A Review on Multiplicity in Multi-Material Additive Manufacturing: Process, Capability, Scale, and Structure
Abstract
:1. Introduction
2. Methodology
Structure and Scope of the Review
3. Implications of Multiplicity in AM
3.1. Advantages
3.2. Applications
3.3. Challenges and Issues
4. Multiplicity in MMAM
4.1. Processes Used for MMAM
4.1.1. Directed Energy Deposition (DED)
4.1.2. Material Extrusion Process
4.1.3. Vat Photopolymerization Process
4.1.4. Binder Jetting Process
4.1.5. Material Jetting Process
4.1.6. Sheet Lamination Process
4.1.7. Powder Bed Fusion (PBF) Process
4.1.8. Hybrid Additive Manufacturing (HAM) Processes
4.2. Materials in MMAM
4.2.1. Polymer- and Composite-Based MMAM
4.2.2. Metal–Ceramic-Based MMAM
4.2.3. Metal Alloy-Based MMAM
4.2.4. Biomaterials
4.3. Capabilities of MMAM
4.3.1. Bi-Metallic Components
4.3.2. Functionally/Compositionally Graded Materials
4.3.3. Alloy Design
4.4. Scale of MMAM
4.5. Structural Aspects of MMAM
4.6. Material Interaction and Related Issues in MMAM
5. Conclusions and Outlook
- MMAM presents solutions that directly impact the efficient use of vital resources such as materials, energy, and time, resulting in a shorter process chain. For instance, bi-metallic pipe bends, currently produced through explosive cladding followed by rolling and limited to standard geometries, can benefit from the design and manufacturing freedom offered by multi-material AM.
- All the existing processes for single-material AM are also applicable to MMAM. However, selecting a process version becomes highly material-specific in the case of MMAM. Therefore, a precise understanding of the process–structure–property relationship and the seamless implementation of the additive–subtractive process chain are essential for the success of MMAM.
- Material interaction in MMAM is intricately related to deposition processes and operating conditions, making the MMAM process highly interactive. Transitioning from single- to multi-material requires extensive experimentation since solutions that work for individual process–material combinations may not apply to their multi-material counterparts. Developing new products with MMAM remains time-consuming and necessitates significant financial investments.
- Properly joining dissimilar material classes remains one of the most significant challenges in current MMAM technologies. Ongoing AM procedures aim to tackle this issue through the development of customized feedstock like filler wires and powders. There is a pressing need for more efficient and sustainable solutions, such as in situ alloy deposition employing MMAM.
- Before the full-scale industrial implementation of MMAM can be realized, several issues need to be addressed, including numerical simulations of complex phenomena, the absence of standardized processing parameters for machines from different suppliers across material classes, and a lack of literature for accurate cost estimations.
- The advent of Additive–Subtractive Multi-Material Additive Manufacturing (ASMMAM) is expected to enable the quick repair of cracks and surface defects, a feat that was previously challenging with available technologies. Repairing and cladding parts through ASMMAM opens exciting opportunities for developing new applications and components.
Author Contributions
Funding
Conflicts of Interest
References
- Vaezi, M.; Chianrabutra, S.; Mellor, B.; Yang, S. Multiple material additive manufacturing–Part 1: A review. Virtual Phys. Prototyp. 2013, 8, 19–50. [Google Scholar] [CrossRef]
- Hasanov, S.; Alkunte, S.; Rajeshirke, M.; Gupta, A.; Huseynov, O.; Fidan, I.; Alifui-Segbaya, F.; Rennie, A. Review on additive manufacturing of multi-material parts: Progress and challenges. J. Manuf. Mater. Process. 2021, 6, 4. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Heer, B. Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Rep. 2018, 129, 1–16. [Google Scholar] [CrossRef]
- Putra, N.E.; Mirzaali, M.J.; Apachitei, I.; Zhou, J.; Zadpoor, A.A. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution. Acta Biomater. 2020, 109, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Moon, S.K.; Bi, G.; Wei, J. A multi-material part design framework in additive manufacturing. Int. J. Adv. Manuf. Technol. 2018, 99, 2111–2119. [Google Scholar] [CrossRef]
- Sugavaneswaran, M.; Arumaikkannu, G. Modelling for randomly oriented multi material additive manufacturing component and its fabrication. Mater. Des. 2014, 54, 779–785. [Google Scholar] [CrossRef]
- Han, D.; Lee, H. Recent advances in multi-material additive manufacturing: Methods and applications. Curr. Opin. Chem. Eng. 2020, 28, 158–166. [Google Scholar] [CrossRef]
- Liu, F.; Li, T.; Jiang, X.; Jia, Z.; Xu, Z.; Wang, L. The effect of material mixing on interfacial stiffness and strength of multi-material additive manufacturing. Addit. Manuf. 2020, 36, 101502. [Google Scholar] [CrossRef]
- Feenstra, D.R.; Banerjee, R.; Fraser, H.L.; Huang, A.; Molotnikov, A.; Birbilis, N. Critical review of the state of the art in multi-material fabrication via directed energy deposition. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100924. [Google Scholar] [CrossRef]
- Wang, D.; Liu, L.; Deng, G.; Deng, C.; Bai, Y.; Yang, Y.; Wu, W.; Chen, J.; Liu, Y.; Wang, Y.; et al. Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion. Virtual Phys. Prototyp. 2022, 17, 329–365. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, W.; Baca Lopez, D.M.; Ahmad, R. Scientometric analysis and systematic review of multi-material additive manufacturing of polymers. Polymers 2021, 13, 1957. [Google Scholar] [CrossRef] [PubMed]
- Brancewicz-Steinmetz, E.; Sawicki, J. Bonding and strengthening the PLA biopolymer in multi-material additive manufacturing. Materials 2022, 15, 5563. [Google Scholar] [CrossRef]
- Shaukat, U.; Rossegger, E.; Schlögl, S. A review of multi-material 3D printing of functional materials via vat photopolymerization. Polymers 2022, 14, 2449. [Google Scholar] [CrossRef] [PubMed]
- Chadha, C.; Olaivar, G.; Patterson, A.E.; Jasiuk, I.M. Design for Multi-Material Manufacturing Using Polyjet Printing Process: A Review. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, St. Louis, MO, USA, 14–17 August 2022; Volume 86250, p. V005T05A007. [Google Scholar]
- Boulaala, M.; Elmessaoudi, D.; Buj-Corral, I.; El Mesbahi, J.; Ezbakhe, O.; Astito, A.; El Mrabet, M.; El Mesbahi, A. Towards design of mechanical part and electronic control of multi-material/multicolor fused deposition modeling 3D printing. Int. J. Adv. Manuf. Technol. 2020, 110, 45–55. [Google Scholar] [CrossRef]
- García-Collado, A.; Blanco, J.M.; Gupta, M.K.; Dorado-Vicente, R. Advances in polymers based Multi-Material Additive-Manufacturing Techniques: State-of-art review on properties and applications. Addit. Manuf. 2022, 50, 102577. [Google Scholar] [CrossRef]
- Singh, S.; Ramakrishna, S.; Singh, R. Material issues in additive manufacturing: A review. J. Manuf. Process. 2017, 25, 185–200. [Google Scholar] [CrossRef]
- Yao, L.; Ramesh, A.; Xiao, Z.; Chen, Y.; Zhuang, Q. Multimetal Research in Powder Bed Fusion: A Review. Materials 2023, 16, 4287. [Google Scholar] [CrossRef]
- Zheng, X.; Williams, C.; Spadaccini, C.M.; Shea, K. Perspectives on multi-material additive manufacturing. J. Mater. Res. 2021, 36, 3549–3557. [Google Scholar] [CrossRef]
- Rafiee, M.; Farahani, R.D.; Therriault, D. Multi-material 3D and 4D printing: A survey. Adv. Sci. 2020, 7, 1902307. [Google Scholar] [CrossRef]
- Pajonk, A.; Prieto, A.; Blum, U.; Knaack, U. Multi-material additive manufacturing in architecture and construction: A review. J. Build. Eng. 2022, 45, 103603. [Google Scholar] [CrossRef]
- Nazir, A.; Gokcekaya, O.; Billah, K.M.M.; Ertugrul, O.; Jiang, J.; Sun, J.; Hussain, S. Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D Printing of materials and cellular metamaterials. Mater. Des. 2023, 226, 111661. [Google Scholar] [CrossRef]
- Toursangsaraki, M. A review of multi-material and composite parts production by modified additive manufacturing methods. arXiv 2018, arXiv:1808.01861. [Google Scholar]
- Wei, C.; Li, L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys. Prototyp. 2021, 16, 347–371. [Google Scholar] [CrossRef]
- Schneck, M.; Horn, M.; Schmitt, M.; Seidel, C.; Schlick, G.; Reinhart, G. Review on additive hybrid-and multi-material-manufacturing of metals by powder bed fusion: State of technology and development potential. Prog. Addit. Manuf. 2021, 6, 1–14. [Google Scholar] [CrossRef]
- Demir, A.G.; Kim, J.; Caltanissetta, F.; Hart, A.J.; Tasan, C.C.; Previtali, B.; Colosimo, B.M. Enabling multi-material gradient structure in laser powder bed fusion. J. Mater. Process. Technol. 2022, 301, 117439. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, Z.; Cheng, D.; Sun, Z.; Zhu, M.; Li, L. An overview of laser-based multiple metallic material additive manufacturing: From macro-to micro-scales. Int. J. Extreme Manuf. 2020, 3, 012003. [Google Scholar] [CrossRef]
- Esfarjani, S.M.; Dadashi, A.; Azadi, M. Topology optimization of additive-manufactured metamaterial structures: A review focused on multi-material types. Forces Mech. 2022, 7, 100100. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Silva, F.S. Multi-material additive manufacturing for advanced high-tech components. Materials 2022, 15, 6433. [Google Scholar] [CrossRef]
- Ozaner, O.C.; Klobčar, D.; Sharma, A. Machining Strategy Determination for Single-and Multi-Material Wire and Arc Additive Manufactured Thin-Walled Parts. Materials 2023, 16, 2055. [Google Scholar] [CrossRef]
- Reddy, S.; Kumar, M.; Panchagnula, J.S.; Parchuri, P.K.; Kumar, S.S.; Ito, K.; Sharma, A. A new approach for attaining uniform properties in build direction in additive manufactured components through coupled thermal-hardness model. J. Manuf. Process. 2019, 40, 46–58. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.W.; Stucker, B.; Khorasani, M.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, Y.; Yang, Z.; Khoshnevis, B. Development of a multi-material mask-image-projection-based stereolithography for the fabrication of digital materials. In 2011 International Solid Freeform Fabrication Symposium; University of Texas at Austin: Austin, TX, USA, 2011. [Google Scholar]
- Mironov, V.; Prestwich, G.; Forgacs, G. Bioprinting living structures. J. Mater. Chem. 2007, 17, 2054–2060. [Google Scholar] [CrossRef]
- Schiele, N.R.; Koppes, R.A.; Corr, D.T.; Ellison, K.S.; Thompson, D.M.; Ligon, L.A.; Lippert, T.K.; Chrisey, D.B. Laser direct writing of combinatorial libraries of idealized cellular constructs: Biomedical applications. Appl. Surf. Sci. 2009, 255, 5444–5447. [Google Scholar] [CrossRef]
- Jayasinghe, S.N. Bio-electrosprays: The development of a promising tool for regenerative and therapeutic medicine. Biotechnol. J. Healthc. Nutr. Technol. 2007, 2, 934–937. [Google Scholar] [CrossRef]
- Barron, J.A.; Wu, P.; Ladouceur, H.D.; Ringeisen, B.R. Biological laser printing: A novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed. Microdevices 2004, 6, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.H.; Lee, J.S.; Kim, J.Y.; Cho, D.W. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J. Micromech. Microeng. 2012, 22, 085014. [Google Scholar] [CrossRef]
- Chan, V.; Jeong, J.H.; Bajaj, P.; Collens, M.; Saif, T.; Kong, H.; Bashir, R. Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography. Lab. Chip 2012, 12, 88–98. [Google Scholar] [CrossRef]
- Maruo, S.; Ikuta, K.; Ninagawa, T. Multi-polymer microstereolithography for hybrid opto-MEMS. In Technical Digest. MEMS 2001, Proceedings of the 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 01CH37090), Interlaken, Switzerland, 25 January 2001; IEEE: Piscataway, NJ, USA; pp. 151–154. [CrossRef]
- Kapil, A.; Sharma, A. Magnetic pulse welding: An efficient and environmentally friendly multi-material joining technique. J. Clean. Prod. 2015, 100, 35–58. [Google Scholar] [CrossRef]
- Kapil, A.; Thurston, B.; Vivek, A.; Daehn, G. Joining aluminum alloy to ultrahigh-strength boron steel through an impact welding approach. Manuf. Lett. 2020, 25, 30–33. [Google Scholar] [CrossRef]
- Mastanaiah, P.; Sharma, A.; Reddy, G.M. Role of hybrid tool pin profile on enhancing welding speed and mechanical properties of AA2219-T6 friction stir welds. J. Mater. Process. Technol. 2018, 257, 257–269. [Google Scholar] [CrossRef]
- Lumpe, T.S.; Mueller, J.; Shea, K. Tensile properties of multi-material interfaces in 3D printed parts. Mater. Des. 2019, 162, 1–9. [Google Scholar] [CrossRef]
- Vu, I.Q.; Bass, L.B.; Williams, C.B.; Dillard, D.A. Characterizing the effect of print orientation on interface integrity of multi-material jetting additive manufacturing. Addit. Manuf. 2018, 22, 447–461. [Google Scholar] [CrossRef]
- Hasanov, S.; Gupta, A.; Nasirov, A.; Fidan, I. Mechanical characterization of functionally graded materials produced by the fused filament fabrication process. J. Manuf. Process. 2020, 58, 923–935. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering. Comput. Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Ahn, D.G. Directed energy deposition (DED) process: State of the art. Int. J. Pr. Eng. Man-Gt. 2021, 8, 703–742. [Google Scholar] [CrossRef]
- Zheng, B.; Topping, T.; Smugeresky, J.E.; Zhou, Y.; Biswas, A.; Baker, D.; Lavernia, E.J. The influence of Ni-coated TiC on laser-deposited IN625 metal matrix composites. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2010, 41, 568–573. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, A.; Dittrick, S.; Gualtieri, T.; Wu, J.; Bose, S. Calcium phosphate–titanium composites for articulating surfaces of load-bearing implants. J. Mech. Behav. Biomed. Mater. 2016, 57, 280–288. [Google Scholar] [CrossRef] [Green Version]
- Bernard, S.A.; Balla, V.K.; Bose, S.; Bandyopadhyay, A. Direct laser processing of bulk lead zirconate titanate ceramics. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2010, 172, 85–88. [Google Scholar] [CrossRef]
- Khondoker, M.A.H.; Asad, A.; Sameoto, D. Printing with mechanically interlocked extrudates using a custom bi-extruder for fused deposition modelling. Rapid Prototyp. J. 2018, 24, 921–934. [Google Scholar] [CrossRef]
- Xiong, Z.; Yan, Y.; Wang, S.; Zhang, R.; Zhang, C. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr. Mater. 2002, 46, 771–776. [Google Scholar] [CrossRef]
- de Pastre, M.A.; Quinsat, Y.; Lartigue, C. Effects of additive manufacturing processes on part defects and properties: A classification review. Int. J. Interact. Des. Manuf. 2022, 16, 1471–1496. [Google Scholar] [CrossRef]
- Liu, V.A.; Bhatia, S.N. Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdevices 2002, 4, 257–266. [Google Scholar] [CrossRef]
- Beaman, J.J.; Atwood, C.; Bergman, T.L.; Bourell, D.; Hollister, S.; Rosen, D. Assessment of European Research and Development in Additive/Subtractive Manufacturing. World Technology Evaluation Center Panel Report. 2004. Available online: https://apps.dtic.mil/sti/citations/ADA466756 (accessed on 1 June 2023).
- Guessasma, S.; Nouri, H.; Roger, F. Microstructural and mechanical implications of microscaled assembly in droplet-based multi-material additive manufacturing. Polymers 2017, 9, 372. [Google Scholar] [CrossRef] [Green Version]
- What Is Binder Jetting? Available online: https://www.exone.com/en-US/Resources/case-studies/what-is-binder-jetting (accessed on 30 September 2022).
- Pragana, J.P.M.; Sampaio, R.F.V.; Bragança, I.M.F.; Silva, C.M.A.; Martins, P.A.F. Hybrid metal additive manufacturing: A state-of-the-art review. Adv. Ind. Manuf. Eng. 2021, 2, 100032. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, W.; Zhu, L. Preparation of PDMS microfluidic devices based on drop-on-demand generation of wax molds. Anal. Methods 2014, 6, 4716–4722. [Google Scholar] [CrossRef]
- Mott, M.; Evans, J.R.G. Zirconia/alumina functionally graded material made by ceramic ink jet printing. Mater. Sci. Eng. A 1999, 271, 344–352. [Google Scholar] [CrossRef]
- Xie, D.; Zhang, H.; Shu, X.; Xiao, J.; Cao, S. Multi-materials drop-on-demand inkjet technology based on pneumatic diaphragm actuator. Sci. China Technol. Sci. 2010, 53, 1605–1611. [Google Scholar] [CrossRef]
- Ibrahim, M.; Otsubo, T.; Narahara, H.; Koresawa, H.; Suzuki, H. Inkjet printing resolution study for multi-material rapid prototyping. JSME Int. J. Ser. C 2006, 49, 353–360. [Google Scholar] [CrossRef]
- Sireesha, M.; Lee, J.; Kiran, A.S.K.; Babu, V.J.; Kee, B.B.; Ramakrishna, S. A review on additive manufacturing and its way into the oil and gas industry. RSC Adv. 2018, 8, 22460–22468. [Google Scholar] [CrossRef]
- Travitzky, N.; Windsheimer, H.; Fey, T.; Greil, P. Preceramic paper-derived ceramics. J. Am. Ceram. 2008, 91, 3477–3492. [Google Scholar] [CrossRef]
- Gomes, C.M.; Rambo, C.R.; De Oliveira, A.P.N.; Hotza, D.; Gouvêa, D.; Travitzky, N.; Greil, P. Colloidal processing of glass–ceramics for laminated object manufacturing. J. Am. Ceram. 2009, 92, 1186–1191. [Google Scholar] [CrossRef]
- Weisensel, L.; Travitzky, N.; Sieber, H.; Greil, P. Laminated object manufacturing (LOM) of SiSiC composites. Adv. Eng. Mater. 2004, 6, 899–903. [Google Scholar] [CrossRef]
- Lappo, K.; Jackson, B.; Wood, K.; Bourell, D.L.; Beaman, J.J. Discrete multiple material selective laser sintering (M2SLS): Experimental study of part processing. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA, 4–6 August 2003; Volume 109, p. 119. [Google Scholar]
- Regenfuss, P.; Ebert, R.; Exner, H. Laser micro sintering–A versatile instrument for the generation of microparts. Lasertech. J. 2007, 4, 26–31. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Song, C.; Wang, D.; Wu, S.; Zhang, M. Influence mechanism of process parameters on the interfacial characterization of selective laser melting 316L/CuSn10. Mater. Sci. Eng. A 2020, 792, 139316. [Google Scholar] [CrossRef]
- Wang, R.; Gu, D.; Xi, L.; Lin, K.; Guo, M.; Zhang, H. Selective laser melted TiB2/Ti6Al4V graded materials and first-principle calculations. Mater. Lett. 2019, 254, 33–36. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, C.; Chueh, Y.H.; Li, L. An integrated dual ultrasonic selective powder dispensing platform for three-dimensional printing of multiple material metal/glass objects in selective laser melting. J. Manuf. Sci. Eng. 2019, 141, 011003. [Google Scholar] [CrossRef] [Green Version]
- Chueh, Y.H.; Zhang, X.; Ke, J.C.R.; Li, Q.; Wei, C.; Li, L. Additive manufacturing of hybrid metal/polymer objects via multiple-material laser powder bed fusion. Addit. Manuf. 2020, 36, 101465. [Google Scholar] [CrossRef]
- Korkmaz, M.E.; Waqar, S.; Garcia-Collado, A.; Gupta, M.K.; Krolczyk, G.M. A technical overview of metallic parts in hybrid additive manufacturing industry. J. Mater. Res. Technol. 2022, 18, 384–395. [Google Scholar] [CrossRef]
- Bambach, M.; Sizova, I.; Sydow, B.; Hemes, S.; Meiners, F. Hybrid manufacturing of components from Ti-6Al-4V by metal forming and wire-arc additive manufacturing. J. Mater. Process. Technol. 2020, 282, 116689. [Google Scholar] [CrossRef]
- Dugar, J.; Ikram, A.; Klobčar, D.; Pušavec, F. Sustainable Hybrid Manufacturing of AlSi5 Alloy Turbine Blade Prototype by Robotic Direct Energy Layered Deposition and Subsequent Milling: An Alternative to Selective Laser Melting? Materials 2022, 15, 8631. [Google Scholar] [CrossRef]
- Pragana, J.P.; Rosenthal, S.; Alexandrino, P.; Araújo, A.; Bragança, I.M.; Silva, C.M.; Leitão, P.J.; Tekkaya, A.E.; Martins, P.A. Coin minting by additive manufacturing and forming. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2021, 235, 819–828. [Google Scholar] [CrossRef]
- Kapil, A.; Suga, T.; Tanaka, M.; Sharma, A. Towards hybrid laser-arc based directed energy deposition: Understanding bead formation through mathematical modeling for additive manufacturing. J. Manuf. Process. 2022, 76, 457–474. [Google Scholar] [CrossRef]
- Bai, Q.; Wu, B.; Qiu, X.; Zhang, B.; Chen, J. Experimental study on additive/subtractive hybrid manufacturing of 6511 steel: Process optimization and machining characteristics. Int. J. Adv. Manuf. Technol. 2020, 108, 1389–1398. [Google Scholar] [CrossRef]
- Cooper, A.G.; Kang, S.; Kietzman, J.W.; Prinz, F.B.; Lombardi, J.L.; Weiss, L.E. Automated fabrication of complex molded parts using mold shape deposition manufacturing. Mater. Des. 1999, 20, 83–89. [Google Scholar] [CrossRef]
- Farias, F.W.C.; Duarte, V.R.; Felice, I.O.; da Cruz Payão Filho, J.; Schell, N.; Maawad, E.; Li, J.Y.; Zhang, Y.; Santos, T.G.; Oliveira, J.P. In situ interlayer hot forging arc plasma directed energy deposition of Inconel® 625: Microstructure evolution during heat treatments. J. Alloys Compd. 2023, 952, 170059. [Google Scholar] [CrossRef]
- Farias, F.W.C.; Duarte, V.R.; Felice, I.O.; da Cruz Payao Filho, J.; Schell, N.; Maawad, E.; Avila, J.A.; Li, J.Y.; Zhang, Y.; Santos, T.G.; et al. In situ interlayer hot forging arc-based directed energy deposition of Inconel® 625: Process development and microstructure effects. Addit. Manuf. 2023, 66, 103476. [Google Scholar] [CrossRef]
- Li, P.; Zhou, J.; Li, L.; Gong, Y.; Lu, J.; Meng, X.; Zhang, T. Influence of depositing sequence and materials on interfacial characteristics and mechanical properties of laminated composites. Mater. Sci. Eng. A 2021, 827, 142092. [Google Scholar] [CrossRef]
- Popov, V.V.; Grilli, M.L.; Koptyug, A.; Jaworska, L.; Katz-Demyanetz, A.; Klobčar, D.; Balos, S.; Postolnyi, B.O.; Goel, S. Powder bed fusion additive manufacturing using critical raw materials: A review. Materials 2021, 14, 909. [Google Scholar] [CrossRef]
- Bartlett, N.W.; Tolley, M.T.; Overvelde, J.T.; Weaver, J.C.; Mosadegh, B.; Bertoldi, K.; Whitesides, G.M.; Wood, R.J. A 3D-printed, functionally graded soft robot powered by combustion. Science 2015, 349, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Falck, R.; Goushegir, S.M.; dos Santos, J.F.; Amancio-Filho, S.T. AddJoining: A novel additive manufacturing approach for layered metal-polymer hybrid structures. Mater. Lett. 2018, 217, 211–214. [Google Scholar] [CrossRef]
- Ahn, S.H.; Montero, M.; Odell, D.; Roundy, S.; Wright, P.K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 2002, 8, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Rohde, S.; Cantrell, J.; Jerez, A.; Kroese, C.; Damiani, D.; Gurnani, R.; DiSandro, L.; Anton, J.; Young, A.; Steinbach, D.; et al. Experimental characterization of the shear properties of 3D–printed ABS and polycarbonate parts. Exp. Mech. 2018, 58, 871–884. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.; Farina, I. On the 3D printing of recycled ABS, PLA and HIPS thermoplastics for structural applications. PSU Res. Rev. 2018, 2, 115–137. [Google Scholar] [CrossRef]
- Christ, J.F.; Aliheidari, N.; Pötschke, P.; Ameli, A. Bidirectional and stretchable piezoresistive sensors enabled by multi-material 3D printing of carbon nanotube/thermoplastic polyurethane nanocomposites. Polymers 2018, 11, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tekinalp, H.L.; Kunc, V.; Velez-Garcia, G.M.; Duty, C.E.; Love, L.J.; Naskar, A.K.; Blue, C.A.; Ozcan, S. Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos. Sci. Technol. 2014, 105, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Jonhson, W.; Herng, T.S.; Xu, X.; Liu, X.; Pan, L.M.; He, H.; Ding, J. High temperature co-firing of 3D-printed AlZnO/Al2O3 multi-material two-phase flow sensor. J. Mater. 2022, 8, 710–718. [Google Scholar] [CrossRef]
- Das, M.; Balla, V.K.; Basu, D.; Bose, S.; Bandyopadhyay, A. Laser processing of SiC-particle-reinforced coating on titanium. Scr. Mater. 2010, 63, 438–441. [Google Scholar] [CrossRef]
- Balla, V.K.; Bandyopadhyay, P.P.; Bose, S.; Bandyopadhyay, A. Compositionally graded yttria-stabilized zirconia coating on stainless steel using laser engineered net shaping (LENS™). Scr. Mater. 2007, 57, 861–864. [Google Scholar] [CrossRef]
- Zheng, B.J.; Chen, X.M.; Lian, J.S. Microstructure and wear property of laser cladding Al+ SiC powders on AZ91D magnesium alloy. Opt. Lasers Eng. 2010, 48, 526–532. [Google Scholar] [CrossRef]
- Heer, B.; Sahasrabudhe, H.; Khanra, A.K.; Bandyopadhyay, A. Boron nitride-reinforced SS316 composite: Influence of laser processing parameters on microstructure and wear resistance. J. Mater. Sci. 2017, 52, 10829–10839. [Google Scholar] [CrossRef]
- Suwas, S.; Vikram, R.J. Texture Evolution in Metallic Materials During Additive Manufacturing: A Review. Trans. Indian Natl. Acad. Eng. 2021, 6, 991–1003. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.M. Wear resistance of laser clad Ti2Ni3Si reinforced intermetallic composite coatings on titanium alloy. Appl. Surf. Sci. 2004, 229, 81–86. [Google Scholar] [CrossRef]
- Hofmann, D.C.; Kolodziejska, J.; Roberts, S.; Otis, R.; Dillon, R.P.; Suh, J.O.; Borgonia, J.P. Compositionally graded metals: A new frontier of additive manufacturing. J. Mater. Res. 2014, 29, 1899–1910. [Google Scholar] [CrossRef] [Green Version]
- Heer, B.; Bandyopadhyay, A. Compositionally graded magnetic-nonmagnetic Bi-metallic structure using laser engineered net shaping. Mater. Lett. 2018, 216, 16–19. [Google Scholar] [CrossRef]
- Groden, C.; Champagne, V.; Bose, S.; Bandyopadhyay, A. Inconel 718-CoCrMo Bi-metallic structures through directed energy deposition-based additive manufacturing. Mater. Sci. Add. Manuf. 2022, 1, 18. [Google Scholar] [CrossRef]
- Onuike, B.; Heer, B.; Bandyopadhyay, A. Additive manufacturing of Inconel 718—Copper alloy Bi-metallic structure using laser engineered net shaping (LENS™). Addit. Manuf. 2018, 21, 133–140. [Google Scholar] [CrossRef]
- Zadpoor, A.A.; Malda, J. Additive manufacturing of biomaterials, tissues, and organs. Ann. Biomed. Eng. 2017, 45, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Campoli, G.; Borleffs, M.S.; Yavari, S.A.; Wauthle, R.; Weinans, H.; Zadpoor, A.A. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater. Des. 2013, 49, 957–965. [Google Scholar] [CrossRef]
- Shah, F.A.; Snis, A.; Matic, A.; Thomsen, P.; Palmquist, A. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomater. 2016, 30, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Hagedorn, Y.C.; Meiners, W.; Wissenbach, K.; Poprawe, R. Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance. Surf. Coat. Technol. 2011, 205, 3285–3292. [Google Scholar] [CrossRef]
- Cai, C.; Radoslaw, C.; Zhang, J.; Yan, Q.; Wen, S.; Song, B.; Shi, Y. In-situ preparation and formation of TiB/Ti-6Al-4V nanocomposite via laser additive manufacturing: Microstructure evolution and tribological behavior. Powder Technol. 2019, 342, 73–84. [Google Scholar] [CrossRef]
- Shuai, C.; Yang, Y.; Peng, S.; Gao, C.; Feng, P.; Chen, J.; Liu, Y.; Lin, X.; Yang, S.; Yuan, F. Nd-induced honeycomb structure of intermetallic phase enhances the corrosion resistance of Mg alloys for bone implants. J. Mater. Sci. Mater. Med. 2017, 28, 130. [Google Scholar] [CrossRef] [PubMed]
- Samuel, S.; Nag, S.; Nasrazadani, S.; Ukirde, V.; Bouanani, M.E.; Mohandas, A.; Nguyen, K.; Banerjee, R. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. J. Biomed. Mater. Res. A 2010, 94, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Chou, D.T.; Wells, D.; Hong, D.; Lee, B.; Kuhn, H.; Kumta, P.N. Novel processing of iron–manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater. 2013, 9, 8593–8603. [Google Scholar] [CrossRef]
- Hong, D.; Chou, D.T.; Velikokhatnyi, O.I.; Roy, A.; Lee, B.; Swink, I.; Issaev, I.; Kuhn, H.A.; Kumta, P.N. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater. 2016, 45, 375–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Pan, T.; Chen, Y.; Li, L.; Zhang, Y.; Liou, F. Additive manufacturing of copper-stainless steel hybrid components using laser-aided directed energy deposition. J. Mater. Sci. Technol. 2021, 80, 100–116. [Google Scholar] [CrossRef]
- Yusuf, S.M.; Zhao, X.; Yang, S.; Gao, N. Interfacial characterisation of multi-material 316L stainless steel/Inconel 718 fabricated by laser powder bed fusion. Mater. Lett. 2021, 284, 128928. [Google Scholar] [CrossRef]
- Arbogast, A.; Roy, S.; Nycz, A.; Noakes, M.W.; Masuo, C.; Babu, S.S. Investigating the Linear Thermal Expansion of Additively Manufactured Multi-Material Joining between Invar and Steel. Materials 2020, 13, 5683. [Google Scholar] [CrossRef]
- Wang, C.; Shang, C.; Liu, Z.; Xu, G.; Liu, X. Laser additive manufacturing of Bi-metallic structure from TC4 to IN718 via Ta/Cu multi-interlayer. Mater. Res. Express 2020, 7, 126506. [Google Scholar] [CrossRef]
- Bennett, J.L.; Liao, H.; Buergel, T.; Hyatt, G.; Ehmann, K.; Cao, J. Towards bi-metallic injection molds by directed energy deposition. Manuf. Lett. 2021, 27, 78–81. [Google Scholar] [CrossRef]
- Marefat, F.; De Pauw, J.; Kapil, A.; Chernovol, N.; Van Rymenant, P.; Sharma, A. Design strategies for bi-metallic additive manufacturing in the context of wire and arc directed energy deposition. Mater. Des. 2022, 215, 110496. [Google Scholar] [CrossRef]
- Marefat, F.; Kapil, A.; Banaee, S.A.; Van Rymenant, P.; Sharma, A. Evaluating shielding gas-filler wire interaction in bi-metallic wire arc additive manufacturing (WAAM) of creep resistant steel-stainless steel for improved process stability and build quality. J. Manuf. Process. 2023, 88, 110–124. [Google Scholar] [CrossRef]
- Banaee, S.A.; Kapil, A.; Marefat, F.; Sharma, A. Generalised overlapping model for multi-material wire arc additive manufacturing (WAAM). Virtual Phys. Prototyp. 2023, 18, e2210541. [Google Scholar] [CrossRef]
- Rankouhi, B.; Jahani, S.; Pfefferkorn, F.E.; Thoma, D.J. Compositional grading of a 316L-Cu multi-material part using machine learning for the determination of selective laser melting process parameters. Addit. Manuf. 2021, 38, 101836. [Google Scholar] [CrossRef]
- Sharma, A.; Bandari, V.; Ito, K.; Kohama, K.; Ramji, M.; BV, H.S. A new process for design and manufacture of tailor-made functionally graded composites through friction stir additive manufacturing. J. Manuf. Process. 2017, 26, 122–130. [Google Scholar] [CrossRef]
- Schneider-Maunoury, C.; Weiss, L.; Acquier, P.; Boisselier, D.; Laheurte, P. Functionally graded Ti6Al4V-Mo alloy manufactured with DED-CLAD® process. Addit. Manuf. 2017, 17, 55–66. [Google Scholar] [CrossRef]
- Savitha, U.; Reddy, G.J.; Venkataramana, A.; Rao, A.S.; Gokhale, A.A.; Sundararaman, M. Chemical analysis, structure and mechanical properties of discrete and compositionally graded SS316–IN625 dual materials. Mater. Sci. Eng. A 2015, 647, 344–352. [Google Scholar] [CrossRef]
- Tan, C.; Chew, Y.; Bi, G.; Wang, D.; Ma, W.; Yang, Y.; Zhou, K. Additive manufacturing of steel–copper functionally graded material with ultrahigh bonding strength. J. Mater. Sci. Technol. 2021, 72, 217–222. [Google Scholar] [CrossRef]
- Melzer, D.; Džugan, J.; Koukolíková, M.; Rzepa, S.; Vavřík, J. Structural integrity and mechanical properties of the functionally graded material based on 316L/IN718 processed by DED technology. Mater. Sci. Eng. A 2021, 811, 141038. [Google Scholar] [CrossRef]
- Pei, E.; Loh, G.H.; Harrison, D.; de Amorim Almeida, H.; Verona, M.D.M.; Paz, R. A study of 4D printing and functionally graded additive manufacturing. Assem. Autom. 2017, 37, 147–153. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Traxel, K.D.; Lang, M.; Juhasz, M.; Eliaz, N.; Bose, S. Alloy design via additive manufacturing: Advantages, challenges, applications and perspectives. Mater. Today 2022, 52, 207–224. [Google Scholar] [CrossRef]
- Martin, J.H.; Yahata, B.D.; Hundley, J.M.; Mayer, J.A.; Schaedler, T.A.; Pollock, T.M. 3D printing of high-strength aluminium alloys. Nature 2017, 549, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, K.S.; Dippo, O.F.; Kaufmann, K.R.; Liu, X. High-throughput rapid experimental alloy development (HT-READ). Acta Mater. 2021, 221, 117352. [Google Scholar] [CrossRef]
- Mitra, I.; Bose, S.; Dernell, W.S.; Dasgupta, N.; Eckstrand, C.; Herrick, J.; Yaszemski, M.J.; Goodman, S.B.; Bandyopadhyay, A. 3D Printing in alloy design to improve biocompatibility in metallic implants. Mater. Today 2021, 45, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, Q.; Wang, Y.; Ma, Z.; Liu, Y. Fabrication of multi-element alloys by twin wire arc additive manufacturing combined with in-situ alloying. Mater. Res. Lett. 2020, 8, 477–482. [Google Scholar] [CrossRef]
- Dong, B.; Pan, Z.; Shen, C.; Ma, Y.; Li, H. Fabrication of copper-rich Cu-Al alloy using the wire-arc additive manufacturing process. Metall. Mater. Trans. B 2017, 48, 3143–3151. [Google Scholar] [CrossRef]
- Oxman, N.; Keating, S.; Tsai, E. Functionally graded rapid prototyping. In Proceedings of the Innovative Developments in Virtual and Physical Prototyping, Leiria, Portugal, 28 September–1 October 2011; pp. 483–489. [Google Scholar]
- Huang, A. From Bones to Bricks. In Proceedings of the ACADIA 2016: Posthuman Frontiers: Data, Designers, and Cognitive Machines, Ann Arbor, MI, USA, 27–29 October 2016; pp. 318–325. [Google Scholar]
- Sudbury, Z.; Duty, C.; Kunc, V. Expanding material property space maps with functionally graded materials for large-scale additive manufacturing. In 2017 International Solid Freeform Fabrication Symposium; University of Texas at Austin: Austin, TX, USA, 2017. [Google Scholar]
- Garcia, D.; Jones, M.E.; Zhu, Y.; Hang, Z.Y. Mesoscale design of heterogeneous material systems in multi-material additive manufacturing. J. Mater. Res. 2018, 33, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Gu, D.; Dai, D.; Du, L.; Wang, R.; Ma, C.; Xia, M. Laser additive manufacturing of layered TiB2/Ti6Al4V multi-material parts: Understanding thermal behavior evolution. Opt. Laser Technol. 2019, 119, 105666. [Google Scholar] [CrossRef]
- Amoabeng, D.; Velankar, S.S. A review of conductive polymer composites filled with low melting point metal alloys. Polym Eng Sci. 2018, 58, 1010–1019. [Google Scholar] [CrossRef] [Green Version]
Categories | Technologies | Printed Ink | Power Source | Strengths/Downsides |
---|---|---|---|---|
Material Extrusion | Fused Deposition Modeling (FDM) | Thermoplastics, Ceramic slurries, Metal pastes | Thermal Energy |
|
Contour Crafting | ||||
PBF | Selective Laser Sintering (SLS) | Polyamides/Polymer | High-powered Laser Beam |
|
Direct Metal Laser Sintering (DMLS) | Atomized metal powder (17−4 PH stainless steel, cobalt chromium, titanium Ti6Al-4V), ceramic powder | Electron Beam | ||
Selective Laser Melting (SLM) | ||||
Electron Beam Melting (EBM) | ||||
Vat Photopolymerization | Stereolithography (SLA) | Photopolymer, Ceramics (alumina, zirconia, PZT) | Ultraviolet Laser |
|
Material Jetting | Polyjet/Inkjet Printing | Photopolymer, Wax | Thermal Energy/Photocuring |
|
Binder Jetting | Indirect Inkjet Printing (Binder 3DP) | Polymer powder (Plaster, Resin), Ceramic powder, Metal powder | Thermal Energy |
|
Sheet Lamination | Laminated Object Manufacturing (LOM) | Plastic Film, Metallic Sheet, Ceramic Tape | Laser Beam |
|
Directed Energy Deposition | Laser Engineered Net Shaping (LENS), Electronic Beam Welding (EBW) | Molten Metal Powder | Laser Beam |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, A.; Kapil, A.; Klobčar, D.; Sharma, A. A Review on Multiplicity in Multi-Material Additive Manufacturing: Process, Capability, Scale, and Structure. Materials 2023, 16, 5246. https://doi.org/10.3390/ma16155246
Verma A, Kapil A, Klobčar D, Sharma A. A Review on Multiplicity in Multi-Material Additive Manufacturing: Process, Capability, Scale, and Structure. Materials. 2023; 16(15):5246. https://doi.org/10.3390/ma16155246
Chicago/Turabian StyleVerma, Ayush, Angshuman Kapil, Damjan Klobčar, and Abhay Sharma. 2023. "A Review on Multiplicity in Multi-Material Additive Manufacturing: Process, Capability, Scale, and Structure" Materials 16, no. 15: 5246. https://doi.org/10.3390/ma16155246
APA StyleVerma, A., Kapil, A., Klobčar, D., & Sharma, A. (2023). A Review on Multiplicity in Multi-Material Additive Manufacturing: Process, Capability, Scale, and Structure. Materials, 16(15), 5246. https://doi.org/10.3390/ma16155246