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Abstract: Metamaterials are usually designed using biomimetic technology based on natural biologi-
cal characteristics or topology optimization based on prior knowledge. Although satisfactory results
can be achieved to a certain extent, there are still many performance limitations. For overcoming the
above limitations, this paper proposes a rapid metamaterials design method based on the genera-
tion of random topological patterns. This method realizes the combined big data simulation and
structure optimization of structure-electromagnetic properties, which makes up for the shortcomings
of traditional design methods. The electromagnetic properties of the proposed metamaterials are
verified by experiments. The reflection coefficient of the designed absorbing metamaterial unit is all
lower than −15 dB over 12–16 GHz. Compared with the metal floor, the radar cross section (RCS)
of the designed metamaterial is reduced by a minimum of 14.5 dB and a maximum of 27.6 dB over
the operating band. The performance parameters of metamaterial obtained based on the random
topology design method are consistent with the simulation design results, which further verifies the
reliability of the algorithm in this paper.

Keywords: stochastic topology; metamaterial structure design; big data; automatic design

1. Introduction

Metamaterials have great application potential in the fields of stealth camouflage,
electronic countermeasures, navigation and communication, early warning and guidance,
and imaging recognition. The emergence of metamaterials provides a new idea for the
design and preparation of absorbing materials. For a specific width of the frequency band,
adjusting the artificial structural units of metamaterials can achieve effective modulation of
the incident electromagnetic wave vector, thereby achieving nearly 100% perfect absorption
characteristics. In 2008, Landy et al. [1–5] first proposed a theoretical model of a microwave-
segment Metamaterial Absorber (MMA) and verified it experimentally. In the same year,
Hu et al. [6]. realized MMA in the terahertz band by adjusting the structural parameters
of MMA proposed by Landy et al. Through ingenious structural design, metamaterials
can achieve a narrow-band electromagnetic wave absorption rate close to 100%, which
has set off a wave of research on metamaterials [7–11]. Although early wave-absorbing
metamaterials can achieve narrow-band and high-efficiency electromagnetic wave absorp-
tion [12–18], they neglected the insensitivity of electromagnetic absorbing materials to
polarization direction [16,19–24], wide incident angle [25–27], multifrequency [18,28–32],
broadband absorbing metamaterials [33–36], and electromagnetic parameters regulate
metamaterials [35–38]. These are precisely the basis for the broadband and high-efficiency
absorption of radar stealth metamaterials.

To solve the problem of polarization insensitivity, Cheng et al. [37] adopted a symmet-
ric cross-resonant ring and continuous metal grid structure in 2011 to realize polarization-
independent MMA. In 2012, Ding et al. [36] proposed a four-sided conical pyramid structure
in the form of a metal-dielectric stack to meet the demand for broadband electromagnetic
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wave absorption in a special environment. In 2013, Yang et al. [38] designed an MMA
with a high absorption rate and lossless layer. In 2014, Liu et al. [39] designed a Per-
fect Metametric Absorber (PMA), which greatly reduced the RCS of the antenna. In the
same year, Zhu et al. [40] used a multilayer resonant composite structure to realize ultra-
wideband microwave absorption. In 2015, Li et al. [41] designed scattered cross quasi-fractal
structure materials to reduce the size. In 2020, Yang et al. [42] designed multilayer materi-
als by compounding topological structures, which obtained a broadband low-scattering
structure material.

At present, biomimetic technology that draws on the biological characteristics of na-
ture or the topological optimization based on prior knowledge is usually used to design
structural materials. There are still the following limitations: (1) Organisms in nature
do not necessarily evolve in a way that provides the best structural properties. (2) It is
difficult to find a completely corresponding organism from nature as a reference to obtain a
matching biological structure. (3) The topology optimization method is restricted by the
initial assignment of the structure. (4) Traditional design methods require rich design expe-
rience and expensive multiple experiments. Structural materials need to realize intelligent
design. The machine can provide designers with more structural choices, provide powerful
data support for the intelligent design of structural materials and specific performance,
and adapt to complete the design of structural materials with specific performance and
rapid calculation and evaluation of electromagnetic properties. According to the design
characteristics of electromagnetic wideband absorbing structure materials, combined with
the joint calculation method of Python and FDTD electromagnetic simulation, this paper
proposes a method based on the automatic generation of random topologies and rapid
transformation modeling and evaluation of structure-superstructure materials, so as to
realize the structural design and optimization of electromagnetic absorbing superstructure
materials with wide band and high absorption effect.

2. Microstructure Random Topology Generation Method

From the perspective of electromagnetic wave broadband absorption, our work focuses
on designing the generation method of the graphic structure. To obtain the topology of a
structural material, we first generate the topology of its constituent elements (shown in
Figure 1), map the elements to units of symmetry groups, and then periodically switch the
units to form the overall structural material. It is worth noting that for a systematic design
method, the topology of the graphic elements needs to meet the following conditions:
(1) The topology should be randomly generated to represent the entire design space; (2) The
number of pixels of a complete graphic should follow the specified structure ratio; (3) The
structure blocks in the graphic unit need to be connected.
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Figure 1. Schematic diagram of random topology generation.

To generate the desired configuration of graphic elements, random generation and
symmetry algorithms are developed, and the microstructure generation process is shown
in Figure 2. The size of each pixel is sent as 0.1 × 0.1 mm2 in this paper. Firstly, randomly
generate a number of structural pixel seed points in the agreed area. Secondly, starting
from all structural pixels, calculate and mark the neighborhood boundary. Thirdly, further
randomly select a number of pixels from the boundary pixel coordinates that meet the
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constraints as new structural pixels. Meanwhile, one to three point pixels are randomly
assigned as new structure seed points, which is beneficial to the structure generation with
high structure pixel ratio. In addition, during the test, it is found that if the addition
of new structural seed points is not considered, the growth rate would be too slow in
the process of graph generation limited by some special regions, resulting in low graph
generation efficiency.
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Figure 2. Schematic diagram of the generation process of microstructure random topological growth.
(a) Initialize and randomly generate seed points; (b) Mark the field pixels of the seed points; (c) Ran-
domly select several points from the field as new structure points; (d) Obtain the region structure
that meets the duty cycle requirements.

For electromagnetic wave absorbing stealth, the polarization direction of the incident
electromagnetic wave and the relative angular position of the material have a great influence
on the absorbing effect. In order to adapt to the change of polarization direction as much
as possible, this paper adopts the method of rotation and axis symmetry in the process of
graph generation. A variety of topological modes, according to this principle, can generate
any number of partitioned graphics in principle to achieve the consistency of the horizontal
and vertical polarization of electromagnetic wave absorption. The generation mode used in
this paper is shown in Figure 3. Among them, p4 adopts the rotation generation mode for
structure generation, and p4m adopts the axisymmetric mode for generation. These two
generation modes have good polarization adaptability, and p4g adopts uniaxial symmetry.
The unit structure is sensitive to electromagnetic wave polarization, but the metamaterial
can be realized with strong polarization adaptability by symmetrical combination over a
large area.
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The microstructure generation algorithm can generate different structures according to
the requirements of different structural duty ratios. Based on determining the optimal duty
cycle, simulation calculations and performance evaluations for a large number of structural
materials can be performed, which can realize the rapid development of high-efficiency
electromagnetic wave-absorbing metasurfaces. For optimization, Figure 4 presents mi-
crostructure samples with different structural duty cycles δ. The intelligent generation and
automated test evaluation of massive microstructures is an effective approach for designers.
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3. Electromagnetic Material Generation and Field Combined Testing

Combining with the microstructure generation mode in Figure 3, the structural char-
acteristics of the material can be obtained. For the corresponding structural elements,
the electromagnetic parameters of the material need to be further assigned, and different
material systems can be generated according to different needs. In the electromagnetic
wave absorbing material system, the electromagnetic microstructure itself cannot realize
the wave absorbing function alone, and it needs to be multilayered with the substrate
dielectric material to achieve the RCS reduction effect. This paper also explores the electro-
magnetic wave absorbing properties of single-layer microstructured material and dielectric
composite and multilayer microstructured film and multilayer dielectric composite meta-
material, and realizes microstructure encoding storage and metamaterial electromagnetic
reflection properties through Python and FDTD. Big data intelligent testing and storage
of S-parameters are considered. During the storage process, the corresponding data file
implementation structure is constructed with a one-to-one mapping of S-parameters.

The generation method of metamaterials containing microstructures is shown in
Figure 5. Since the impedance film is easily damaged, the electromagnetic performance
is degraded. In this paper, the environment-resistant medium is covered on the surface
layer, and the impedance structure layer is loaded in the middle of the medium. Composite
processing, as shown in the composite schematic diagram of the multilayered microstruc-
tured material in Figure 5, occurs where the microstructures are randomly selected when
repeating the formation of A.

Taking the search for high-efficiency broadband absorbing metamaterials in the
12–16 GHz frequency band as an example, set the microstructure period P = 8 mm, the
impedance film is polyimide film, the impedance is 95 Ohm/sq, the medium is cyanate
ester, its dielectric constant is 3.0 and the loss tangent is 0.005. The upper and lower layers
of dielectrics are selected to have the same thickness to achieve resonance characteristics in
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the frequency band and increase the absorption effect. The theoretical Formula (1) is used
to calculate the thickness [43].

d = λ/4
√

εsub = c/4 f
√

εsub (1)
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Figure 5. Multilayer electromagnetic wave-absorbing metamaterial composite method. A1 consists of
two lower dielectric layers and an intermediate impedance layer, which can be repeated many times
in the Z direction, h1 and h2 are the thickness of the upper and lower dielectric layers, respectively. A2

is similar to A1, the thickness of the upper and lower layers of A2 medium h3 and h4 can be designed
according to the needs, and the microstructure of the intermediate impedance layer of A2 can also be
designed according to the needs.

Among them, d is the resonance thickness of the electromagnetic wave, c is the propa-
gation speed of the electromagnetic wave, f is the frequency of the electromagnetic wave, ε
is the dielectric constant of the medium, and λ is the wavelength of the microwave. Through
calculation, the corresponding thicknesses of the 12 GHz and 16 GHz frequency bands are
3.6 mm and 2.7 mm, respectively. The thickness is weighed under the condition of wide
frequency and d = 3.1 mm (≈

√
3.6× 2.7) is selected with reference to Formula (2). Figure 6

represents a graph showing the composite effect of metamaterials with a single-layer
impedance film and different structural duty ratios δ and their electromagnetic reflection
S-parameter characteristic curves in the frequency band of 12–16 GHz. Since the bottom
layer of the metasurface is a layer of metal flakes, which can realize the total reflection of
electromagnetic waves, the electromagnetic reflection S-parameter curve directly reflects
the electromagnetic absorption characteristics of the metasurface material. The smaller the
reflection S-parameter, the better the electromagnetic wave absorption effect. From the
simulation calculation results in Figure 6, it can be found that the material composite mode
of dielectric-impedance film-dielectric has a certain electromagnetic absorption effect when
there is no microstructure. After that, the electromagnetic absorption performance of the
material is obviously enhanced, the structure duty ratio δ continues to increase, and the
electromagnetic absorption effect gradually weakens.

dmulti−band =
√

d f min · d f max (2)

In order to liberate the workload of researchers, this paper uses Python to generate elec-
tromagnetic microstructure patterns, converts the patterns into GDS files that can be called
by FDTD, uses the interface between Python and FDTD to import GDS microstructures,
and then controls the generation of superstructures according to the method in Figure 5.
The material is constructed and the electromagnetic performance simulation test is carried
out. After the simulation calculation is completed, the automatic storage algorithm will
encode and save the microstructure (the encoding method is shown in Figure 7), and at
the same time save the electromagnetic reflection S-parameter data and phase data of the
metamaterial in the same index position in the corresponding data file, which is convenient
for subsequent calculations.
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4. Simulation and Analysis

The composite of single-layer microstructure and medium can obtain a better elec-
tromagnetic wave absorption effect in a certain frequency band. Can multilayered mi-
crostructure and medium composite achieve better electromagnetic wave absorption effect,
or a larger bandwidth compatible absorption? Based on this consideration, this paper
constructs a double-layer microstructure metamaterial based on the δ value of the struc-
tural duty cycle and conducts an electromagnetic performance simulation analysis. There
are three cases as follows: 1© δ1 ≈ δ2; 2© δ1 < δ2; 3© δ1 > δ2. Figures 8–10 are the samples
of double-layer microstructure metamaterials and their electromagnetic wave absorption
effects in the frequency range of 0 to 20 GHz under the above three cases, respectively.
The microstructure period is set to P = 8 mm, and the thickness of each layer is the same
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at 3.1 mm, and the material properties are consistent with those of the metamaterial in
Figure 6.
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As shown in Figure 8, it is a graph of the broadband electromagnetic compatibility
absorption characteristic curve of metamaterials under the condition 1© δ1 ≈ δ2, and the
structure duty cycle value changes from small to large. Through research, it was found
that the electromagnetic wave absorption characteristics did not change significantly in the
frequency band of 12–20 GHz, and the main resonance frequency was located near 14 GHz.
It is worth noting that in the frequency band below 12 GHz, the electromagnetic absorption
characteristics are greatly affected by the values of δ1 and δ2, and when case 2© δ1 is slightly
larger than δ2, the electromagnetic absorption effect is better than when δ2 is slightly larger
than δ1, and the resonance frequency is located at 4.5 GHz. Nearby, when the resonance
frequency absorption effect is very good, the broadband compatibility of the metamaterials
is often poor.

The double-layer microstructure pattern of the metamaterial and the absorption char-
acteristic curve of broadband electromagnetic compatibility are shown in Figure 9. The
simulation results show that when the value of |δ1 − δ2| increases, the electromagnetic
absorption effect of metamaterials in the low-frequency region (6–10 GHz) will be enhanced,
but in the high-frequency region (12–20 GHz)) it will be less effective. This shows that
in the range of 0–20 GHz, the large-bandwidth electromagnetic compatibility absorption
effect of the metamaterial designed in this mode is not obvious. Therefore, the structure-
S-parameter big data of the mode of structural duty ratio δ1 < δ2 can be excluded. This is
generated to save the cost of optimization calculation.

From the simulation results shown in Figure 10, it can be found that under the con-
dition of 3© δ1 > δ2, when the difference between the duty ratios of the upper and lower
microstructures δ1 − δ2 increases from small to large, the broadband electromagnetic com-
patibility absorption of metamaterials effect is enhanced. If the value of δ1 − δ2 continues
to increase, the electromagnetic absorption capacity of the middle frequency band will
become weaker. It is found from the figure that the difference is about 0.37. Through the
structural optimization search, all electromagnetic waves in the 6–18 GHz frequency band
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can be absorbed by more than 10 dB (see Figure 10c). Through the study of the above three
cases, a metamaterial composite mode with high-efficiency electromagnetic compatibility
absorption characteristics with large bandwidth can be obtained, which can guide the
generation and storage of structure-S-parameter big data, complete the optimization of the
microstructure, and save calculation and storage costs.

In the above research, the thickness of each layer of the metamaterial is the same.
Can changing the thickness of different layers achieve better broadband electromagnetic
compatibility absorption performance? In order to explore this problem, under the same
material selection system metamaterials with different thicknesses are constructed and
new constraints are proposed. That is, the upper layer medium is mainly used to resonate
in the 4–8 GHz frequency band and the middle layer medium is mainly used to resonate
in the 8–12 GHz frequency band. In the 12 GHz band region, the lower dielectric mainly
resonates in the 12–18 GHz band region. According to Formula (1), the thickness of the
dielectric layer from top to bottom can be calculated to be 7.9 mm, 4.6 mm, and 3.0 mm,
respectively, while the total thickness is 15.5 mm, as shown in the Figure 11 which is a
graph of broadband electromagnetic wave absorption characteristics corresponding to
different microstructured composite metamaterials.
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According to Formula (1), it can be obtained that the resonant frequencies correspond-
ing to the dielectric layers with thicknesses of 7.9 mm, 4.6 mm, and 3.0 mm should be
around 5.6 GHz, 10 GHz, and 15 GHz, respectively. However, it can be found from the
curves in Figure 11 that the microstructures with different structural duty cycle δ values
will cause different degrees of red shift of the two design resonant frequencies that should
appear at 5.6 GHz and 10 GHz. The resonance frequency that appears at 15 GHz has a
certain degree of blue shift. Therefore, the thickness of the dielectric layer needs to be
optimized. This characteristic of the microstructure provides the possibility of reducing the
overall thickness of the metamaterial, making it so that the metamaterial practicability is
further improved.

5. Big Data Structure Design and Optimization

The above studies show that for single-layer structures, only microstructure optimiza-
tion is needed, while for multilayer structures, it needs to be divided into two modes:
optimization under the condition of fixed dielectric layer thickness and optimization of
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multilayer thickness and microstructure [43]. This paper mainly studies the optimization
process under the conditions of multilayer thickness and different microstructures, but
the optimization methods in other situations are also similar. Taking the double-layer
microstructure composite three-layer dielectric metamaterial as an example, it is necessary
to determine the thickness distribution of the dielectric layers that meet the conditions.
Adjust the thickness of different dielectric layers to achieve various combinations and
optimize the selection of thickness matching that meets the absorption index to achieve
large-bandwidth electromagnetic compatibility absorption effects, so as to achieve the goal
of better than −10 dB in the 6–18 GHz frequency band. The evaluation criteria are shown
in the Formula (3).

Fscore = min(avg
fmax

∑
f = fmin

(S f − (−10 dB))) @ S f ≤ −10 dB, f ∈ (6, 18) GHz (3)

In this paper, two different microstructure combinations are selected, and the sim-
ulation results that meet the requirements after optimizing the thickness are shown in
Figure 12. The two different structure combinations meet the index requirements when
the thickness of the three-layer dielectric is 3.6 mm, 2.6 mm, and 1.8 mm, respectively.
However, differences in the microstructure will cause differences in the compatible wave
absorbing ability, so it is necessary to carry out the second stage of optimization which is
microstructure optimization.
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Figure 12. Broadband electromagnetic compatibility wave absorption characteristics of metamaterials
combined with two microstructures when the thickness of the dielectric layer is 3.6–2.6–1.8 mm.

In the process of optimization, in order to avoid the miss-selecting of metamaterials
with poor electromagnetic compatibility absorption performance but large absorption
troughs, Formula (3) can be improved, and the evaluation of compatible absorption effi-
ciency is carried out by means of subsection evaluation and weighting. (See Equation (4)).

Fscore = min(a1 × avg
f2

∑
f= f1

(S f − (−10 dB)) + a2 × avg
f3

∑
f= f2

(S f − (−10 dB)) + a3 × avg
f4

∑
f= f3

(S f − (−10 dB)))

@ S f ≤ −10 dB, f ∈ (6, 18) GHz, f1 = 6 GHz, f2 = 10 GHz, f3 = 14 GHz, f4 = 18 GHz
(4)

Among them, a1, a2, and a3 are the weights of the average values of the three frequency
bands, which can be adjusted according to different needs.

Taking 3.6 mm, 2.6 mm, and 1.8 mm for the thickness of the three-layer medium as
constraints, a big data optimization is conducted. The random δ1 and δ2 combinations are
used in the optimization process. After 160 iterations of optimization, the convergence
curve is shown in Figure 13. In this paper, the evaluation criterion uses Formula (3) to
calculate the score and combines the random process for optimization so there is a certain
randomness.
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6. Experimental Verification and Conclusions

In order to further verify the applicability of the algorithm presented in this paper, we
set the total thickness of metamaterials to 7.4 mm, the microstructure layer is a single-layer
highly absorbing metamaterial in the 8–16 GHz frequency band, and the upper and lower
dielectric layers are of equal thickness. After designing and optimizing the structure, the
structure of the metamaterial is obtained and the solid sample is prepared. The results
are shown in Figure 14. It is found that there is a certain deviation between the measured
reflection S-parameter curve of the solid sample and the result simulated by the FDTD
method (see Figure 15), which may be caused by a machining accuracy error during the
processing of the sample. The microstructure error obtained by the design method proposed
in this paper has high requirements on the processing technology, which often causes the
deviation of the design index and the test index of the processed sample. This is also a
possible deficiency of the algorithm in this paper, but it does not affect the applicability of
the design method.
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In summary, the design method of structural materials based on random topology
proposed in this paper can automatically and quickly generate multiple styles of structural
materials, and the electromagnetic characteristics of structural materials can be quickly
realized by a combining FDTD algorithm. Taking 12–16 GHz high efficiency absorption as
an example, a structure is selected and tested by mass structure generation and performance
evaluation before the reliability of the design method is verified. The main purpose of this
paper is to study the method of automatic structural design, which can be extended to
other structural material design fields with the needs of other bands and electromagnetic
properties.
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