Polymeric Biocomposite Based on Thermoplastic Polyurethane (TPU) and Protein and Elastomeric Waste Mixture
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
- Thermoplastic polyurethane (TPU), from MD Graphene SL, Spain, is used in the footwear industry due to its thermoplasticity (it can be cast and injected into forming moulds), and PU—polyurethanes—used mainly in the footwear industry, are the product of a chemical reaction between a mixture of resins based on processed polyols [polyol resin-blend] and an aliphatic or aromatic isocyanate to obtain a micro-cellular structure. The reaction of “-OH” groups from polyols, polyesters or polyethers with “-N=C=O” groups from isocyanates leads to the formation of urethanes [24]. TPU has specific gravity (1.03 g/cc), hardness (65–85 Sh°A), tensile strength (>20 N/mm2), colour (black) and melt temperature (between 170° and 190 °C).
- Polyethylene grafted with maleic anhydride (PE-g-AM) from PolyRam Group, Israel is used as compatibilizer. PE-g-MA has the role of reducing the interfacial tension, achieving a fine dispersion of the ingredients, providing adhesion between phases in the solid state and at the same time stabilizing the morphology of the thermal effects during processing and also improving the physical–mechanical properties: tensile and tear strength, resistance to chemical agents, etc. The PE-g-MA compatibilizer has the following properties: density—0.91 g/cm3; hardness—45 Sh°D; melting point—117 °C; MFI—2 g/10 min (190 °C/2.16 kg); viscosity 330,000 cps; colour—honey yellow.
- Recycled thermoplastic polyurethane waste (TPUW) comes from the footwear industry. TPUW is cryogenically ground to sizes of approximately 0.5 mm.
- Mixed leather and SBR rubber (butadiene-styrene) waste from the footwear industry is cryogenically ground to micrometric sizes. The mixed leather and SBR rubber waste is used as a filling material, but at the same time, it has the role of a reinforcing agent. The incorporation of reinforcing agents in the polymer matrix improves the physical–mechanical properties of the obtained products.
- Polydimethylsiloxane fluid (PDMS), from Sigma-Aldrich, Inc., St. Louis, MO, USA. PDMS has the role of a plasticizer, but at the same time, it improves the dispersion of mixed protein and rubber waste in the polymer matrix.
2.2. Preparation of Biopolymeric Composites Based on TPU/TPUW/Protein and Elastomeric Waste in Mixture/Compatibilizer
- Collection of mixed protein and SBR rubber waste (from the footwear industry) and recycled TPU waste;
- Grinding of the mixed protein and elastomeric waste (SBR rubber) to micrometric dimensions of 0.35 mm, with a cryogenic cyclone mill (Retsch ZM 200, Verder Scien-tific, Haan, Germany) at a speed of 12,000 rpm, using dry ice as a cooling agent;
- The recycled TPUW waste is cryogenically ground to dimensions of approximately 0.5 mm using a cryogenic mill (Retsch ZM 200, Verder Scientific, Germany), at a speed of 10,000 rpm. Dry ice in the form of flakes is used as a cooling agent.
- Dosage of raw materials conducted was made according to the recipe in Table 1;
- Making the polymeric biocomposite in a Plasti-Corder Brabender Mixer 350E with a capacity of 350 cm3 (Brabender GmbH & Co. KG, Duinsburg, Germany); working temperature set at 160 °C. TPU is introduced for plasticization for 2′ at 30 rpm. After its plasticization, recycled TPUW waste is added (in the proportion of 20%, 60% and 80%) and mixed leather and SBR rubber waste unmodified/modified with PDMS, strictly following the order of introduction of the ingredients (Table 1) for 4′, at 30 rpm. Continue mixing until the mixture is homogenized for 5′, at a temperature of 160 °C at 80 rpm;
- Rheological testing to determine the flow indices, melt flow index (MFI—Haake Meltfix 2000, Haake Technic GMBh, Vreden, Germany), was carried out at a temperature of 190 °C with a pressing force of 5 kg, preheating for 4 min;
- Obtaining standardized plates by pressing in forming moulds on a laboratory hydraulic press (Fortune Press, model TP/600, Fontijine Grotness, Vlaardingen, The Netherland) via the method of compression between its plates at a temperature of 170 °C, preheating for 3 min, pressing for 3 min, and cooling with water for 10 min at a pressure of 300 kN. Samples with a size of 150 × 150 × 2 mm are obtained, which are left to condition for 24 h at room temperature for testing;
- Physical–mechanical tests, rheological tests (MFI—melt flow index), FT-IR structural characterization (Nicolet, Waltham, MA, USA) and FT-IR microscopy (Nicolet, Waltham, MA, USA), but also determination of thermal behaviour by thermogravimetry (TG) and differential scanning calorimetry—DSC (Netzsch 449C F3 STA Jupiter, Selb, Germany).
2.3. Modification of the Protein and Elastomeric Waste in Mixture
2.4. Characterization of Biopolymeric Composite
3. Results and Discussion
3.1. Melt Flow Index Determination
3.2. Physical–Mechanical Characterisation of Polymeric Biocomposites Based on TPU/TPUW/Mixed Leather and SBR Rubber Waste/PE-g-MA
3.3. FT-IR Spectroscopy
3.4. FT-IR Mapping Investigation
3.5. Thermal Analysis TG-DSC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moktadir, M.A.; Ahmadi, H.B.; Sultana, R.; Zohra, F.-T.; Liou, J.J.H.; Razaei, J. Circular economy practices in the leather industry: A practical step towards sustainable development. J. Clean. Prod. 2020, 251, 119737. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bochen, N.M.P.; Hultink, E.J. The Circular Economy—A new suatainability paradigm. J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Magnin, A.; Pollet, E.; Perrin, R.; Ullmann, C.; Persillon, C.; Phalip, V.; Averous, L. Enzymatic recycling of thermoplastic polyurethanes: Synergistic effect of an esterase and an amidase and recovery of building blocks. Waste Manag. 2019, 85, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://environment.ec.europa.eu/topics/circular-economy/first-circular-economy-action-plan_en (accessed on 16 May 2023).
- United Nations Environment Programme. Global Waste Management Outlook. 2015. Available online: https://www.unenvironment.org/resources/report/global-waste-management-outlook (accessed on 7 June 2023).
- Plastic Recycling Europe. Increased EU Plastics Recycling Targets: Environmental, Economic and Social Impact Assessment—Final Report, Deloitte. Available online: https://www.plasticsrecyclers.eu/plasticsrecyclers-publications (accessed on 1 June 2023).
- Available online: https://environment.ec.europa.eu/international-cooperation/environmental-cooperation-other-countries_en (accessed on 24 May 2023).
- Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/protecting-environment-and-oceans-green-deal_en (accessed on 30 May 2023).
- Plastics-the Facts 2019. Available online: https://plasticseurope.org/wp-content/uploads/2021/10/2019-Plastics-the-facts.pdf (accessed on 9 June 2023).
- Plastic Waste and Recycling in the EU: Facts and Figures. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20181212STO21610/plastic-waste-and-recycling-in-the-eu-facts-and-figures (accessed on 7 June 2023).
- Alexandrescu, L.; Deselnicu, V.; Sonmez, M.; Georgescu, M.; Nituica, M.; Deselnicu, D.C.; Pang, X. Biodegradable Polymer Composite based on Recycled Polyurethane and Finished Leather Waste. IOP Conf. Ser. Earth Environ. Sci. 2019, 401, 012006. [Google Scholar] [CrossRef] [Green Version]
- Stelescu, M.D.; Airinei, A.; Bargan, A.; Fifere, N.; Georgescu, M.; Sonmez, M.; Nituica, M.; Alexandrescu, L.; Stefan, A. Mechanical properties and equilibrium swelling characterisctics of some polymer composite based on ethylene propylene diene terpolymer (EPDM) reinforced with hemp fibers. Materials 2022, 15, 6838. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, H.J.; Yu, W.R. Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties. Fibers Polym. 2009, 10, 83–90. [Google Scholar] [CrossRef]
- Mohammed, L.; Ansari, M.N.M.; Pua, G.; Jawaid, M.; Islam, M.S. A Review on natural fiber reinforced polymer composite and its applications. Int. J. Polym. Sci. 2015, 2015, 243947. [Google Scholar] [CrossRef] [Green Version]
- Pickering, K.L.; Efendy, M.C.A.; Lee, T.M. A review of recent development in natural fiber composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2015, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Summerscales, J.; Dissanayake, N.P.J.; Virk, A.S.; Hall, W. A review of bast fibres and their composites, Part 1–Fibres as Reinforcements. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1329–1335. [Google Scholar] [CrossRef] [Green Version]
- Mochane, M.J.; Mokhena, T.C.; Mokhothu, T.H.; Mtibe, A.; Sadiku, E.R.; Ray, S.S.; Ibrahim, I.D.; Daramola, O.O. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym. Lett. 2019, 13, 159–198. [Google Scholar] [CrossRef]
- Stelescu, M.D.; Sonmez, M.; Alexandrescu, L.; Nituica, M.; Gurau, D.F.; Georgescu, M. Structure and properties of blends based on vulcanized rubber waste and styrene–butadiene–styrene thermoplastic elastomer. J. Rubber Res. 2022, 25, 421–434. [Google Scholar] [CrossRef]
- Alexandrescu, L.; Georgescu, M.; Sonmez, M.; Nituica, M. Biodegradable polymeric composite based on recycled polyurethane and rubber wastes: Material green shoe manufacturing. Leather Footweare J. 2020, 20, 323–331. [Google Scholar] [CrossRef]
- Al-Salem, S.; Leteri, J.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef]
- Nituica, M.; Sonmez, M.; Georgescu, M.; Stelescu, M.D.; Alexandrescu, L.; Gurau, D. Biodegradable polymer composites based on NBR Rubber and protein waste. Leather Footwear J. 2021, 21, 229–236. [Google Scholar] [CrossRef]
- El-Shekeil, Y.A.; Sapuan, S.M.; Zainudin, E.S.; Khalina, A. Optimizing Processing Parameters and Fiber Size for Kenaf Fiber Reinforced Thermoplastic Polyurethane Composite. Key Eng. Mater. 2011, 471–472, 297–302. [Google Scholar] [CrossRef]
- Polyurethane Demand Worldwide from 2012 to 2024. Available online: https://www.statista.com/statistics/747004/polyurethane-demand-worldwide/ (accessed on 7 June 2023).
- Patton, S.T.; Chen, C.; Hu, J.; Grazulis, L.; Schrand, M.A.; Roy, A.K. Characterization of thermoplastic Polyurethane (TPU) and Ag-Carbon Black TPU Nanocompozsite for Potential Application in Additive Manufacturing. Polymers 2017, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Sonnenschein, M.F. Polyurethane, Science, Technology, Markets, and Trends; John Wiley &Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 127–157, 160–206, 294–335. [Google Scholar]
- Vilsan, M.; Ficai, M.; Georgescu, M.; Panturu, L.; Chelaru, C.; Dragomir, T. Application of advances polymers in the footwear industry. Leather Footwear J. 2009, 9, 33–41, ISSN 1583-4433. [Google Scholar]
- Wang, Y.; Li, Z.; Cao, Y. Design of an environmentally friendly leather-like fabric based on thermoplastic polyurethane covered yarn. J. Phys. Conf. Ser. 2022, 2256, 012032. [Google Scholar] [CrossRef]
- Rogulska, M. Polycarbonate-based thermoplastic polyurethane elastomers modified by DMPA. Polym. Bull. 2019, 76, 4719–4733. [Google Scholar] [CrossRef] [Green Version]
- Nituica, M.; Alexandrescu, L.; Georgescu, M.; Sonmez, M.; Stelescu, M.D.; Gurau, D.F.; Curutiu, C.; Stoleriu, S. Biodegradable polymeric composites based on EPDM rubber and functionalized elastomeric waste. In Proceedings of the 8th International Conference on Advanced Materials and Systems ICAMS 2020, Bucharest, Romania, 1–3 October 2020; pp. 417–422. [Google Scholar] [CrossRef]
- Yang, W.; Dong, Q.; Liu, S.; Xie, H.; Liu, L.; Li, J. Recicling and disposal methods for polyurethane foam waste. Procedia Environ. Sci. 2012, 16, 167–175. [Google Scholar] [CrossRef]
- Radzi, A.M.; Sapuan, S.M.; Jawaid, M.; Mansor, M.R. Influence of fibre contents on mechanical and thermal properties of roselle fibre reinforced polyurethane composites. Fibers Polym. 2017, 18, 1353–1358. [Google Scholar] [CrossRef]
- Elmrabet, N.; Siegkas, P. Dimensional consideration on the mechanical properties of 3D printed polymers parts. Polym. Test. 2020, 90, 106656. [Google Scholar] [CrossRef]
- Calvo-Correas, T.; Benitez, M.; Larraza, I.; Ugarte, L.; Pena-Rodriguez, C.; Eceiza, A. Advances and traditional processing of thermoplastic polyurethane waste. Polym. Degrad. Stab. 2022, 198, 109880. [Google Scholar] [CrossRef]
- EN ISO 20344:2012; Personal Protective Equipment-Test Methods for Footwear. UNE: Madrid, Spain, 2012.
- Vilsan, M. Hybrid Polymer Nanocomposites Based on Rubber and Chemically Modifed Clays for Footwear Industry. Ph.D. Thesis, Politehnica University of Bucharest, Bucharest, Romania, 2016. [Google Scholar]
- ISO 48-4:2018; Rubber, Vulcanized of Thermoplastic-Determination of Hardness—Part 4: Indentation Hardness by Durometer Method (Shore Hardness). ISO: Geneva, Switzerland, 2018.
- ISO 4662:2017; Rubber, Vulcanized or Thermoplastic—Determination of Rebound Resilience. ISO: Geneva, Switzerland, 2017.
- ISO 37:2012; Vulcanized or Thermoplastic Rubber. Determination of Stress Characteristics—Resistance to Breaking. ISO: Geneva, Switzerland, 2012.
- ISO 188:2011; Rubber, Vulcanized or Thermoplastic—Accelerated Ageing and Heat Resistance Tests. ISO: Geneva, Switzerland, 2011.
- ISO 1133-1:2022; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics. ISO: Geneva, Switzerland, 2022.
- Kasprzyk, P.; Glowinska, E.; Datta, J. Structure and properties comparison of poly(ether-urethane)s based on nonpetrochemical and perochemical polyols obtained by solvent free iwo-step method. Eur. Polym. J. 2021, 157, 110673. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Babhani, M. 3D printing of PLA-TPU with different component ratio: Fracture toughness, mechanical properties, and morphology. J. Mater. Res. Technol. 2022, 21, 3970–3981. [Google Scholar] [CrossRef]
- Nakason, C.; Nuansomsri, K.; Kaesaman, A.; Kiatkamjornwong, S. Dynamic vulcanization of natural rubber/high-density polyethylene blends: Effect of compatibilization, blend ratio and curing system. Polym. Test. 2006, 25, 782–796. [Google Scholar] [CrossRef]
- Zhao, X.; Bi, L.; Khatir, B.; Serles, P.; Filleter, T.; Wulff, J.E.; Golovin, K. Crosslinking inert liquidlike polydimethylsiloxane brushes using bis-diazirine chemical insertion for enhanced mechanical durability. Chem. Eng. J. 2022, 442, 136017. [Google Scholar] [CrossRef]
- Liu, J.; Recupido, F.; Lama, G.C.; Oliviero, M.; Verdolotti, L.; Lavorgna, M. Recent advances concerning polyurethane in leather applications: An overview of conventional and greener solutions. Collagen Leather 2023, 5, 8. [Google Scholar] [CrossRef]
- Badilescu, S.; Giurginca, M.; Toader, M.; Tălpuş, V. Infrared Spectrometry of Polymers and Auxiliaries (Spectrometria în Infraroşu a Polimerilor şi Auxiliarilor); Editura Tehnica: Bucharest, Romania, 1982. [Google Scholar]
- Haryńska, A.; Gubanska, I.; Kucinska-Lipka, J.; Janik, H. Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology. Polymers 2018, 10, 1304. [Google Scholar] [CrossRef] [Green Version]
- Rogulska, M.; Maciejewska, M.; Olszewska, E. New thermoplastic poly(carbonate-urethane)s based on diphenylethane derivative chain extender. J. Therm. Anal. Calorim. 2020, 139, 1049–1068. [Google Scholar] [CrossRef] [Green Version]
- Prisacariu, C. Polyurethane Elastomers: From Morphology to Mechanical Aspects; Springer: Vienna, Austria, 2011; pp. 61–82, 103–202. [Google Scholar]
- Kultys, A.; Rogulska, M.; Pikus, S.; Skrzypiec, K. The synthesis and characterization of new thermoplastic poly(carbonate-urethane) elastomers derived from HDI and aliphatic-aromatic chain extenders. Eur. Polym. J. 2009, 45, 2629–2643. [Google Scholar] [CrossRef]
- Xu, Y.; Petrovic, Z.; Das, S.; Wilkes, G.L. Morphology and properties of thermoplastic polyurethanes with dangling chains in ric-inoleate-based soft segments. Polymer 2008, 49, 4248–4258. [Google Scholar] [CrossRef]
- Wölfel, B.; Seefried, A.; Allen, V.; Kaschta, J.; Holmes, C.; Schubert, D.W. Recycling and Reprocessing of Thermoplastic Polyurethane Materials towards Nonwoven Processing. Polymers 2020, 12, 1917. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Kim, H.; Bae, Y.M.; Lee, K.H.; Cho, H.J. Effect of thermal treatment on the chemical resistance of polydimethylsiloxane for microfluidic devices. J. Micromech. Microeng. 2013, 23, 035007. [Google Scholar] [CrossRef]
- Kim, M.; Huang, Y.; Choi, K.; Hidrovo, C. The improved resistance of PDMS to pressure-induced deformation and chemical solvent swelling for microfluidic devices. Macromol. Eng. 2014, 124, 66–75. [Google Scholar] [CrossRef]
- Saini, A.; Yadav, C.; Bera, M.; Gupta, P.; Maji, P. Maleic anhydride grafted linear low-density polyethylene/waste paper powder composites with superior mechanical behavior. J. Appl. Polym. Sci. 2017, 134, 45167. [Google Scholar] [CrossRef]
- Nandi, S.; Bose, S.; Mitra, S.; Ghosh, A.K. Effect of maleic anhydride grafted polyethylene on engineering properties and morphology of fumed silica filled polyethylene blown films. J. Plast. Film. Sheeting 2012, 28, 207–227. [Google Scholar] [CrossRef]
- Ozcan, S.; Doganci, M.D. The effect of polyethylene-graft-maleic anhydride on ultrahigh molecular weight polyethylene/carboxymethyl cellulose blends. J. Appl. Polym. Sci. 2021, 139, 51519. [Google Scholar] [CrossRef]
- Sonmez, M.; Georgescu, M.; Valsan, M.; Radulescu, M.; Ficai, D.; Voicu, G.; Ficai, A.; Alexandrescu, L. Design and characterization of polypropylene matrix/glass fibers composite materials. J. Appl. Polym. Sci. 2015, 132, 42163. [Google Scholar] [CrossRef]
- Nituica, M.; Sonmez, M.; Stelescu, M.D.; Alexandrescu, L.; Georgescu, M.; Gurau, D.; Badea, E.; Rusu, B.F.; Dumitru, A. The influence of protein and elastomer waste mixture on the NBR based elastomer compound. Leather Footwear J. 2022, 22, 257–266. [Google Scholar] [CrossRef]
- Frick, A.; Rochman, A. Characterization of TPU -elastomers by Thermal analysis (DSC). Polym. Test. 2004, 23, 413–417. [Google Scholar] [CrossRef]
- Oberparleiter, S.; Unterberger, S.H.; Perfler, L.; Traxl, R. Improvement repeatability of DSC characterization of TPU by means of supportive use of heat-transfer agent. Polym. Test. 2022, 105, 107410. [Google Scholar] [CrossRef]
- Schawe, J.E.K. Temperature correction at high heating rates for conventional and fast differential scanning calorimetry. Thermochim. Acta 2021, 698, 178879. [Google Scholar] [CrossRef]
- Candal, M.V.; Calafel, I.; Fernandez, M.; Aranburu, N.; Aguirresarobe, R.H.; Gerrica-Echevarria, G.; Samtamaria, A.; Muller, A.J. Study of the interlayer adhesion and warping during material extrusion-based additive manufacturing of a carbon nanotube/biobased thermoplastic polyurethane nanocomposite. Polymer 2021, 224, 123734. [Google Scholar] [CrossRef]
Ingredients | Sample | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
UM | MM | T20 | T60 | T80 | TBB1 | TBB2 | TBB11 | TBB12 | TBB13 | |
TPU | % | 100 | 80 | 40 | 20 | 80 | 80 | 80 | 80 | 80 |
Recycled TPU (TPUW) | % | 0 | 20 | 60 | 80 | 20 | ||||
Leather and SBR rubber waste | % | 20 | 20 | |||||||
Leather and SBR rubber waste modified with 5% PDMS | % | 20 | 20 | |||||||
PE-g-MA | % | 5 | 5 | 5 |
Working Temperature, °C | Sample | ||||
---|---|---|---|---|---|
UM | MM | T20 | T60 | T80 | |
190 °C, SR ISO 1133 | g/10 min | 43.3 ± 0.83 | 71.8 ± 0.998 | 166 ± 0.84 | 205 ± 0.47 |
Working Temperature, °C | Sample | ||||||
---|---|---|---|---|---|---|---|
UM | MM | TBB1 | TBB2 | TBB11 | TBB12 | TBB13 | |
190 °C, SR ISO 1133 | g/10 min | 43.3 ± 0.833 | 13.5 ± 0.6 | 6.59 ± 0.93 | 27.7 ± 0.72 | 16.7 ± 0.87 | 5.45 ± 0.91 |
Physical–Mechanical Characteristics | Sample | ||||||||
---|---|---|---|---|---|---|---|---|---|
MM (Control) | T20 | T60 | T80 | TBB1 | TBB2 | TBB11 | TBB12 | TBB13 | |
Normal state | |||||||||
Hardness, Sh°A | 83 ± 0.57 | 83 ± 0.57 | 80 ± 0.57 | 77 ± 0.57 | 88 ± 0.57 | 89 ± 0.57 | 83 ± 0.57 | 91 ± 0.57 | 91 ± 0.57 |
Elasticity, % | 28 ± 0.14 | 26 ± 0.40 | 26 ± 0.40 | 24 ± 0.40 | 24 ± 0.40 | 24 ± 0.40 | 22 ± 0.40 | 22 ± 0.40 | 22 ± 0.40 |
Tensile strength, N/mm2 | 6.34 ± 0.69 | 7.75 ± 0.47 | 7.44 ± 0.34 | 7.4 ± 0.28 | 8.37 ± 0.41 | 9.34 ± 0.72 | 8.16 ± 0.45 | 8.1 ± 0.13 | 8.51 ± 0.16 |
Elongation at break, % | 220 ± 20 | 280 ± 11.54 | 300 ± 0 | 300 ± 0 | 180 ± 11.54 | 100 ± 0 | 260 ± 11.54 | 180 ± 0 | 100 ± 0 |
Accelerated ageing at 70 °C, for 168 h | |||||||||
Hardness, Sh°A | 84 ± 0.57 | 85 ± 0.57 | 83 ± 0 | 82 ± 0.57 | 89 ± 0.57 | 90 ± 0.57 | 86 ± 0.57 | 92 ± 0.57 | 94 ± 0.57 |
Elasticity, % | 24 ± 0.14 | 24 ± 0.14 | 24 ± 0 | 22 ± 0.4 | 22 ± 0.4 | 22 ± 0.4 | 22 ± 0.21 | 22 ± 0.2 | 22 ± 0.2 |
Tensile strength, N/mm2 | 7.59 ± 0.19 | 7.74 ± 0.75 | 7.8 ± 0.27 | 7.91 ± 0.23 | 7.97 ± 0.45 | 9.23 ± 0.13 | 7.09 ± 0.32 | 7.42 ± 0.23 | 7.15 ± 0.44 |
Elongation at break, % | 260 ± 0 | 260 ± 20 | 320 ± 0 | 380 ± 20 | 200 ± 20 | 110 ± 10 | 250 ± 20 | 160 ± 10 | 100 ± 10 |
Atmospheric and weather conditions for 365 days | |||||||||
Hardness, Sh°A | 89 ± 0.57 | 89 ± 0.57 | 90 ± 0.57 | 81 ± 0.57 | 95 ± 0.57 | 96 ± 0.57 | 89 ± 0.57 | 95 ± 0 | 99 ± 0.57 |
Elasticity, % | 22 ± 0.4 | 21 ± 0.2 | 21 ± 0.2 | 19 ± 0.28 | 19 ± 0.28 | 19 ± 0.28 | 20 ± 0.4 | 19 ± 0.23 | 19 ± 0.30 |
Tensile strength, N/mm2 | 5.72 ± 0.15 | 5.57 ± 0.15 | 5.60 ± 0.11 | 6.89 ± 0.12 | 6.97 ± 0.12 | 8.09 ± 0.22 | 6.28 ± 0.26 | 6.59 ± 0.20 | 5.95 ± 0.27 |
Elongation at break, % | 290 ± 26 | 290 ± 26 | 360 ± 11.54 | 400 ± 11.54 | 240 ± 15.27 | 180 ± 11.54 | 180 ± 11.54 | 160 ± 10 | 140 ± 20 |
Sample | Mass Loss (%) RT-240 °C | Ton (°C) (PE-g-MA) | Melting Peak (°C) | Ton (°C) (TPU) | Melting Peak (°C) |
---|---|---|---|---|---|
MM | 1.48% | - | - | 181.5 | 195.3 |
T60 | 2.11% | - | - | 180.9 | 188.9 |
TBB11 | 1.89% | 91.8 | 107.3 | 177.1 | 192.3 |
TBB12 | 2.27% | 93.1 | 106.2 | 187.4 | 199.8 |
TBB13 | 2.16% | 92.5 | 105.4 | 179.3 | 195.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nituica, M.; Oprea, O.; Stelescu, M.D.; Sonmez, M.; Georgescu, M.; Alexandrescu, L.; Motelica, L. Polymeric Biocomposite Based on Thermoplastic Polyurethane (TPU) and Protein and Elastomeric Waste Mixture. Materials 2023, 16, 5279. https://doi.org/10.3390/ma16155279
Nituica M, Oprea O, Stelescu MD, Sonmez M, Georgescu M, Alexandrescu L, Motelica L. Polymeric Biocomposite Based on Thermoplastic Polyurethane (TPU) and Protein and Elastomeric Waste Mixture. Materials. 2023; 16(15):5279. https://doi.org/10.3390/ma16155279
Chicago/Turabian StyleNituica, Mihaela, Ovidiu Oprea, Maria Daniela Stelescu, Maria Sonmez, Mihai Georgescu, Laurentia Alexandrescu, and Ludmila Motelica. 2023. "Polymeric Biocomposite Based on Thermoplastic Polyurethane (TPU) and Protein and Elastomeric Waste Mixture" Materials 16, no. 15: 5279. https://doi.org/10.3390/ma16155279
APA StyleNituica, M., Oprea, O., Stelescu, M. D., Sonmez, M., Georgescu, M., Alexandrescu, L., & Motelica, L. (2023). Polymeric Biocomposite Based on Thermoplastic Polyurethane (TPU) and Protein and Elastomeric Waste Mixture. Materials, 16(15), 5279. https://doi.org/10.3390/ma16155279