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Abstract: The effective utilization of charcoal and tar byproducts is a challenge for pyrolysis gasi-
fication of bamboo. Herein, the bamboo tar was modified via polymerization and acted as a new
adhesive for the preparation of excellent bamboo-charcoal-derived molding activated carbon (MBAC).
As compared with pristine tar and other adhesives, the aromatization of tar with phenol increased
its molecular weight, oxygenic functional groups, and thermal stability, leading to the decreased
blocking impact of charcoal pore and improved bonding and pyrolytic crosslinking effect between
charcoal particles. These further contribute to the high mechanical strength, specific surface area,
pore volume, and amount of oxygenic functional groups for fabricated MBAC. Owing to the high
microporous volume of MBAC, it exhibited 385 mg·g−1 toluene and 75.2% tetrachloride gas adsorp-
tion performances. Moreover, the pseudo-first-order, pseudo-second-order, and Bangham models
were used to evaluate the kinetic data. The toluene adsorption process conforms to the Bangham
kinetic model, suggesting that the diffusion mechanism of toluene adsorption mainly followed
intraparticle diffusion.

Keywords: molding activated carbon; bamboo-derived tar; bamboo charcoal; gas adsorption;
micropore

1. Introduction

Given the rising environmental concerns associated with the use of fossil fuels, people
are constantly searching for innovative ways to reduce greenhouse gas emissions. Biomass
is widely regarded as the most promising energy source for reducing greenhouse gas
emissions. Due to its unique role as a sustainable carbon carrier, biomass has a significant
advantage over other renewable energy sources. As a result, it provides an attractive alter-
native for meeting energy demands while minimizing environmental impact [1,2]. Forestry
residues are recyclable nature resources that can be transformed into useful materials and
energy via pyrolysis [3]. The use of forestry waste as a potential source of renewable energy
is gaining more and more attention. Among the promising thermochemical conversion
routes, pyrolysis gasification of forestry residues has been an essential source of heat [4–7].
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Biomass pyrolysis has been utilized for a considerable period and is generally defined as
the thermal decomposition of the biomass organic matrix resulting in liquid bio-oil, solid
biochar, and noncondensable gas products [8].

Bamboo is a native plant in many Asian countries, which is fast-growing and can be
utilized as a sustainable raw material instead of wood [9,10]. It is well-known that the py-
rolysis gasification of bamboo processing residues is an environmentally benign, economic,
and carbon negative engineering process [11]. On the one hand, its gas production can
be utilized to provide heat and electricity. On the other hand, the bamboo charcoal (BC)
byproduct can be easily activated to become bamboo activated carbon (BAC) with high
adsorption performances [12–15].

However, owing to the drawbacks of BAC such as poor mechanical strength and
low density, the BAC is hardly applied in the field of gas adsorption, catalysis, etc. The
volatile organic compounds (VOCs), such as toluene and benzene, will damage to the
liver and nervous system of the human body. The gas adsorption process is an effective
method of VOCs pollution purification and is widely used in environment control and life
support system of the enclosed space [16]. Another challenge for the pyrolysis gasification
of bamboo is the utilization of tar in the liquid byproducts [17]. As bamboo-derived tar
(BT) contains polycyclic aromatic hydrocarbons, phenols, as well as other aromatic and
nonaromatic organic compounds [18,19], it is difficult to make large-scale and high-value
use of this complex BT [20–22].

The strength and density of BAC can be improved by using binders [23–26]. Coal tar
pitch with low viscosity contributes to fill the pores, and high char yield is beneficial for
enhancing the density of carbon materials during the carbonization stage [27]. Additionally,
the highly crosslinked 3D structure of phenolic resin means it follows the solid phase
carbonization mechanism [28]. The strong shrinkage of phenolic resin, however, makes it
easy for crack flaws to form inside the carbon material, which limits its practical application
in the industry. However, the use of coal tar, asphalt, and other binders not only raises
the product cost and carbon emissions but also impairs the pore structure and adsorption
efficiency of molding bamboo activated carbon (MBAC). In order to replace these fossil-
derived binders, Amaya et al. [29] evaluated the char and tar produced by the pyrolysis
of Uruguayan eucalyptus wood as raw materials for the preparation of activated carbon
pellets. Tomasz et al. [30] analyzed the biomass-derived wood tars as a substitute for
commercial coal tar pitch, and their pyrolysis exhibits decreased emissions of polycyclic
aromatic hydrocarbons. It is proposed that the wood-derived tar could be utilized as
a binder for the preparation of molding activated carbon [31], though its strength and
porosity still need to be improved.

Inspired by these, the BT was modified via polymerization with phenol and formalde-
hyde in this study. The improvement mechanism of modified bamboo-derived tar (MBT)
for the prepared columnar MBAC was revealed by comparison with BT, asphalt, and a
mixture of asphalt and phenolic resin. The iodine, methylene blue, carbon tetrachloride,
and toluene adsorptions of MBACs were performed to investigate the excellent liquid
and gas adsorption performances of MBAC prepared from MBT. Moreover, the toluene
adsorption of optimized MBAC was simulated to explain the adsorption mechanism of
gas molecular.

2. Materials and Methods
2.1. Materials

BC and BT were collected by Zhejiang Jizhu Biotechnology Co., Ltd. (Huzhou, Zhe-
jiang, China). The moisture, ash, volatile, and fixed carbon contents of BC were 4.94%,
2.94%, 9.58%, and 82.54%, and its carbon (C), hydrogen (H), oxygen (O), and nitrogen (N)
contents were 83.97%, 2.11%, 13.33%, and 0.59%, respectively. Phenolic resin and asphalt
were purchased from Shanxi Xinhua Chemical Defense Equipment Research Institute Co.,
Ltd. (Taiyuan, Shanxi, China). Phenol and formaldehyde were purchased from China
National Pharmaceutical Group Corp. (Beijing, China).
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2.2. Preparation of MBAC

A total of 10 g of carboxymethyl cellulose (CMC) was dissolved in deionized water at
80 ◦C to obtain a 2% CMC solution. For the synthesis of MBT, after the pH pf BT, phenol
and, formaldehyde mixture was adjusted to 3–6, the polymerization was consecutively
held at 80 ◦C, 120 ◦C, and 150 ◦C for 90 min, 30 min, and 20 min, respectively.

The BC powder (particle size ≤ 0.071 mm), binder (asphalt, phenolic resin, BT, or
MBT), and CMC solution were mixed, stirred, and kneaded until the mixture became
homogeneous. Then, extruder was formed in the molding machine, and the columnar raw
materials were placed in the oven for drying and hardening. Finally, MBAC samples were
prepared through the pyrolytic crosslinking and steam activation method. The activated
carbon made using asphalt, asphalt and phenolic resin, BT, and MBT as binders were
labeled as MBAC1, MBAC2, MBAC3, and MBAC4, respectively. The yield of MBAC during
the steam activation was calculated using the following formula:

yield =
m2

m1
×100% (1)

where m1 is the mass of resulting char before the activation process and m2 is the mass
of MBAC.

2.3. Characterization

The elemental analysis of the sample (C, H, and N) was characterized using FLASH2000
(Thermo Fisher Scientific, Madison, WI, USA) elemental determination machines, whereas
the O content was estimated by difference. Thermal gravimetric (TG) and differential ther-
mal gravimetric (DTG) analysis of different adhesives and MBACs were conducted using a
TG209F1 (Netzsch, Selb, Germany) thermogravimetric analyzer under Ar (100 mL/min
flow-rate) at a heating rate of 10 ◦C/min from room temperature to 1000 ◦C. The molecular
weight of BT and MBT were determined using Viscotek model 350 (Malvern Panalytical
Ltd., Worcester, GBR, UK) high temperature gel permeation chromatography (HT-GPC).
The samples were dissolved in DMF and the injected sample volume was 200.0 µL with
1 mL/min flow rate. The Fourier transform infrared (FT-IR) spectra were analyzed using
an IS50 (Thermo Nicolet Corporation, St. Bend, OR, USA) infrared spectrometer from 500
to 4000 cm−1 with 32 scans at a resolution of 2 cm−1. After MBAC samples were degassed
at 150 ◦C for 10 h under vacuum, their surface physical properties were obtained from
the adsorption of N2 at 77 K using an ASAP 2460 (Micromeritics, Norcross, GA, USA).
The total specific surface area (SBET), pore volume (Vtotal), micropore volume (Vmic), and
mesopore volume (Vmes) were calculated according to the Density Functional Theory (DFT)
method [32]. Scanning Electron Microscopy (SEM) measurements of samples were carried
out using Regulus 8100 (Hitachi, Tokyo, Japan). The SEM images were taken in a secondary
electron with acceleration voltage equal to 20 kV and 20 pA emission current.

In order to describe the pore structure and liquid adsorption capabilities of MBAC,
the adsorption values for iodine and methylene blue of powder MBAC were determined
according to the “Test methods of wooden activated carbon” specification in GB/T 12496.10-
2015 [33] and GB/T 12496.10-1999 [34], respectively. Owing to the optimum pore diameter
of AC, iodine and methylene blue adsorptions were around 1.0–2.7 nm and 1.7–5.0 nm,
respectively [35]; the combination of iodine and methylene blue adsorption experiments
could effectively describe the micropore and small mesopore of MBACs.

The carbon tetrachloride and toluene gas adsorption of granule MBAC were de-
termined according to GB/T 12496.5-1999 [36] and GB/T 35815-2018 [37] standards, re-
spectively. The mechanical strength of MBACs were determined according to the GB/T
12496.6-1999 [38] standard. The prepared columnar MBACs with 3 mm diameter were
higher than 7 mesh. Typically, after the MBACs were struck with a steel ball in the steel
cylinder for 5 min, the mass percentages of residual MBACs higher than 7 mesh were
mechanical strength (abrasion resistance) of MBAC samples.
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3. Results and Discussion
3.1. Bamboo Forming Mechanism

The TG curves of adhesives are displayed in Figure 1a. The TG curves of asphalt and
asphalt–phenolic resin are similar. The degradation primarily takes place between 200 ◦C
and 500 ◦C, and the mass of asphalt and asphalt–phenolic resin remain 50.12% and 49.16%
at 1000 ◦C, respectively. BT shows the lowest thermal stability with only 15.10% remaining
at 1000 ◦C. Its sluggish weight loss starts around 100 ◦C, while violent weight loss starts
around 150 ◦C, and the rate of weight loss dramatically decreases after 550 ◦C. The MBT
exhibited better thermal stability than BT and similarly severe weight loss at about 150 ◦C.
The pyrolytic crosslinking temperature in this study was set at 550 ◦C since these four
adhesives almost ceased decomposition after that point.
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Figure 1. TG (a) and DTG (b) curves of different binders and TG (c) and DTG (d) curves of MBACs.

As shown in Figure 1b, the DTG curves show that both BT and MBT have the largest
area peaks at about 200 ◦C, owing to the highest decomposition rate. This may be the
volatilization stage of cycloalkane, benzene, phenol, and other low-boiling-point sub-
stances [39]. MBT also exhibits a pyrolysis peak at 300 ◦C. In this stage, there is not
only volatilization of substances with high boiling points (e.g., naphthalene and esters
substances) but also dehydration reactions of phenol and alcohol and/or carboxyl decom-



Materials 2023, 16, 5236 5 of 13

position of carboxylic acid substances. The asphalt displays clear pyrolysis peaks at 250 ◦C
and 450 ◦C, while asphalt–phenolic resin exhibits peaks at 200 ◦C, 400 ◦C, and 500 ◦C.

Figure 1c shows the results of the TG curves of MBACs. As illustrated in Figure 1c,
the thermal events during the pyrolysis of MBACs can be divided into two stages: The
first stage is dewatering and degassing. As the pyrolysis temperature is elevated from
room temperature to 300 ◦C, the moisture, adsorbed volatile organic matter, and volatile
nitrogen in MBACs are eliminated [40,41]. The MBACs exhibit a similar weight-loss ratio.
In the second stage, the weight loss rates of MBAC3 and MBAC4 are higher than those
of MBAC1 and MBAC2 as the temperature is higher than 300 ◦C. These results suggest
that the oxygen-containing functional groups of MBACs are gradually decomposed at
and elevated temperature [42], and MBAC3 and MBAC4 present much more oxygenic
functional groups than MBAC1 and MBAC2. The DTG curves (Figure 1d) verify the TG
curves of MBACs.

Table 1 shows the results of the elemental analysis and HT-GPC of BT and MBT. The
mass fractions of carbon, nitrogen, and hydrogen for the MBT decrease, as well as the ratio
of n(H):n(C). These results suggest that the modification process increases the density and
the amount of polycyclic aromatic hydrocarbon structures (polycondensation structures of
aromatic hydrocarbons) of pristine tar. As displayed in Table 1, the results show that the
average molecular weight value of MBT is 3.3-times higher than that of BT, consistent with
the findings of the elemental analysis. It is suggested that the formaldehyde, phenol, and BT
effectively polymerize together in the modification procedure, leading to the enhancement
of the relative concentration of high condensation molecules in the BT.

Table 1. Elemental analyses of coke tar.

Sample
Elemental Analysis

n(H):n(C)
HT-GPC

C (%) N (%) H (%) O (%) Average Molecular Weights

BT 77.25 1.49 6.77 14.49 1.052 2304
MBT 74.73 1.08 6.21 17.98 0.997 7716

The infrared spectra of BT and MBT are displayed in Figure 2. It can be seen that
the BT exhibits transmission peaks at 3367 cm−1 (O-H stretching vibration), 2966 cm−1,
and 2929 cm−1 (asymmetric stretching vibration of saturated aliphatic hydrocarbons -CH3
and -CH2, respectively), 1513 cm−1 and 1593 cm−1 (C=C bone vibration of the conjugated
double bond of benzene ring), 1453 cm−1 (-CH2), 1373 cm−1 (-CH3), 1219 cm−1 (asym-
metric stretching vibration of aromatic ether bond C-O-C), 1107 cm−1 (C-O-C stretching
vibration of aliphatic ether bond), and 692–814 cm−1 (out-of-plane C-H bending vibration
of the aromatic ring substitution). The intensity of aromatic C=C stretching vibrations at
1595 cm−1 and C-O-C stretching vibrations at 1100 cm−1 in the infrared spectra of MBT
was greater than that of BT. It can be presumed that the aromatic compound in the MBT
has been increased. This is consistent with the elemental analysis result and shows that the
aromatic crosslinking reaction of the BT with phenol and formaldehyde happened during
the modification process.

The effects of asphalt, asphalt–phenolic resin, BT, and MBT on the yield, strength,
and liquid-phase adsorption properties of MBAC have been studied under the conditions
of 550 ◦C charring temperature, 90 min charring time, 850 ◦C activation temperature,
and 80 min activation time, and the results are listed in Table 2. MBAC2 outperformed
MBAC1 in terms of adsorption performance, mechanical strength, and yield, highlighting
the advantage of using macromolecular organic substances as the binder to produce MBAC
with superior pore space and high strength. The liquid-phase adsorption performance of
the generated MBAC synthesized with BT as a binder was marginally better than that of
asphalt–phenolic resin, but the strength and yield were much lower. As MBAC was made
using the MBT binder, the adsorption performance, strength, and yield were all improved
compared with BT.
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Table 2. Effects of binders on the properties of MBAC.

Samples Iodine Adsorption Value
(mg·g−1)

Methylene Blue Adsorption Value
(mg·g−1)

Mechanical Strength
(%)

Yield
(%)

MBAC1 970 195 92 53.4
MBAC2 1092 202.5 95 56.7
MBAC3 1181 225 88 46.0
MBAC4 1232 240 91 48.5

According to TG analysis, both asphalt and asphalt–phenolic resin show high thermal
stability. For the asphalt binder, it can retain a more carbonized structure for crosslinking
than BT at 550 ◦C pyrolysis temperature, leading to increases in adhesion intensity between
the BC powder particles. However, the adsorption values for iodine and methylene blue
of MBAC1 are only 970 mg·g−1 and 195 mg·g−1, respectively, though its strength is 92%.
During the kneading and high-pressure molding procedures, the asphalt might soften and
exhibit liquid properties, resulting in immersing and clogging the pores of BC. Thus, the
adsorption performance of MBAC1 is much lower.

Phenolic resin possesses a complex three-dimensional network structure and good
thermal stability. As asphalt–phenolic resin is used as an adhesive, it is more difficult for
phenolic resin macromolecules to enter into the micropores of BC. The blocking influence
of the adhesive on the pores of MBAC2 is weakened, and the bonding effect between BC
particles is strengthened. In addition, the high thermal stability can ensure the crosslinking
function during the pyrolysis process. Compared with MBAC1, MBAC2 shows higher
strength and adsorption performance.

For the BT adhesive, its majority of carbonized structure will be lost during the
pyrolysis crosslinking and activation process, leading to decreasing pore-block of BC,
releasing the pore structure of activated carbon, and improving the adsorption performance
of MBAC3. However, owing to the less remained carbonized structure for crosslinking
between BC particles, the MBAC3 exhibits lower strength of 88%. After the modification of
BT, both the molecular diameter and thermal stability of MBT are higher than BT according
to the TG and GPC analysis. It is difficult for MBT binder to penetrate into micropores of
BC. Moreover, the elemental analyses reveal that MBT exhibits more oxygenic functional
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groups. Therefore, the MBT surrounding the external surface of BC improves the bond
and pyrolysis crosslinking between BC particles, and decreases the pore-block of BC. The
modification of BT is responsible for the comprehensive improvement of strength, yield,
and adsorption performance for the MBAC4.

3.2. Optimization of the Preparation Process

As the amount of adhesive has a significant effect on the performance of MBAC, the
effects of 8 g, 12 g, and 16 g of MBT on the performance of MBAC were investigated
under the conditions of carbonization at 550 ◦C for 90 min and activation at 850 ◦C for
80 min. As listed in Table 3, it can be seen that the strength of MBAC increases with the
amount of MBT increasing, while both the iodine adsorption value and the methylene blue
adsorption value increase first and then decrease. The excess MBT binder may wrap the
carbon powder, leading to excessive pore blockage of MBAC and a reduction in MBAC
adsorption performance. The iodine adsorption value and methylene blue adsorption
value of MBAC reached the maximum value of 1232 mg·g−1 and 240 mg·g−1, respectively,
with an intensity of 91% and a yield of 48.5% when the suitable addition amount of MBT
was 12 g.

Table 3. Effects of preparation conditions on the properties of MBAC4.

Preparation Conditions Iodine Adsorption Value
(mg·g−1)

Methylene Blue
Adsorption Value

(mg·g−1)

Mechanical Strength
(%)

Yield
(%)

The additional amount
of modified tar 1

8 g 1189 210 84 49.6
12 g 1232 240 91 48.5
16 g 1044 195 93 50.6

Activation
temperature 2

800 ◦C 1067 195 92 59.2
850 ◦C 1232 240 91 48.5
900 ◦C 1134 217.5 81 25.6

Activation time 3
60 min 1007 187.5 94 55.7
80 min 1232 240 91 48.5
100 min 1240 247.5 89 40.1

1 Preparation condition: carbonization temperature: 550 ◦C, carbonization time: 90 min, activated temperature:
850 ◦C, activated time: 80 min. 2 Preparation condition: MBT addition: 12 g, carbonization temperature: 550 ◦C,
carbonization time: 90 min, activated time: 80 min. 3 Preparation condition: MBT addition: 12 g, carbonization
temperature: 550 ◦C, carbonization time: 90 min, activated temperature: 850 ◦C.

The effects of activation temperature on MBAC performance were investigated. The
amount of MBT was 12 g, carbonization at 550 ◦C for 90 min, and the activation time was
80 min. As displayed in Table 3, it is obvious that the strength and yield decrease gradually
with the increase in activation temperature, while both the iodine adsorption value and
methylene blue adsorption values of MBAC initially increase and subsequently decrease.
This is due to the fact that raising the activation temperature can hasten the activated
reaction rate of water vapor, generate a large number of micropores and mesopores, and
enhance the adsorptive property of MBAC. However, if the activation temperature is too
high, the yield and intensity of MBAC will be significantly decreased. The iodine adsorption
value and methylene blue adsorption value were 1232 mg·g−1 and 240 mg·g−1, respectively,
with an intensity of 91% and a yield of 49.5% as the perfect activation temperature was
850 ◦C.

As the pore structure of AC is influenced by the activation time [43], the effects of
activation time on the performance of MBAC were studied. The amount of MBT was 12 g,
carbonization at 550 ◦C for 90 min, and the activation temperature was 850 ◦C. The results
are shown in Table 3. The strength and yield of MBAC drop gradually with activation
time increasing, while the iodine adsorption value and methylene blue adsorption value
increase. This is owing to the fact that the stream activation is carried out in the order of
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pore-creating and then pore-widening. A large number of micropores are formed inside the
carbonized product, and the micropores between the carbon microcrystals are generated,
resulting in the enhancement of adsorption performance for MBAC. However, when the
activation time is prolonged, the micropores widen and even collapsed, and the carbon
ablation rate is accelerated, leading to the reduction in strength and yield of MBAC. The
MBAC4 exhibited a 1240 mg·g−1 iodine and a 247.5 mg·g−1 methylene blue adsorption
capacity when the ideal activation time was 80 min.

3.3. Pore and Surface Structure Characterization

The key characteristics of carbonaceous adsorbents are the pore size distribution and
surface area because they significantly affect the adsorption capacity or adsorption char-
acteristics [44]. For MBAC produced from different adhesives mentioned in Section 3.1,
pore structure and dynamic adsorption performance analyses of toluene and carbon tetra-
chloride gases were performed. The adsorption–desorption isotherms in Figure 3a are all
categorized as type I isotherms. The nitrogen adsorption capacity dramatically increased
and single molecule adsorption took place in the low-pressure section (P/P0 < 0.1), demon-
strating the presence of major micropores in the samples. After P/P0 > 0.4, there is a little
hysteresis phenomenon in the adsorption curve: the higher the relative pressure, the slower
the increase in adsorption volume. This typical H4 hysteresis loop of the MBAC indicates
the presence of a slit mesopore. The volume of N2 adsorption of MBAC4 is higher than that
of MBAC1, MBAC2, and MBAC3 at the same relative pressure, demonstrating the higher
specific surface of MBAC prepared by MBT. The specific surface areas of MBAC1, MBAC2,
MBAC3, and MBAC4 are 756 m2·g−1, 893 m2·g−1, 843 m2·g−1, and 940 m2·g−1, respectively.
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As shown in Figure 3b, DFT was used to determine the pore-size distribution of the
MBAC. Table 4 lists the pore structure, toluene adsorption rate, and carbon tetrachloride
adsorption rate of four MBACs. It can be seen that the pore size distributions of the
MBAC samples are below 10 nm and mainly microporous. Their micropore volumes are
0.326 m3· g−1, 0.366 m3·g−1, 0.334 m3·g−1, and 0.377 m3·g−1, respectively. The MBAC4
exhibits the highest total pore volume and micropore volume. These verify the superiority
of using MBT adhesive to prepare MBAC. The iodine and methylene blue adsorption
values of MBACs generally increase as their total pore volume increase. However, iodine
and methylene blue adsorption values of MBAC3 are higher than those of MBAC2, de-
spiteMBAC3’s lower total pore volume and micropore volume. Combining the findings
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of TG, elemental analysis, and FTIR, these results suggest that the MBAC3 prepared from
BT with abundant oxygenic functional groups may exhibit high chemisorption of polar
molecules in the liquid phase.

Table 4. Pore-structure parameters, toluene adsorption activity, and carbon tetrachloride activity
of MBACs.

Samples
Specific

Surface Area
(m2·g−1)

Pore Volume (m3·g−1)
Average Pore

Size (nm)
Toluene
(mg·g−1)

Carbon
Tetrachloride

(%)Total Micro Meso Micro Ratio
(%)

MBAC1 756 0.449 0.326 0.118 72.73 2.05 257 47.9
MBAC2 893 0.466 0.366 0.096 78.54 1.96 354 55.6
MBAC3 843 0.402 0.334 0.066 83.08 1.85 273 48.8
MBAC4 940 0.478 0.377 0.099 78.81 1.94 385 75.2

Figure 4 depicts the surface morphology of MBAC produced with different adhesives.
The surface of MBAC3 and MBAC4 is smoother than that of MBAC1 and MBAC2, owing
to less residual binder after pyrolysis and stream activation, which is in agreement with TG
results. All MBACs retain the vessel structure of bamboo that might promote the dispersion
of molecules and enhance the adsorption capacity of MBACs.
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According to Table 4, the variations in toluene and carbon tetrachloride adsorption
rate are similar to the iodine and methylene blue adsorption values. It is distinctly revealed
that the relationship between the microporous volume of MBACs and their adsorption
performances of toluene and carbon tetrachloride is a positive linear correlation [45]. For
the weak polar toluene and nonpolar carbon tetrachloride gas molecule, MBAC materials
exhibit mainly pore diffusion confinement and weak chemisorption [46,47]. For the ad-
sorption of toluene molecular, the possible chemisorption mechanism is the interactions of
oxygen functional groups of MBACs with an aromatic ring of toluene [48].
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3.4. Adsorption Kinetics

In order to further explain the adsorption process of weak polar toluene for MBAC,
the data were fitted using kinetic models to investigate the adsorption mechanism. Fitting
and analyses of kinetic data were carried out using a pseudo-first-order equation and
pseudo-second-order equation. The pseudo-first-order equation is used to describe the
physical adsorption process. The arrival of adsorbent from solution to adsorbent surface
is controlled by a diffusion step [25], and there is only one binding site on the adsorbent
surface. The pseudo-second-order equation is mainly used to describe the physical and
complex chemisorption process [12]. There are two binding sites on the surface of the
adsorbent controlled by the chemisorption mechanism. The nonlinear form of the equation
of the pseudo-first and pseudo-second order dynamical model is given as follows [49]:

ln
(
qe−qt

)
= ln qe − k1t, (2)

t
qt

=
1

k2q2
e
+

t
qe

, (3)

where qe (g·g−1) is the amount of adsorbed dye at equilibrium and qt (g·g−1) is toluene
adsorption rates at time t. k1 (min−1) is the rate constant of the pseudo-first-order model.
k2 (g·g−1·min−1) is the rate constant for the pseudo-second-order model.

Table 5 provides the results of the kinetic adsorption model simulations of the MBAC
samples for toluene adsorption. Due to that, the R2 for the pseudo-first and pseudo-second
order kinetic models are between 0.9385 and 0.9860, these equations are not suitable for
this adsorption system.

Table 5. Fitting parameters of kinetics equations for the toluene adsorption on MBACs.

Samples
qe

exp

(g·g−1)

Pseudo-First Order
Kinetic Model

Pseudo-Second Order
Kinetic Model Bangham Model

qe
(g·g−1)

k1
(min−1) R2 qe

(g·g−1)
k2

(g·g−1·min−1) R2 qe
(g·g−1)

k3
(min-z) R2

MBAC1 0.285 0.272 0.0113 0.9600 0.276 0.0322 0.9857 0.287 0.028 0.9985

MBAC2 0.293 0.276 0.0098 0.9534 0.277 0.0248 0.9795 0.295 0.029 0.9978

MBAC3 0.327 0.314 0.0083 0.9619 0.318 0.0168 0.9784 0.318 0.014 0.9950

MBAC4 0.349 0.336 0.0139 0.9385 0.359 0.0345 0.9760 0.367 0.040 0.9985

The Bangham model was also used to further examine the kinetic data of toluene
adsorption, which is expressed as follows [50,51]:

qt = qe

(
1 − e−k3tz

)
, (4)

where z is a constant and k3 (min−z) is the adsorption rate of the Bangham model.
The parameters and the R2 are presented in Table 5. The Bangham model well fits

the experimental data over the entire course with high R2 (>0.99) and the experimental
adsorption capacities are comparable to the theoretical values predicted by the model
(Figure 5). The simulation results suggest that toluene pore diffusion was a major factor
in the toluene adsorption diffusion process, consistent with the relationship between the
microporous volume of MBACs and their adsorption performances of toluene.
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4. Conclusions

This study shows that the aromatized BT can be effectively used as an adhesive for
the preparation of MBAC. Owing to the high average molecular weight, stability, and
concentration of oxygenic functional groups of MBT after modification, its improved
bonding and pyrolytic bridging effects for the BC particles and reduced blocking of BC
micropore result in the increased micropore structure and mechanical strength of MBAC.
The micropore volume of MBAC is positively responsible for its adsorption performances
of toluene and carbon tetrachloride gas molecular. According to the kinetic fitting, the
adsorption of toluene on MBAC is consistent with the Bangham kinetic model, and its
adsorption process includes surface adsorption and mainly pore diffusion.
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