN is then simulated and applied. MTS loads the
secondary dead load and the live load.

(1) Static Load Test Process

Before loading, it is necessary to run a number of static preloading tests to guarantee
a smooth test. After the fatigue load cycle has reached the required number of times, the
machine is stopped for a static load test in order to collect the stress. The test’s maximum
static load is 91.2 kN. The process of loading and unloading a load is as follows: 0 kN,
30 kN, 60 kN, 91.2 kN, 60 kN, 30 kN, and 0 kN. The strain and displacement data are
collected each time the loading and unloading process is completed.

(2) Fatigue Test Process

The fatigue load amplitude of fatigue test loading is 15 kN→ 62.7 kN. The machine is
stopped for a static load test when the cycle times reach 50,000, 100,000, 200,000, 500,000,
800,000, 1,000,000, 1,500,000, and 2,000,000. The model is observed during the test process
for cracking and other abnormal phenomena, and after each loading, three data acquisitions
are completed [29–33].

The loading amplitude is increased accordingly, and data are collected again every
200,000 cycles in the subsequent loading process if the structure does not have fatigue
cracking when the fatigue load cycle times reach 2 million. In other words, the machine is
stopped for a static load test when the load reaches 2.2 million, 2.4 million, and 2.6 million
times, and the strain, displacement, fatigue cracking, and expansion of the measuring
points are recorded. When the fatigue load cycle reaches 3 million times, if the structure is
still intact, the fatigue loading is stopped.

3.4. Test Results and Comparative Analysis
3.4.1. Comparative Analysis

(1) Stress Comparison of Control Measuring Points

Table 1 displays the stress results of measuring points near the diaphragm’s arc
opening. Two-way or three-way strain rosettes were used at the junction of the diaphragm
and top plate to study the stress distribution of the key parts. The data show the stress
results of the diaphragm’s greater side of stress.

Table 1. Comparison between measured stresses around diaphragm’s arc opening and theoretical
calculation values.

Measuring Point
ID Number Actual Values (MPa) Numerical Simulation

Values (MPa)

Ratio of Actual
Values to Numerical
Simulation Values

144 −59.8 −56.9 1.05
145 −28.7 −29.9 0.96
147 −37.3 −38.9 0.96
148 −33.2 −31.6 1.05
149 −24.5 −22.5 1.09

150–152 −28.9 −21.4 1.35
154–156 −19.8 −11.5 1.72
157–158 −15.2 −13.1 1.16

159 −33.0 −35.5 0.93
160 −77.3 −72.2 1.07
161 −33.0 −33.7 0.98
164 −28.6 −31.4 0.91
165 −67.7 −63.3 1.07

Table 2 displays the stress results of U-rib control measuring points. U02, U05, U09,
U15, and U22 are all measuring points at the bottom of the U-rib. U11–U13, U16–U18,
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U19–U21, and U23–U25 are all measuring points at the connection between the U-rib
and the top plate. These measuring points are all measured using three-dimensional
strain rosettes.

Table 2. Comparison between measured stresses of U-rib and theoretical calculation values.

Measuring Point
ID Number Actual Values (MPa) Numerical Simulation

Values (MPa)

Ratio of Actual
Values to Numerical
Simulation Values

U02 35.8 33.1 1.08
U05 43.1 39.2 1.10
U09 3.1 3.0 1.03

U11–U13 9.5 10.4 0.91
U15 46.6 40.5 1.15

U16–U18 17.5 18.8 0.93
U19–U21 14.2 12.9 1.10

U22 46.4 44.2 1.05
U23–U25 8.2 8.9 0.92

The FEM calculation results of each measuring point of the diaphragm are in good
agreement with the measured values, as shown in Table 1. The shoulder on the right side of
the 6# rib opening acts as the fixed end of the cantilever beam. The stress at the measuring
point is high due to the large bending moment generated here from bearing the vertical
load transmitted by the U-rib. The maximum error occurs at the U15 measuring point,
as shown in Table 2, and the difference between the theoretically calculated value and
the measured value of each U-rib measuring point is smaller within the action range of
the separation loader. At the junction between the top plate and the U-rib, the stiffnesses
of the diaphragm and the U-rib are quite different because the diaphragm and the U-rib
are perpendicular to each other in space. The out-of-plane deformation of the diaphragm
has little effect on the stress distribution of the U-rib, so the stress of the U-rib is small
here. Because the diaphragm and the U-rib are perpendicular to one another in space at
the junction between the top plate and the U-rib, their stiffnesses differ significantly. The
diaphragm’s out-of-plane deformation has little impact on the U-rib’s stress distribution,
so the stress of the U-rib is small here.

(2) Displacement Comparison of Control Measuring Points

The data of the S01, S02, and S03 vertical displacement measuring points can be
obtained through the FEM calculation. The values are 2.68 mm, 2.82 mm, and 2.68 mm,
respectively. These values are not significantly different from the test’s average vertical
displacement of 2.81 mm, and the maximum error is 4.63%. The vertical displacement
of the structure reveals its overall stiffness. The vertical deflection decreases as stiffness
increases. The FEM model’s displacement value is relatively close to that of the actual
structure, indicating that it has a similar stiffness.

3.4.2. Fatigue Cracking of Experimental Model

The loading amplitude ∆p reaches 47.7 kN when the fatigue loading cycle process
reaches 2 million times. A 7.5 mm long crack that is clearly visible can be seen on the upper
right side of the 6# opening in Figure 11, and no other parts of the structure show fatigue
cracking. As shown in Figure 12, when the fatigue loading cycle reaches 2.2 million times,
the corresponding loading amplitude is 1.5*∆p, and the crack extends to 12 mm. As shown
in Figure 13, the crack extends to 21 mm when the fatigue loading cycle reaches 2.4 million
times. The corresponding loading amplitude is 2*∆p. According to Figure 14, when the
fatigue loading cycle reaches 2.6 million times, the corresponding loading amplitude is
2*∆p and the crack reaches a length of 31 mm. The cracks are located in the red squares
in Figures 12–14 and the corresponding crack lengths have been marked in the corre-
sponding figures. The 159 # and 160 # measuring points are located above and below the
cracks, respectively.
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4. FEM Details of Diaphragm’s Arc Opening Region
4.1. Load Case

The longitudinal ribs from right to left are numbered 1# to 7#. The location of concern
is the opening area of the right upper diaphragm of the 6# rib where cracking was observed
during the fatigue test. The initial position of the unilateral moving load was located
directly above the 6# rib. Each time, the moving load was shifted by 25 mm six times. There
are a total of seven lateral loading cases (LC1–LC7) that are analyzed.

Through the analysis of the detailed stress responses under seven load cases, it was
observed that with the greater distance of the moving loads from the 6# U-rib, the stress
level in the details of the diaphragm’s arc opening first gradually increased and then
decreased significantly, which suggests the significance of the local effects of the moving
loads on the details.

In the following analysis, three lateral load cases closely related to the stress response
in the vulnerable area of the diaphragm’s arc opening were selected, as represented in
Figure 15. LC1 denotes that the moving load center line on one side was directly above
the 6# U-rib. LC4 denotes that the moving load center line on one side was located at the
intersection of the web on the right side of the 6# U-rib and the deck top plate, and LC7
denotes that the moving load center line on one side was located at the center of the 6#
U-rib and 5# U-rib relative to the web.

After three lateral moving load cases closely related to the detailed stress were selected
and analyzed, the moving load moved longitudinally from each lateral position, with a
total displacement of 2100 mm. The moving loads at the longitudinal loading position and
loading steps are represented in Figure 16. The numbers 1 to 19 in Figure 16 correspond to
the Load Steps in Table 3. To determine more accurate stress response results, a step increase
was performed near the middle diaphragm (HGB2) and the side diaphragm (HGB3).

The moving load acting directly above the middle diaphragm (HGB2) is considered
as the coordinate origin, and the side diaphragm (HGB3) is considered as the positive
direction. The specific coordinates are listed in Table 3.
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Table 3. Moving load at the longitudinal position.

Load Step (i) Longitudinal Coordinate of
Moving Load Center (m) Load Step (i) Longitudinal Coordinate of Moving

Load Center (m)

1 0 (Middle diaphragm midpoint) 11 1
2 0.07 12 1.07
3 0.14 13 1.14
4 0.21 14 1.21
5 0.28 15 1.28
6 0.35 16 1.35 (Midpoint of side diaphragm HGB3)
7 0.48 17 1.6
8 0.61 18 1.85
9 0.74 19 2.1
10 0.87

4.2. Stress Analysis of Key Points

Based on the statistical data on fatigue diseases of steel bridges, it can be inferred that
the location of the most common fatigue cracks around the diaphragm’s arc opening is
the location where the radius of curvature of the free edge of the opening is small. This
is consistent with the FEM stress results represented in Figure 17. There is a strong stress
concentration within a certain range at the intersection of the straight line segment and the
arc line segment at the free edge of the opening.
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On the basis of this phenomenon, the position of the stress analysis point A is located
at the intersection of the straight line segment, and the arc line segment at the free edge of
the diaphragm’s arc opening on the right side of the 6# U-rib, and the relative position is
demonstrated in Figure 18.
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4.3. Mesh Independence Check

There is an obvious stress concentration around the opening of the diaphragm plate,
and the stress gradient is very large. If the FEM mesh is too large, it may not capture the
rapid changes in stress. If the mesh generation is too fine, the overall computing efficiency
is impacted [34–38]. Therefore, reasonable mesh generation is required to ensure mesh
quality. To obtain stress conditions that are less affected by the mesh generation, three mesh
generation schemes, represented in Figure 19, are compared in this paper.
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Figure 19. Mesh generation schemes around diaphragm’s arc opening.

The no. 1 mesh scheme, no. 2 mesh scheme, and no. 3 mesh scheme have element
lengths of 3 mm, 2 mm, and 1 mm, respectively. The mesh size along the vertical free
edge direction must not be changed for at least five layers to ensure that the vertical and
horizontal proportions of the element tend to be 1:1 and the mesh division remains as
orthogonal as possible.

At the diaphragm’s arc opening area, the most unfavorably lateral load position is
LC4 (the moving load center is located at the junction of the web near the 5# or 6# U-rib
and the deck’s top plate). The most unfavorably longitudinal loading position is 0.14 m
away from the middle diaphragm, where the load step number is 3.

The stress response of point A under the most unfavorable longitudinal and transverse
loading cases is used to check mesh independence. Table 4 shows the nominal stress at
6 mm along the normal opening edge for comparison. Tensile stresses are indicated by
positive values in Table 4, while compressive stresses are indicated by negative values. The
positive and negative meanings of stress data in this paper are the same as those in Table 4.

Table 4. Comparison of nominal stress under different meshing types.

No. Mesh Size (mm) Total Stress (MPa) In-Plane
Stress (MPa)

Out-of-Plane
Stress (MPa)

1 3.0 −46.86 −46.17 −0.69
2 2.0 −49.35 −48.62 −0.73
3 1.0 −49.43 −48.69 −0.74

With the further refinement of the no. 1 mesh scheme to the no. 2 mesh scheme, the
stress data are changed. For the no. 2 mesh scheme and no. 3 mesh scheme, the total
stress of the studied details is roughly the same as the in-plane and out-of-plane stress
components. Therefore, it can be inferred that when the mesh size is refined to 2 mm or
less, the stress level of the studied details no longer fluctuates significantly. Numerical
solutions independent of mesh generation can be determined. To facilitate the extraction of
the nominal stress and the reference point stress required by the HSS method, the no. 3
mesh generation scheme was selected for FEM analysis.

5. Analysis of Details of Opening in Diaphragm’s Arc Opening Area
5.1. Stress Extraction Method

There is no consistent definition of the nominal stress extraction method for the
diaphragm’s arc opening area of an OSD in the field of steel bridge fatigue research. The
existing nominal stress extraction methods for this detail are synthesized in this paper, along
with selecting the nominal stress at 2 mm, 6 mm, 10 mm, 13 mm, and 15 mm away from
the normal direction of the edge of the stress concentration point. The stress concentration
point at the detail can be considered a hot spot through the basic idea of the HSS method.
HSS is solved using multipoint linear interpolation and extrapolation. The corresponding
fatigue life assessment is carried out with the help of the S–N curve recommended by IIW.
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The extrapolation formula of the HSS method adopts the two-point interpolation
linear extrapolation from Equation (3), suggested by DET Norske Veritas.

In this paper, the stress peak at point A in this area was used as the reference point
for FEM analysis, and the nominal stresses at 2 mm, 6 mm, 10 mm, 13 mm, and 15 mm,
respectively, away from point A and the HSS at this point were obtained.

Since the detailed stress responses under the most unfavorable longitudinal and
transverse load cases are analyzed, only the nominal stress and HSS at all locations under
LC4 load cases were extracted. For LC1 and LC7, only nominal stress and HSS at 6 mm were
extracted for comparison. The schematic diagram of nominal stress and HSS extraction is
represented in Figure 20. These two evaluation methods do not consider the influence of
nonlinear stress factors.
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Figure 20. Schematic diagram of stress extraction.

5.2. Stress Results Analysis of Arc Opening

Within a certain range of moving load, the second and third principal stresses near the
peak point A of the diaphragm’s arc opening stress are negative, which can be analyzed
from the FEM results. This suggests that point A is under biaxial compression within a
certain range. Considering the third principal stress as the representative to evaluate the
fatigue performance, the large absolute value of the third principal stress at nearby points
can be determined. This also meets the requirements of stress-extracting parameters by
using the nominal stress method and HSS method.

There is a marginal difference in the stress on the front and back of the stress peak
at point A, due to the thickness of the plate. Stress extraction was carried out on the side
with a larger value from the perspective of conservative fatigue assessment. Figure 21
represents the variation curves of nominal stress and HSS at stress peak at point A under
three load cases.

The stress level under LC4 is the highest for the nominal stress value and HSS value at
6 mm, and the stress level under LC7 is the lowest during the longitudinal and transverse
loading of the entire moving loads, as shown in Figure 21.

LC4 is the most unfavorable lateral loading position. The moving load center line is
parallel to the connection between the web plate and the top plate at the side of the 6#
U-rib and 5# U-rib. The position with the most unfavorable longitudinal loading is 140 mm
away from the middle diaphragm plate (HGB2). The overall change in stress indicates an
increasing trend at first, followed by a gradual decrease.

When the moving load is directly above the side diaphragm (HGB3), the principal
stress at point A is a mere −2.54 MPa (considering the nominal stress at 6 mm under
LC4). Compared with the most unfavorable loading case, the principal stress is reduced by
30.74 MPa, accounting for 7.64% of the stress.
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When the moving load is 750 mm away from the right side of the diaphragm (HGB3),
the principal stress is only −0.78 MPa. It can be inferred that only when the moving load
acts within a certain range do the studied details have a better stress response.

The stress influence line of point A along the longitudinal bridge direction is roughly
distributed in a triangular shape. It can be concluded from the stress response results that
the length of the stress influence line is almost twice the total length of the longitudinal
movement, which is 4.2 m. If the axle load in the fatigue vehicle is applied at the peak point
of the stress influence line, the front and rear axles must be applied within 2.1 m on the
left and right of the middle diaphragm to have a significant impact on the stress results,
according to the arrangement of the most unfavorable loading scheme.

The influence of the front and rear axles on the stress response is not considered in this
paper, and it is appropriate to only consider the middle axle for simulated loading. Under
the three loading cases, the variation curves of the third principal stress at the stress peak
point with the longitudinal moving load position are represented in Figure 21. It can be
analyzed from the stress distribution that the nominal stress and the HSS derived from two
points have similar change trends. The HSS method is more conservative than the nominal
stress method.

The values of the principal stresses under LC4 are mentioned in Table 5. The nominal
stress values reduce significantly with the increase in the normal distance of the opening
edge, suggesting that the stress gradient at this point is large.

Table 5. Values of principal stress under LC4 load case.

Stress
Nominal
Stress at

2 mm

Nominal
Stress at

6 mm

Nominal
Stress at
10 mm

Nominal
Stress at
13 mm

Nominal
Stress at
15 mm

HSS

Stress value
(MPa) −40.89 −33.27 −28.07 −24.47 −21.93 −44.70

5.3. Displacement Results Analysis

Under the three lateral load cases in Section 4.1, the displacement and deformation of
the middle diaphragm (HGB2) under longitudinal load steps i = 2 (LC1) and i = 3 (LC4 and
LC7) are represented in Figure 22. When the moving load is exactly above the diaphragm,



Materials 2023, 16, 5217 21 of 34

the diaphragm only produces in-plane deformation, and there is no out-of-plane bending
stress on the diaphragm web, the in-plane membrane stress takes a major portion.
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Figure 22 represents that there is a strong bending shear effect between the U-rib and
the diaphragm in the plane. Some parts of the axial force and shear force in the diaphragm
are transmitted through the longitudinal ribs. The transverse diaphragm and longitudinal
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rib affect each other. The middle part of the diaphragm is subject to the most significant
compression, so the bending moment is the largest.

The closer to the end of the diaphragm, the more impactful the shear force is. The lon-
gitudinal ribs are twisted, leading to different stress signs on both sides of the longitudinal
rib. Under the comprehensive influence of bending and shearing of the longitudinal rib and
diaphragm, significant stress concentration occurs at the end of the weld and arc opening.

Simultaneously, Figure 22a indicates that when the load is only acting on the top of
the 6# U-rib, as the diaphragm is drilled to release the secondary bending stress at the
welding between the diaphragm and the U-rib, the webs of the U-rib and the diaphragm
are staggered in the vertical direction and squeezed in the horizontal direction, resulting in
tensile stress at the two welds.

Figure 22b,c show that when the moving load deviates from the center line of the
U-rib for loading, the U-rib is distorted, and its bottom generates lateral displacement.
Furthermore, the diaphragm serves as an embedded boundary to limit displacement. The
discontinuous embedded boundary around the U-ribs, on the other hand, causes significant
out-of-plane deformation of the U-ribs, and the weld end and opening periphery are subject
to higher secondary stress.

5.4. Stress Composition of Diaphragm’s Arc Opening Area

The moving load with an area of 305 mm × 175 mm acts directly above HGB2. The
initial position is at the central axis of the 6# U-rib, and it then moves horizontally to
the right with an amplitude of 25 mm each time. During the movement, point A with
obvious stress concentration can be considered as the representative to determine the stress
composition and change law in the diaphragm’s arc opening area.

The front side denotes the side with larger value where the peak stress point A of the
middle diaphragm plate is closer to the moving load action position, and the back side
denotes the side with a smaller value, away from the moving load action position.

Under the LC1, LC4, and LC7 load cases, the nominal principal stress at 6 mm from the
normal direction of the edge of the arc opening at point A is analyzed. If the principal stress
directions of the front and back sides of point A are roughly the same, it can be determined
that σf ront is obtained with the linear addition of in-plane stress and out-of-plane stress,
and σback denotes the difference between in-plane stress and out-of-plane stress. On this
basis, the stress composition and variation law of point A are studied.{

σin−plane =
σf ront+σback

2

σout o f plane =
σf ront−σback

2

(15)

σf ront denotes the stress value at the side near the moving load’s action position at
point A of the diaphragm plate, and σback denotes the stress value at the side away from
the moving load’s action position at point A of the diaphragm plate.

If the principal stress directions of the two sides are different, they cannot be treated
using the above methods but should be decomposed into normal stress and shear stress to
conduct fatigue performance analysis.

It can be observed from Figure 23a,c,e that the stress values on the front and back
of the stress peak at point A are close. From the subsequent FEM calculation, it can be
observed that the principal stress direction is basically the same, so the fatigue performance
can be analyzed through the linear decomposition of the principal stress.

Figure 23a suggests that the stress at point A is negative, indicating that the point is
under pressure. When the load moves to the right, it can be observed that the stress value
changes significantly during the initial movement, with an increase of 2.53%. This indicates
that the stress at the point of concern is closely related to the lateral action position of the
moving load.

When the moving load shifts 75 mm to the right, the stress reaches the maximum
value of −45.40 MPa, with an increase of 4.30%. At this time, the center of the moving load
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on one side coincides with the connection between the web of the 6# U-rib, which is near
the 5# U-rib, and the top plate of the deck. Further, the moving load continues to move to
the right three times (25 mm each time, 75 mm in total). It can be observed that the stress
reduces significantly during the moving load movement (the decreases are 5.07%, 5.14%,
and 8.36%, respectively), and eventually acts on the center line of the 6# U-rib and 5# U-rib
relative to the web. The change in the moving load’s lateral action position has a significant
local effect on its stress response. The local effect is related to the force transmitted by the
weld between the U-rib and the diaphragm. The closer the moving load center is to the web
of the U-rib on the side of point A, the greater the force transmitted by the weld, resulting
in an increase in the stress level at point A. To sum up, LC4 is the most unfavorable load
case in the transverse direction, and LC7 is the case with the minimum load effect.

As depicted in Figure 23b, when the moving load moves laterally on the middle
diaphragm, the out-of-plane stress of point A is 0, and the in-plane stress is dominant.
Since the stiffening rib of the diaphragm is set at one side, the diaphragm structure is not
completely symmetrical, so there is a small amount of out-of-plane stress. Starting from
the corresponding transverse loading positions of LC1, LC4, and LC7, it moves 2100 mm
longitudinally towards the side diaphragm (HGB3).

As highlighted in Figure 23c,e,g, when the moving load moves longitudinally, the
front stress (near the side of the moving load) of point A under all load cases is marginally
greater than the back stress. When the center line of the load’s resultant force is 140 mm
away from the middle diaphragm, the stresses on both sides of point A (under the LC4
load case) attain the highest level simultaneously. The main reason for this phenomenon is
that when the load is directly above HGB2, the diaphragm plays a leading role in lateral
diffusion, which decreases the in-plane stress level at point A. When the load deviates from
HGB2 by a certain distance, the top plate is not supported by the diaphragm, leading to
its low bending stiffness. The load effect is primarily transmitted to the weld between the
U-ribs and the diaphragm longitudinally through the U-ribs, which enhances the stress
concentration at point A.

It can be observed from the in-plane and out-of-plane stress distribution in Figure 23d,f,h
that under the three load cases, the maximum combined effect of in-plane and out-of-plane
stress is located at the most unfavorable longitudinal loading position (load steps i = 2,
i = 3, and i = 3, respectively). However, the proportion of out-of-plane stress can be ignored,
as it is 0.01% under LC1, 0.26% under LC4, and 0.32% under LC7. When the moving load
center acts in the middle of HGB2 and HGB3, the vertical downward deflection of the U-rib
is the largest. At this time, the out-of-plane deformation and stress of the diaphragm web
plate are at the maximum. The maximum out-of-plane stresses under the LC1, LC4, and
LC7 load cases are −0.43 MPa, −0.44 MPa, and −0.40 MPa, respectively.
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Figure 23. Stress values at the point of interest under longitudinal movement of moving load. (a) 
Stress values of front and back sides when load moves laterally; (b) in-plane and out-of-plane 
stresses during load traverse; (c) stress values of front and back sides when load moves longitudi-
nally under LC1 load case; (d) stress values inside and outside the plane when the load moves lon-
gitudinally under LC1 load case; (e) stress values of front and back sides when load moves longitu-
dinally under LC4 load case; (f) stress values inside and outside the plane when the load moves 
longitudinally under LC4 load case; (g) stress values of front and back sides when load moves lon-
gitudinally under LC7 load case; (h) stress values inside and outside the plane when the load moves 
longitudinally under LC7 load case. 

Figure 23a suggests that the stress at point A is negative, indicating that the point is 
under pressure. When the load moves to the right, it can be observed that the stress value 

Figure 23. Stress values at the point of interest under longitudinal movement of moving load.
(a) Stress values of front and back sides when load moves laterally; (b) in-plane and out-of-plane
stresses during load traverse; (c) stress values of front and back sides when load moves longitu-
dinally under LC1 load case; (d) stress values inside and outside the plane when the load moves
longitudinally under LC1 load case; (e) stress values of front and back sides when load moves
longitudinally under LC4 load case; (f) stress values inside and outside the plane when the load
moves longitudinally under LC4 load case; (g) stress values of front and back sides when load moves
longitudinally under LC7 load case; (h) stress values inside and outside the plane when the load
moves longitudinally under LC7 load case.
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Under the LC1 load case, the proportion of out-of-plane stress is 1.46%, which is still
negligible. Although the out-of-plane stress simultaneously reaches the peak, the in-plane
and out-of-plane combined effect has been reduced to 67.9% under the most unfavorable
loading. Under the LC4 load case, the out-of-plane stress accounts for 1.36%, and the
in-plane and out-of-plane combined effect is reduced to 73.15% under the most unfavorable
loading. In the case of LC7, the out-of-plane stress accounts for 1.32%, and the in-plane and
out-of-plane combined effect is reduced to 78.19% under the most unfavorable loading.

In conclusion, the contribution of out-of-plane bending stress to the overall load effect
is very small. Irrespective of the changes in the moving load position, the load effect in this
area is primarily caused by in-plane stress.

Regardless of the influence of material properties, stress amplitude is the key factor
in the fatigue evaluation of steel bridges. Therefore, it can be considered that the chief
cause of fatigue cracking at the peak point A of a diaphragm’s arc opening is in-plane
stress [30,39–43]. Out-of-plane stress has a minor effect on fatigue cracking at the peak
point A.

5.5. Control Stress of Arc Opening’s Cracking

Theoretical computation value derivation was carried out for the longitudinal load
step i = 3 under the LC4 load case. The six stress components of point A under the LC4
load case were extracted. The specific values are as follows:

σx = −4.30
σy = −43.46
σz = −0.0012
τxy = −8.21
τyz = 0.095
τzx = 0.039

(16)

By calculation:
ϕ1 = σx + σy + σz = −47.7612

ϕ2 = σxσy + σyσz + σxσz − τ2
xy − τ2

yz − τ2
zx = 119.52

ϕ3 = σxσyσz − σxτ2
yz − σyτ2

zx − σzτ2
xy + 2τxyτyzτzx = −0.0993

(17)

Substituting (17) into Equation (8):

σ3 + 47.7612σ2 + 119.52σ + 0.0993 = 0

Then: 
σ1 = −0.00083

σ2 = −2.65
σ3 = −45.11

(18)

Substituting (16) and (18) into Equation (11):
A3 = τxyτyz −

(
σy − σ3

)
τzx = −0.8443

B3 = τxyτzx − (σx − σ3)τyz = −4.1971
C3 = (σx − σ3)

(
σy − σ3

)
− τ2

xy = −0.0676
(19)

Substituting (19) into Equation (10):
l3 = A3√

A2
3+B2

3+C2
3
= −0.197

m3 = B3√
A2

3+B2
3+C2

3
= −0.98

n3 = C3√
A2

3+B2
3+C2

3
= −0.015

(20)
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The angle between the maximum absolute principal stress and the X-axis is 101.37◦,
which represents the angle between the normal direction of the principal stress and the
X-axis, which is 11.37◦. The principal stress direction is 90.86◦ to the Z-axis of the longi-
tudinal bridge, which confirms that the diaphragm’s arc opening area is primarily under
in-plane stress.

For the most unfavorable longitudinal and transverse loading, the second and third
principal stress directions around the diaphragm’s arc opening are highlighted in Figure 24a.
The third principal stress is parallel to the edge tangent. Within a certain distance from the
edge normal, the direction of the third principal stress still maintains the original angle.
The crack is located in the red square in Figure 24b, and the crack length have been marked
in the corresponding figure. The 159 # and 160 # measuring points are located above and
below the crack, respectively.
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The theoretical calculation results show that the normal direction of the principal stress
has an included angle with a X-axis of 11.37◦. The normal direction of the third principal
stress at point A is 11.1◦ from the horizontal plane, according to the principal stress direction
field computed using the FEM calculation results. This is similar to the fatigue test’s crack
propagation angle of 12.8◦. As shown in Figure 25, the change curve of the third principal
stress along the X-axis of the extraction path under the most unfavorable loading is drawn
with the normal direction of the third principal stress as the X-axis direction.
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Figure 25. Variation in the third principal stress along the normal X-axis direction of the opening.

It can be observed from the above figures that the third principal stress changes
significantly along the normal direction of the opening edge. When the distance to the
extracted nominal stress is more than 6 mm, the stress value reduces linearly, and the
stress concentration effect decreases obviously. This suggests that the nominal stress is
significantly affected by the location of stress extraction. Fatigue assessment based on the
HSS method leads to relatively conservative results. The stress value is relatively stable
and does not fluctuate significantly with the location of stress extraction.

The stress responses for the stress distribution at the free edge of the opening when the
longitudinal load step i = 3 are shown in Figure 26. The curved value of the extraction path
is represented by the abscissa t in Figure 26. Because of the significant stress concentration
at the opening, the origin of the abscissa is set 10 mm ahead of point A.

In all three key load cases, the free edge of the diaphragm’s arc opening is under
pressure. The peak stress occurs at t = 10 mm (point A) and at the symmetrical position
on the other side. The stress decreases gradually with the increase in the thickness values,
and the stress near the middle of the hole is almost zero. The region near the hot spot is
in a biaxial compression state. The premise of fatigue crack growth is that the region is
in a “pure tension” state. It is speculated that the total stress in this area may vary from
compression to tension due to the influence of initial defects and welding residual tensile
stress. Eventually, the cyclic action of higher stress amplitude results in the occurrence of
fatigue cracking.
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Figure 26. Stress distribution at free edge of opening.

The calculation results state that the fatigue crack control stress at the peak point A
of the diaphragm’s arc opening stress is the principal stress with a maximum absolute
value, and the stress direction is tangential to the hole edge. Although the area is primarily
compressed under the load, the residual tensile stress at the connection between the U-rib
and the diaphragm causes it to have similar fatigue characteristics to the weld details.
The reciprocating compressive stress around the diaphragm’s arc opening can also cause
fatigue cracking.

6. Fatigue Performance Evaluation of Diaphragm’s Arc Opening
6.1. Assessment of Fatigue Effects in Open Hole Area

The stress response of the diaphragm’s arc opening stress peak at point A under
different load cases was extracted under the premise of the similarity in stress distribution
under lateral loading cases. The stress cycle curves are depicted in Figure 27. The stress
states of the diaphragm’s arc opening stress peak at point A under the most unfavorable
load case LC4 are analyzed. It can be noted from Figure 27b that the diaphragm primarily
bears in-plane membrane stress, as is known from the previous conclusion. Vertical stress
σy has the most obvious variation, and its stress level is significantly greater than those of
the other stress components. Vertical stress σy accounts for the largest proportion of fatigue
cracking at point A. The fatigue crack in the model test has an angle of 12.8◦ included with
its normal direction.

The chief reason that the cracking direction is not perpendicular to its stress direction
is the existence of the other stress components. The transverse normal stress σx is higher
than other stress components, which promotes further propagation of the crack along the
transverse direction. The local impact of the wheel makes the level of shear stress higher,
which is the second in all stress components.
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Figure 27. Stress cycle curves of point A under three key load cases. 
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Moreover, the residual stress component is almost negligible. From the results of the
stress cycle curves, it can be inferred that the chief stress components of point A are σx, σy,
and τxy. These three stress components belong to the stress in the XY plane, suggesting
that the region is in a biaxial stress state. The normal stress σx of point A accounts for
10.08% of σy, and the shear stress τxy accounts for 19.24% of σy when the longitudinal and
transverse directions are the most unfavorable. When the load acts directly above HGB2,
the normal stress σx of point A accounts for 10.02% of σy, and the shear stress τxy accounts
for 19.13% of σy.

It can be observed from Figure 27a–c that the change trend of the third principal stress
with the largest absolute value is consistent with that of the vertical normal stress. The
stress cycle curve of σm is enveloped by the stress cycle curve of σy, suggesting that it is
appropriate to use the third principal compressive stress to analyze the fatigue performance
of this region.

To deal with the complex biaxial stress state of the structure in a practical structure,
this study developed a set of biaxial fatigue effect evaluation methods based on the relevant
contents in Section 2.2. The magnitude difference between the primary stress component
and the principal stress was used to assess the spatial fatigue effect of the studied details.
The parameters defined in the preceding expression describe the degree of deviation
between the chief stress component and the principal stress (21).

δ =
∆σn

∆σm

(21)
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∆σn denotes the maximum value of the main stress amplitude at all levels.
∆σm denotes the maximum value of the principal stress amplitude with the maximum

absolute value at all levels.
The calculation results of stress amplitude deviation δ are listed in Table 6.

Table 6. Calculation results of stress amplitude deviation δ.

Load Case
Load Step

1 2 3 4 5 6 7 8 9 10

LC1 0.9539 0.9533 0.9536 0.9536 0.9536 0.9538 0.9542 0.9547 0.9552 0.9557
LC4 0.9561 0.9557 0.9553 0.9552 0.9552 0.9552 0.9555 0.9559 0.9563 0.9567
LC7 0.9581 0.9575 0.957 0.9567 0.9565 0.9564 0.9565 0.9567 0.9569 0.9571

Load Case
Load Step

11 12 13 14 15 16

LC1 0.9561 0.9564 0.9567 0.9571 0.9577 0.9589
LC4 0.9571 0.9574 0.9577 0.9584 0.9593 0.9612
LC7 0.9575 0.9578 0.9582 0.9588 0.9600 0.9620

Under the three load cases, the deviation value, δ, of the stress amplitude first decreases
and then gradually increases, as shown in Figure 28, which is roughly consistent with
the change trend of the third principal stress at the peak point A of the diaphragm’s arc
opening stress. When the moving load is a certain distance away from the diaphragm, the
stress amplitude deviation δ is the smallest and the deviation degree of σm and σy is the
greatest. The biaxial stress state in the diaphragm is the most significant at this point.
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Figure 28. Stress amplitude deviation distribution.

For the third load step, the stress amplitude deviation, δ, gradually increases with the
increase in the distance of the moving load from the center line of the 6# U-rib. δ1 = 0.9536
under LC1, δ4 = 0.9553 under LC4, and δ7 = 0.9570 under LC7. This phenomenon suggests
that the more the moving load center line deviates from the structural details concerned
in the transverse direction, the weaker the in-plane biaxial fatigue effect is. The in-plane
biaxial fatigue effect is more significant when the moving load on one side is directly above
the 6# U-rib.
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6.2. Fatigue Life Analysis Based on S–N Curve

When the HSS method is used, IIW recommends using FAT100 and FAT90 fatigue life
curves for fatigue life assessment. Since the welding defects do not affect the structural
details, the area around the diaphragm’s arc opening must be evaluated with a higher
fatigue level. Thus, FAT100 and FAT112 were selected to evaluate the fatigue life of this
opening area. The improved luffing fatigue assessment S–N curve is used because the
actual situation involves variant loading, as illustrated in Figure 29.
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Figure 29. S–N curves for fatigue assessment of diaphragm details.

The HSS at point A under the most unfavorable loading is −44.70 MPa, which is
greater than the cut-off stress amplitude corresponding to the two S–N curves shown in
Figure 29. This suggests that the structural details have a limited life. The corresponding
fatigue life is computed using the following equations:

N = C/∆σ
m (22)

N = (365)(Y)n(ADTT)SL (23)

Y denotes the design life of the construction details. (ADTT)SL is the daily average
traffic volume of a single lane. N denotes the number of stress cycles caused by one fatigue
test vehicle. In this section, (ADTT)SL is taken as 5000, and N is conservatively taken as 3.
By substituting relevant variables into Equations (22) and (23), the fatigue life assessment
results of the studied details can be determined, as mentioned in Table 7.

Table 7. Fatigue life assessment of the opening.

Fatigue
Level

Constant Amplitude
Fatigue Limit (MPa)

Cut-Off Stress
Amplitude (MPa) Constant m Constant C Fatigue Life

(Year)

FAT100 58.5 36.9 5 6.84 × 1015 7.00
FAT112 65.5 41.3 5 1.21 × 1016 12.38

7. Conclusions

This theoretical model was designed based on the structural design parameters of
the actual bridge, and the stress responses under different stress extraction methods were
compared. The HSS method, which is the chief evaluation method in follow-up fatigue
performance research, was used to deal with fatigue cracking in the opening area of the
diaphragm during the fatigue test. The control stress of the mentioned category of a fatigue
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crack was determined by comparing the direction of the principal stress field with that of
the crack in the model test. The reasons for fatigue cracking were analyzed, the in-plane
fatigue effect of the diaphragm’s arc opening area was evaluated, and the fatigue life
analysis was carried out based on the S–N curve. The conclusions are the following.

1. The stress influence line of the diaphragm’s arc opening area in the longitudinal
direction is nearly twice the distance between adjacent diaphragms. In FEM analysis,
only the middle or rear axles of the fatigue test vehicle can be loaded. When a fatigue
test vehicle passes through the area, this can result in two to three stress cycles.

2. The stress in the diaphragm’s arc opening area is primarily in-plane, with little out-
of-plane stress. To deal with the significant stress concentration at the arc opening
location, the HSS method can extract stable HSS estimates. The most unfavorable
lateral action position of the moving load is the connection between the web plate and
the deck roof on the side of the U-rib closest to the study details. When the moving
load longitudinally deviates 140 mm (1:2 scale) from the diaphragm plate, the in-plane
and out-of-plane combined stress values reach their maximum.

3. Under biaxial compression, the fatigue crack control stress in the diaphragm’s arc
opening area is the third principal stress tangential to the hole edge, and is also the
principal stress with the largest absolute value. The normal direction of the principal
stress is 11.1◦ with the horizontal line in the X-axis direction, which is approximately
consistent with the fatigue test crack initiation angle of 12.8◦. Based on the third
principal stress, it is possible to conduct a fatigue assessment for this research detail.

4. The stress around the arc opening is negative, and the stress near the opening’s
center is near zero. Despite the fact that the area is primarily under pressure, residual
tensile stress caused by the welding of the U-rib and diaphragm results in fatigue
characteristics with weld details. Therefore, fatigue cracking occurs as a result of the
reciprocating compressive stress in the diaphragm’s arc opening area.

5. The cyclic curve of each stress component of the arc opening was studied in detail.
The stress level of vertical normal stress σy is considerably higher than that of the other
stress components, which accounts for the largest proportion of fatigue cracking. The
stress amplitude deviation value δ is used to determine the deviation degree between
the stress component σy and the principal stress σm used to evaluate fatigue. δ first
decreases and then gradually increases in the longitudinal direction. This indicates
that when the moving load is a certain distance from the diaphragm, the deviation
degrees of σm and σy are the largest.
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