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Abstract: Cement production contributes significantly to carbon dioxide emissions. Alkali-activated
materials offer an environmentally friendly alternative due to their comparable strength, durability
and low-carbon emissions while utilizing wastes and industrial by-products. Wood ash is a waste
material that shows promising results as a partial replacement for Portland cement and precursors
in alkali-activated systems. The aim of this study was to examine the effect of ground wood ash
on the mechanical properties of alkali-activated mortars. Wood ash was incorporated as a 0 wt%,
10 wt% and 20 wt% partial replacement for ground granulated blast furnace slag (GGBFS). The wood
ashes were ground in a planetary ball mill for 10 and 20 min. Sodium silicate (Na2SiO3), sodium
carbonate (Na2CO3), and sodium hydroxide (NaOH) were used as alkali activators. The results
demonstrated that ground wood ash improved the mechanical properties of alkali-activated systems
compared to untreated wood ash. However, the incorporation of wood ash increased the porosity of
the binder matrix.

Keywords: wood ash; wood fly ash; ground granulated blast furnace slag; alkali-activated; mortar;
ball mill; grinding; isothermal calorimetry

1. Introduction

Concrete is extensively used in the construction industry worldwide, due to its fa-
vorable attributes such as durability, mechanical properties, and affordability [1–3]. Un-
fortunately, Portland cement, which is the main concrete component, has a significant
carbon footprint. Its production requires substantial amounts of raw materials and energy,
leading to the release of large amounts of CO2, thus negatively contributing to greenhouse
gas emissions and causing environmental concerns. The cement industry is estimated to
produce around 5–8% of global carbon dioxide emissions [4,5]. Depending on the energy
sources used, the emissions from Portland cement production range between 500 and
900 kg CO2/t [6,7]. Portland cement is primarily made from limestone and clay. This,
involves calcination, which decomposes CaCO3 into CaO and CO2, emitting substantial
amounts of greenhouse gases [8–10].

Alkali-activated binders, which are an eco-alternative to Portland cement, are formed
through a chemical reaction between an aluminosilicate precursor and alkali activators. In
systems containing high-calcium content, the main reaction product is the formation of
C-A-S-H (calcium(alumino)silicate hydrate) gel, which is responsible for strength develop-
ment [11,12]. Alkali-activated materials have emerged as a viable alternative to traditional
Portland cement-based systems, primarily due to their significant reduction of the CO2
emissions, reaching up to 80% [13–15]. Energy consumption is lowered by 43%, and the
water usage is reduced by about 25% [16,17]. Moreover, they exhibit enhanced strength,
and certain durability characteristics prove superior [18,19]. In addition to all these advan-
tages, it also provides advantages in terms of utilization of industrial waste materials and
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by-products such as slag or fly ash [20]. One of the most used industrial by-products as an
alkali-activated precursor is ground granulated blast furnace slag (GGBFS), which comes
from steel production. Alkali-activated slag systems exhibit high mechanical strength; how-
ever, they are accompanied by challenges such as rapid setting times and high shrinkage.
To address these properties, their utilization in combination with other precursors has
been investigated, yielding promising improvements. The combination of slag and fly ash
is the most studied binary system [18]. Recently, extended setting time [21], decreased
shrinkage [22], and ultra-high strength are reported for this binary system [23].

Wood ash is often considered an alternative to coal fly ash [24,25]. Wood ash is the
residue produced through the incineration of forestry residues and by-product from timber
manufacturing industry such as timber and sawdust [4,26]. It consists of inorganic and
organic matter that remains after combustion. On average, wood burning yields approxi-
mately 6–10% ash [27]. Wood biomass is considered CO2 neutral energy source which emits
almost the same amount of CO2 when burnt as it absorbs during its growth [28–30]. Globally,
the annual production of woody biomass is approximately 4600 million tons. Out of this
total, 60% is utilized for energy production, 20% is used for industrial purposes, and 20% is
lost during primary production and decomposes in the field [31]. Nowadays, a significant
amount of wood ash is disposed of in landfills, although some are employed in agriculture
and forestry [24,32]. However, there are concerns associated with these applications of wood
ash. Firstly, future difficulties in finding suitable landfill areas are anticipated, leading to
increased costs [10,33]. Furthermore, landfilling of wood ash can result in the leaching of
hazardous elements, potentially contaminating groundwater [34]. Health risks may also
arise from the disposal of wood ash in landfills, as fine particles can become airborne and
disperse through wind [24,35]. The presence of heavy metal content and acidic pH levels of
wood ash may pose potential risks in some agricultural practices [36]. Compared to other
disposal methods of wood ash, incorporating it into concrete might be a more sustainable
alternative [27].

The composition of wood ash varies based on geographical location, tree species, parts
of the tree, combustion technology and temperature, as well as collection methods and
storage conditions [32,37,38]. It usually contains a high amount of CaO and SiO2 [39].

Studies on the use of wood ash in environmentally friendly construction materials
are increasing [29,35,38,40] and these studies were summarized in [7]. The utilization of
wood ash as a partial Portland cement replacement has emerged as a promising application
for mitigating the carbon footprint of the industry, at least for some applications. This
approach not only helps to reduce cement consumption but also offers a sustainable way
for waste disposal [41]. Compared to Portland cement, wood ash has larger, irregular, and
more porous particles with a larger specific surface. Incorporation of wood ash usually
decreases workability [9,34,38,42] of cement-based materials and results in slightly lower or
improved mechanical properties [41,43,44]. A Portland cement replacement by 10–20 wt%
with wood ash was suggested as optimum [34,43,45,46].

In addition to the utilization of wood ash as a partial cement replacement, there
has been a growing research focus on the application of wood ash in the field of alkali-
activated materials. Some researchers proposed using wood ash as an alkaline source for
alkali-activated materials without using any chemical alkali solution due to the potential
negative environmental impacts of sodium silicate and sodium hydroxide. Cheah et al. [47]
successfully replaced fly ash with higher amount of wood ash, 50, 60, 70 and 100 wt%
without using any alkali-activator. They achieved the maximum compressive strength of
18 MPa with 60 wt% wood ash at the age of 90 days. The high K2O and CaO content in the
wood ash makes it suitable for geopolymerization. The formation of K-A-S-H, C-A-S-H,
and C-S-H was observed as a result of the reaction with water. Samsudin and Cheah [48]
examined high-calcium wood ash as a substitute for ground granulated blast furnace slag
(GGBFS) in geopolymer concrete without a chemical alkali activator. A replacement ratio of
30% yielded the highest compressive strength at 12.3 MPa with a rapid early-stage strength
development due to the high alkalinity of wood ash.



Materials 2023, 16, 5347 3 of 21

In addition to using wood ash as an alkaline source, it can be also used as a partial
replacement for fly ash, metakaolin and GGBFS. Owaid et al. [20] suggested using up to
25 wt% wood ash as a partial replacement for fly ash in geopolymer concrete to enhance
its cost-effectiveness and environmental sustainability. Different wood ash ratios were
compared (25, 50, 75, and 100 wt%) using sodium silicate and sodium hydroxide as activators.
Curing involved 24 h at 60 ◦C followed by an ambient temperature curing. The geopolymer
concrete with 25 wt% wood ash replacement exhibited the highest compressive strength
(57.82 MPa on the 56th day), while higher wood ash ratios led to decreased mechanical
properties, presumably due to high CaO content in wood ash. Abdulkareem et al. [49]
also observed that the incorporation of up to 20 wt% of wood ash as a partial replacement
for fly ash in geopolymer mortars shortened initial and final setting times and improved
compressive strength at early ages due to the formation of C-S-H and geopolymer gels. Cheah
et al. [50] investigated the replacement of fly ash with high-calcium wood ash at various
ratios in geopolymer mortars. They used a sodium silicate solution as an alkali activator
with an alkali modulus of 2.1. The study found that the highest compressive and flexural
strength was achieved with 40 wt% and 50 wt% wood ash replacements at 7 and 28 days.
Interestingly, the samples containing 30 wt% wood ash exhibited the highest mechanical
strength after 365 days. Moreover, as the wood ash content increased in the binder, the
amount of mixing water required to achieve the standard consistency also increased.

Candamano et al. [51] examined the effect of wood ash as a partial replacement for
metakaolin in geopolymer mortars. The incorporation of 10–30 wt% wood ash improved
the workability, but when more than 10 wt% of wood ash was used, there was a decrease
in compressive and flexural strengths. However, even with a 30 wt% replacement ratio, the
strength remained above 35 MPa, demonstrating the potential of wood ash in geopolymer
applications. De Rossi et al. [52] investigated the effects of different curing methods on
the properties of geopolymer mortars using 75 wt% wood fly ash and 25 wt% metakaolin.
The study used two ratios of sodium silicate to sodium hydroxide and subjected the
samples to five curing methods. The results showed that a higher sodium silicate to sodium
hydroxide ration improved the compressive strength and reduced the water absorption
due to the higher SiO2/Al2O3 ratio for all the curing methods except hydrothermal curing.
The highest compressive strength of 24.5 MPa was observed in geopolymers cured at
40 ◦C, but this method was not suggested due to increased carbon dioxide emissions
and energy consumption. Room temperature curing was found to be a cost-effective and
environmentally friendly alternative, resulting in the formation of geopolymers with similar
mechanical properties.

Silva et al. [53] investigated the use of untreated wood ash as a precursor with NaOH
solution with varying concentrations used as an alkali activator. The mixes with 100 wt%
wood ash showed porous and heterogeneous structure with microcracks due to drying during
curing and low-compressive and flexural strength due to the coarse wood ash particles. The
authors suggested sieving and crushing processes as pre-treatments for wood ash to achieve
improved mechanical properties. Bajare et al. [54] conducted a study where wood ash that
was used as a precursor had been ground with a planetary ball mill for 10 min to enhance
its reactivity. They used 6 M NaOH solution as an alkali activator. The geopolymer mortars
cured at 75 ◦C for 24 h reached a compressive strength of 9.3 MPa. Ates et al. [55] investigated
the impact of calcination and ball milling on the compressive and flexural strength of fly
ash-wood ash blended geopolymer mortars. They observed that these processes improved
the strength properties of the mortars, up to a 50 wt% wood ash level.

Wood ash has high unburned carbon content, which decreases its reactivity. To en-
hance the reactivity of wood ash, different pre-treatment methods such as sieving, grinding,
calcination and water-washing have been suggested [28,38,56,57]. Besides reducing loss
on ignition, pre-treatments like grinding and water-washing can improve the physical
and chemical properties of wood ash. Grinding also enhances particle reactivity by reduc-
ing particle size. These treatments can potentially impact the strength and durability of
concrete [58].
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Researchers have explored the potential of utilizing wood ash as a partial replacement
for cement, alkali-activated fly ash or metakaolin to some extent. However, not enough
studies examine its usage with slag. This study used wood ash as 10 wt% and 20 wt% partial
slag replacement in alkali-activated mortars after grinding wood ash with two different
grinding times, 10 or 20 min. Mortars were prepared with three different alkali activators,
namely sodium silicate (Na2SiO3), sodium carbonate (Na2CO3) and sodium hydroxide
(NaOH). The aim was to examine the effect of ground wood ash at various times on the
mechanical properties of alkali-activated mortars with different alkali-activator types.

2. Materials and Methods
2.1. Materials

The wood fly ash (WA) utilized in this study was sourced from Stenvalls Trä AB (Pitea,
Sweden). It was a by-product of wood waste combustion. The wood ash was dried in the
oven at 64.5 ◦C for 24 h and sieved with a 500 µm sieve before grinding [56]. Then it was
ground using a planetary ball mill at a rotation speed of 500 rpm, with a ball-to-powder
ratio of 5. The grinding process was conducted for two different durations of 10 and 20 min
(Figure 1). The equipment use was a Retsch PM100 planetary ball mill (Retsch GmbH,
Haan, Germany), with a jar having a 500 mL capacity and 10 balls with a diameter of 20 mm.
The mean particle sizes of untreated and treated wood ashes were measured based on SEM
images by using ImageJ software (v.2.14.0). Mean particle sizes of untreated wood ash
(WA), 10 min of ground wood ash (WA10) and 20 min of ground wood ash (WA20) were
measured at 18.31 µm, 3.79 µm and 4.22 µm, respectively. The chemical compositions and
pH values of untreated WA, pre-treated WAs (WA10 and WA20), and GGBFS are provided
in Table 1. The reason for the oxide losses in wood ash was attributed to the high =0sulfur
content of the wood ash that was lost during burning.

Ground granulated blast furnace slag (GGBFS) was obtained from SweCem (Hels-
ingborg, Sweden). The basicity coefficient (Kb) of GGBFS was found to be 1.13, which is
greater than 1, indicating its basic nature [59]. The pH value of GGBFS was measured to
equal 10.38. The calculation was performed using the equation Kb = (CaO + MgO)/(SiO2 +
Al2O3) [15,60,61]. Furthermore, the hydration modulus (HM) of the slag is determined to
be 1.82. The hydration modulus was calculated using the equation HM = (CaO + MgO +
Al2O3)/SiO2 [60]. The HM of slag was suggested to be greater than 1.4 for ensuring efficient
hydration products [60,62]. The fine sand B35 (350 µm), which was used in mortars, was
provided by Baskarpsand AB (Habo, Sweden).

Three alkali activators were used: sodium silicate, sodium carbonate, and sodium
hydroxide. The liquid sodium silicate (SS) (Na2SiO3) was provided by Sigma-Aldrich and
alkali modulus is calculated as Ms = SiO2/Na2O of 2.5 with 26.5 wt% SiO2, 10.6 wt%
Na2O, and a solid content of 43.82 wt%. The Ms value was adjusted to 1 by adding sodium
hydroxide (NaOH) pellets (98% purity), which was provided by Sigma-Aldrich. The alkali
activator dosage was 10 wt% for all SS-activated mixes.
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Table 1. Chemical composition of non-treated WA, WA10 and WA20, and GGBFS.

Chemical Composition (%) WA WA10 WA20 GGBFS

SiO2 22.40 22.30 21.70 34.80
Al2O3 6.75 6.87 6.77 11.30
Fe2O3 2.62 3.11 3.39 0.42
CaO 15.10 16.00 15.60 40.80
K2O 8.25 8.96 9.27 0.99
MgO 2.69 2.84 2.84 11.40
MnO 0.80 0.85 0.82 0.32
P2O5 2.81 2.96 2.97 <0.02
TiO2 0.30 0.30 0.28 1.46
Na2O 1.46 1.48 1.47 0.58

LOI (1000 ◦C) 29.70 32.30 31.30 −1.81
Alkali content (K2O + Na2O) 9.71 10.44 10.74 1.57

pH 10.48 10.62 10.78 10.38

Sodium carbonate (SC) (Na2CO3) powder was provided by CEICH SA (Warsaw, Poland).
A total of 10 wt% SC was used in all SC-activated mixes. Sodium hydroxide (SH) solution of
10 M concentration was prepared with distilled water for the SH-activated mixes.

Mortar samples were used for compressive and flexural strength measurements, and
to perform SEM and EDS spot analysis. A total of 21 different alkali-activated mortar mixes
were prepared with GGBFS, replaced by 0 wt%, 10 wt%, and 20 wt% of untreated wood
ash (WA); 10 min of ground wood ash (WA10); and 20 min of ground wood ash (WA20).
The mix design of the alkali-activated mortars is provided in Table 2. The first number after
the alkali-activator code in the mortar ID represents the wood ash ratio in the mix and the
second number represents wood ash grinding duration. The control mortar samples were
prepared using 100 wt% GGBFS for all three alkali-activator types. The water-to-binder
(w/b) ratio was 0.5 and the sand to binder (s/b) was 2 for all mortar mixes. SS and SH
solutions were prepared approximately 3 h before casting. Firstly, dry materials were mixed
in a Hobart mixer for three minutes, and then alkali activators dissolved in water were
added and mixed for another two minutes. The samples were cast into the molds with
a dimension of 40 × 40 × 160 mm3, then sealed with plastic foil and stored at ambient
conditions. After demolding, all samples were kept sealed in plastic bags.

Table 2. Alkali-activated mortar mix design.

Mortar
Mix ID

Wood Ash Grinding
Time (min)

Slag:Wood Ash
Ratio

Alkali Activator
Type

Alkali Activator
Dosage

Alkali Modulus
(Ms)

pH of Alkali
Solution

SS-CTRL - 100:0 SS 10% 1 12.84
SS-10 0 90:10 SS 10% 1 12.84
SS-20 0 80:20 SS 10% 1 12.84

SS-10-10 10 90:10 SS 10% 1 12.84
SS-20-10 10 80:20 SS 10% 1 12.84
SS-10-20 20 90:10 SS 10% 1 12.84
SS-20-20 20 80:20 SS 10% 1 12.84
SC-CTRL - 100:0 SC 10% - 11.24

SC-10 0 90:10 SC 10% - 11.24
SC-20 0 80:20 SC 10% - 11.24

SC-10-10 10 90:10 SC 10% - 11.24
SC-20-10 10 80:20 SC 10% - 11.24
SC-10-20 20 90:10 SC 10% - 11.24
SC-20-20 20 80:20 SC 10% - 11.24
SH-CTRL - 100:0 SH 10 M - 12.95

SC-10 0 90:10 SH 10 M - 12.95
SC-20 0 80:20 SH 10 M - 12.95

SH-10-10 10 90:10 SH 10 M - 12.95
SH-20-10 10 80:20 SH 10 M - 12.95
SH-10-20 20 90:10 SH 10 M - 12.95
SH-20-20 20 80:20 SH 10 M - 12.95

SS: Sodium silicate, SC: Sodium carbonate, SH: Sodium hydroxide.
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The paste samples were prepared for XRD analysis and isothermal calorimetry mea-
surements. Pastes were mixed for 2 min in a small volume vacuum mixer, type Ecovac
(Bredent/Senden, Germany) at a mixing speed of 600 rpm.

2.2. Testing Methods

The X-ray diffraction (XRD) analysis was performed on powdered samples and 7 days
old pastes of selected mixes by using type Empyrean from PANalytical with PIXcel 3D de-
tector, and at operating conditions of 45 kV and 40 mA, Cu-K radiation with a wavelength
of 1.54 Å, the step size was 0.02 with the range of angle 2θ from 5◦ to 70◦ [63]. The Crystal-
lography Open Database (COD) was used to determine phase composition.

The workability of fresh mortars was determined by flow test according to ASTM C
1437-07 [64].

The microstructure and morphology of the wood ashes and hardened alkali-activated
mortar samples were examined using a scanning electron microscope (SEM), JSM-IT100
(JEOL Ltd., Tokyo, Japan) connected with an energy dispersive spectrometer, BRUKER
(JEOL Nordic AB, Sollentuna, Sweden), and the ESPRIT software (v.2.1).

The powder samples were placed on adhesive carbon tape. No additional conductive
coating was applied. All images were obtained using a secondary electron detector (SED)
in high vacuum at magnifications of 500×.

For the alkali-activated mortar sample preparation, mortar pieces were extracted from
the core of 28-day-old samples and were kept in isopropanol for 48 h to stop ongoing reactions.
Then the samples were stored in a desiccator for 48 h. In the next step, the samples were
impregnated with a Struers EpoFix low-viscosity epoxy resin under vacuum. After the resin
had hardened, the samples were polished with grinding plates covered with a diamond
spray having particle sizes of 9, 3, and 1 µm. The lamp oil was used as a lubricant [65]. The
SEM analysis was performed using a backscattered electron detector (BSE) in low vacuum
mode. The accelerating voltage was 15.0 kV and the probe current of 50 mA at 1000×
magnification. EDS spot analysis was performed at a magnification of 1000× by choosing
100 points manually based on the grey level histogram that corresponded to C-S-H [65].

The approximate porosity distribution was estimated by analyzing SEM images with
the ImageJ analysis software [66]. The images were captured at multiple locations using a
magnification of 500×. A Gaussian filter was applied to all analyzed images to decrease
noise levels and improve the differentiation between hydration phases and pores by en-
hancing their contrast [67,68]. The mean particle size was determined through the analysis
of SEM images. ImageJ software was utilized for image processing and analysis. To elim-
inate noise, a median filter with a 2-pixel kernel was applied. Subsequently, automatic
thresholding was employed to convert the images into binary format [59,69].

The compressive strength test was performed at 7 and 28 days in an area of 40 ×
40 mm2 from both ends of each mortar beam [70].

The flexural strength was determined at 7 and 28 days following by the BS EN 196-
1:1995 [71]. A Wykeham Farrance mechanical testing machine was used with 0.5 mm/min
loading speed and Catman Easy software. Three samples were used for each mix for
calculating the average compressive and flexural strength.

Isothermal calorimetry measurements were performed using a TAM Air isothermal
calorimetry. SS, SC and SH-activated paste samples containing 20 wt% of ground wood ash
for 10 min and 20 wt% of untreated wood ash, and 100 wt% slag-containing samples were se-
lected for isothermal calorimetry measurement. In total, 8.3 g of paste samples were placed
into glass ampoule and kept there for 7 days at a base temperature of 23 ± 0.02 ◦C [72].

3. Results and Discussions

The mean particle sizes of WA, WA10 and WA20 are provided in Table 1. WA had
larger and more irregularly shaped particles compared to WA10 and WA20 (Figure 2). Ball
milling had a positive effect on reducing the size of the wood ash particles and led to
homogenous shapes. The mean particle size of WA10 was determined to be smaller than
that of WA20. This difference was attributed to the phenomenon of agglomeration, which
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played a significant role in influencing the particle size distribution. Milling is known to
reduce particle size. However, it has been noted that milling operations beyond a critical
intermediate milling time may stop or have adverse effects on particle size reduction [69,73].
Due to agglomeration, the particle size distribution widens and most of these changes occur
within the first hour of milling. Kumar and Kumar [74] also stated that a significant part of
the particle size reduction occurred in the first 10 min of the fly ash grinding process and
then this reduction effect decreased. Besides agglomeration, the morphology of the particles
becomes more irregular compared to shorter grinding durations as a result of long grinding
processes [73]. Moreover, smaller particles in the grinding media can lead to coverage of
grinding balls and subsequently reduce the efficiency of the milling process in time [75].
Additionally, the wear out of the grinding media represents another significant factor that
influences the grinding kinetics and reduces the overall milling efficiency [76].

Materials 2023, 16, x FOR PEER REVIEW 8 of 23 
 

 

 
Figure 2. SEM images of (a) WA, (b) WA10, (c) WA20 at 500× magnification. 

The XRD patterns for WA, WA10, WA20 and GGBFS are shown in Figure 3. For 
ground wood ashes, WA10 and WA20, the main peak was quartz, which exhibited rela-
tively high intensities. These findings align with the literature, as many researchers have 
reported that quartz is the predominant crystalline phase identified in wood ash 
[24,44,53,63,77–79]. Additionally, they contained calcite, arcanite, and sylvite. In contrast, 
the XRD pattern of untreated wood ash, WA, exhibited the main peak corresponding to 
calcite, while quartz peaks were observed with lower intensities and arcanite was also 
detected. On the other hand, GGBFS contains akermanite as the primary phase. 

 
Figure 3. XRD patterns of WA, WA10, WA20, and GGBFS. 

3.1. Workability 
The measured flow diameter values for various mixtures are shown in Figure 4. It 

was observed that the workability of SS-activated samples was higher than those activated 
with SC and SH. Notably, the control samples exhibited the highest flowability with the 
ranking order of SS > SC > SH. The flowability decreased with a higher amount of WA 

Figure 2. SEM images of (a) WA, (b) WA10, (c) WA20 at 500×magnification.

The XRD patterns for WA, WA10, WA20 and GGBFS are shown in Figure 3. For ground
wood ashes, WA10 and WA20, the main peak was quartz, which exhibited relatively high
intensities. These findings align with the literature, as many researchers have reported
that quartz is the predominant crystalline phase identified in wood ash [24,44,53,63,77–79].
Additionally, they contained calcite, arcanite, and sylvite. In contrast, the XRD pattern of
untreated wood ash, WA, exhibited the main peak corresponding to calcite, while quartz
peaks were observed with lower intensities and arcanite was also detected. On the other
hand, GGBFS contains akermanite as the primary phase.
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3.1. Workability

The measured flow diameter values for various mixtures are shown in Figure 4. It was
observed that the workability of SS-activated samples was higher than those activated
with SC and SH. Notably, the control samples exhibited the highest flowability with the
ranking order of SS > SC > SH. The flowability decreased with a higher amount of WA
and longer grinding times. This trend in workability remained consistent across different
alkali-activator types.
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3.2. Mechanical Properties

The compressive strength results are presented in Figure 5. Mixes activated with SS
displayed the highest compressive strength values at both 7 and 28 days. The incorporation
of untreated wood ash reduced the compressive strength compared to the control sample.
This is attributed to the high unburned carbon content, and larger and unreactive wood
ash particles [63,80]. Regardless of the alkali-activator and the used grinding time of wood
ash, it was observed that the compressive strength decreased with the increasing wood
ash ratio. However, the results indicated that grinding had a significant impact on the
compressive strength of all used alkali activator types due to increased reactivity of wood
ash particles [56,81–83].

The 28 days old SS-activated samples containing 10 wt% wood ash and subjected
to 10 min of grinding exhibited a 19.72% increase in compressive strength, while those
ground for 20 min showed a 6.45% increase. The same trends were observed for SC and SH-
activated samples, where grinding for 10 and 20 min led to compressive strength increases
of 21.39% and 16.44%, and 17.82% and 8.96%, respectively.

Furthermore, the grinding process showed significantly greater improvements in
compressive strength in samples incorporating 20 wt% wood ash. SS-activated samples
exhibited increases of 39.81% and 19.50% after 10 and 20 min of grinding, respectively.
Similarly, SC-activated samples showed increases of 43.97% and 41.40%, while SH-activated
samples displayed increases of 32.52% and 11.51% for the same grinding durations. Specifi-
cally, 10 min of grinding had a stronger impact on the compressive strength.

In the case of SS-activated samples with a 10 wt% wood ash ratio and ground for
10 min, (SS-10-10) reached 73.33 MPa at 28 days and a slight increase of 3.5% was observed
compared to the control sample. Samsudin et al. [48] attributed that the incorporation of
wood ash increased the compressive strength, because the high-alkaline content of wood
ash may have promoted the dissolution of aluminosilicate materials.
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The strength development of the mixes was governed by the C-A-S-H gel as the Ca/Al
achieved a ratio greater than 2 [84]. SS-activated and SC-activated samples might have
led to the formation of the sodium polysialate product due to their Na/Si ratios ranging
between 0.3 and 0.7 [84]. Average Na/Si ratios of SH-activated mortars ranged between 1.15
to 3.79. Cheah et al. [84] explained the high-Na/Si ratio observed, suggesting that rather
than the formation of sodium polysialate, the presence of raw sodium ions is produced by
sodium hydroxide in the pore solution.

Also, the lower compressive strength of SC-activated samples at an early age might be
explained by decreasing OH− and increasing CO2

3− concentrations [85]. Moreover, the
late strength development of SC-activated mortars might be attributed the formation of
CaCO3, which delays the hydration, before the C-A-S-H [86].

In the literature, it was stated that the low Ca/Si ratio has a positive effect on mechani-
cal properties [87]. However, the presence unreacted of particles and porosity significantly
affect compressive strength of the mortars. Calcium in the precursors combines with silicon
ions in an alkaline environment and precipitates as C-S-H gel and supports the formation
of nucleation sites, which contribute to strength development [53]. Moreover, while GGBFS
provided the main contribution to strength development, wood ash fillers may have shown
an effect and supported C-S-H formation by acting as nucleation sites [88–91]. In addition,
it might cause a dilution effect due to the decrease in GGBFS particles with the increas-
ing amount of wood ash, allowing more space for the formation of slag hydrates, thus
increasing the degree of hydration [89,92]. In particular, fine particles of ground wood ash
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also increase the possibility of forming nucleation sites [24,38]. In this way, the hydration
reaction can be accelerated, and more hydration products can be obtained, thereby reducing
the porosity [86].

The flexural strength results of the alkali-activated mortars at the age of 7 and 28 days
are given in Figure 6. In general, the flexural strength showed a similar trend as the
measured compressive strength within same alkali-activator type. However, SH-activated
samples showed surprisingly high-flexural strength. Notably, all SH-activated samples
incorporating 10 wt% wood ash demonstrated superior flexural strength compared to the
control sample after 28 days, and SH-10-10, which contains 10 wt% of 10 min ground wood
ash, achieved 19.19 MPa of flexural strength, which is the highest value among all the tested
samples. The increase of the flexural strength of all SH-activated samples incorporating
wood ash ranged from 41.02% to 58.89%, whereas the control sample exhibited an increase
of only 11.97%. The underlying cause of this phenomenon has not been fully understood,
necessitating further investigation and research.
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Samples containing 20 wt% of WA ground for 10 min showed the highest flexural
strength from 7th day to 28th day. The early strength development was attributed to the
reactions of the slag, while the later strength gains may have been due to the effect of the
wood ash [41,93].
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Lower flexural strength results of SC-activated samples compared to other activator
types might be attributed to higher porosity and formation of microcracks of the SC-
activated samples. Aydın et al. [60] stated that flexural strength is affected by microcracks
more than the compressive strength.

3.3. Microstructural Investigation

SEM analysis was conducted on the polished surfaces of the 28 days old alkali-
activated mortar samples. The micrographs of the samples obtained at 500× magnification
are presented in Figures 7 and 8. Notably, the microstructure of all the control samples and
those containing 10 wt% of wood ash ground for 10 min were more homogeneous and
denser, irrespective of the type of alkali activator used. With an increase in the wood ash
ratio and microcracks, the amount of unreacted GGBFS and wood ash increased. The pres-
ence of microcracks might affect the mechanical strength and long-term durability of the
material. The formation of microcracks is attributed to drying and shrinkage [47,51,94,95].
The wood ash ground for 10 min appeared to be better dispersed within the binder matrix.
On the other hand, samples containing wood ash ground for 20 min exhibited a higher
amount of unreacted wood ash particles.
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The approximate porosity ratios of the alkali-activated mortar samples were estimated
using SEM micrographs and presented in Figure 9. Consistent with the literature find-
ings [51,55], the incorporation of wood ash caused an increase in porosity, regardless of
the alkali-activator type. Moreover, increasing the wood ash ratio showed an increased
porosity of the mortars, except for 10 wt% wood ash containing SH-activated samples,
which showed slightly lower porosity than the control sample. This might be due to the
limitations of the used image analysis technique. Hu et al. [96] attributed this effect to the
addition of fly ash, which led to an increase in the porosity by reducing the content of
the dense calcium-aluminum-silicate-hydrate C-A-S-H gel and promoting the formation of
high-porosity sodium-aluminum-silicate-hydrate N-A-S-H gel. The mortar samples contain-
ing WA10 exhibited a slightly lower porosity compared to the samples containing WA20.
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This might be explained by the smaller particle size of 10 min ground wood ash (WA10)
in comparison to 20 min ground wood ash (WA20), which may contribute to enhanced
reactivity. This might also be supported by SEM micrographs. As the samples containing
WA20 had more unreacted wood ash particles, SS-activated mortars exhibited lower porosity
and a denser microstructure when compared to SC and SH-activated mortars. The lower
porosity of the SS-activated samples was attributed to the Si content in the medium [19].
However, the SH-activated mortars had slightly higher porosity compared to SS-activated
samples, yet lower than SC-activated samples. This observation can be attributed to the
higher pH value of the SS and SH solutions, which potentially enhances the dissolution of
GGBFS compared to other alkali activators. The elevated pH value promotes the formation
of hydration products, resulting in a denser matrix through pore filling [86].
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Figure 9. Estimated total porosity of the alkali-activated mortars.

According to the performed EDS spot analysis, the main hydration product was C-
A-S-H gel. The Ca/Si atomic ratios are provided in Table 3. Average Ca/Si atomic ratios
for all mixes were found between 0.6 and 1.5, which corresponds to the C-A-S-H gel [59].
Moreover, the Ca/Si ratio of SS-activated mixes were lower compared to other activated
samples. This is attributed the increasing of SiO4

4− ions that are forming more hydration
products. It also helps to increase the alkali-binding capability of C-A-S-H, and to accelerate
the hydration [97].

Table 3. Calculated average atomic ratios based on results obtained from EDS spot analysis results
for alkali-activated mortars.

Sample Ca/Si Ca/Al Al/Si Na/Si

SS-CTRL 0.71 4.15 0.18 0.42
SS-10 0.65 3.72 0.18 0.67
SS-20 0.72 3.55 0.21 0.56

SS-10-10 0.79 3.79 0.22 0.57
SS-20-10 0.75 3.70 0.22 0.57
SS-10-20 0.90 3.42 0.29 0.45
SS-20-20 0.75 3.37 0.24 0.49
SC-CTRL 0.81 3.12 0.29 0.45

SC-10 0.72 3.19 0.24 0.69
SC-20 0.71 3.16 0.24 0.57

SC-10-10 1.05 3.94 0.30 0.67
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Table 3. Cont.

Sample Ca/Si Ca/Al Al/Si Na/Si

SC-20-10 1.22 3.70 0.35 1.07
SC-10-20 0.75 3.37 0.24 0.48
SC-20-20 0.91 3.01 0.37 0.67
SH-CTRL 0.63 3.80 0.17 1.89

SH-10 0.55 3.40 0.14 3.53
SH-20 0.70 3.69 0.20 3.79

SH-10-10 0.98 3.94 0.26 1.15
SH-20-10 0.71 3.51 0.22 1.36
SH-10-20 0.81 4.04 0.21 1.60
SH-20-20 0.89 3.65 0.25 1.25

3.4. Phase Development

The XRD patterns of alkali-activated pastes, provided in Figure 10, shows the crys-
talline phases during the hydration. The main peak was attributed to C-A-S-H gel for the
all alkali-activator types [85,86,98]. These findings supported the EDS spot analysis results.
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Figure 10. X-ray diffractograms of (a) SS-activated, (b) SC-activated, (c) SH-activated pastes at the
age of 7 day (H—Hydrotalcite, G—Gaylussite, V—Vaterite, Q—Quartz, M—Mullite, A—Akermanite,
P—Portlandite).

The following crystalline phases can be observed for all alkali-activator types: hydrotal-
cite (Mg6Al2CO3(OH)16.4H2O) and quartz (SiO2). Additionally, akermanite (Ca2MgSi2O)
in the SS-activated; gaylussite (Na2Ca(CO3)2.5H2O), portlandite (Ca(OH)2), mullite, va-



Materials 2023, 16, 5347 15 of 21

terite and akermanite in the SC-activated samples, and vaterite for SH-activated samples
were observed.

The presence of hydrotalcite and gaylussite is also consistent with the literature [85,99–101].
The formation of hydrotalcite mainly depends on the high-MgO content of GGBFS [99,102].
The formation of gaylussite might affect the compressive strength development of SC-
activated samples [101].

3.5. Reaction Heat Development

In order to obtain further insights into the reactions and phase development in the
alkali-activated systems, isothermal calorimetry analyses were performed on selected mixes
which were SS-CTRL, SS-20, and SS-20-10; SC-CTRL, SC-20, and SC-20-10; SH-CTRL, SH-20,
SH-20-10. According to the compressive strength test results, samples incorporating wood
ash, that were ground for 10 min, showed higher strength values across various replacement
ratios and alkali-activator types. As a consequence, the mixes containing WA10 were chosen
for the calorimetry measurements. Although the highest compressive strength values were
obtained with 10 wt% wood ash, a 20 wt% wood ash replacement was selected to better
assess the grinding effect of wood ash. Heat development was measured for a total of 168 h.

The hydration process, which is also present in geopolymers based on GGBFS can be
divided into five stages: dissolution, induction, acceleration, deceleration, and slow down
period [103,104]. The heat flow and cumulative heat of the selected SS-activated samples are
provided in Figure 11a,b, respectively. The first peak of the control sample, SS-CTRL, was
significantly higher than that of the SS-20 and SS-20-10 samples. This observation aligns
with the findings of Dai et al. [91], who reported similar heat flow results for hybrid mixes
of GGBFS and fly ash. They proposed that this could be attributed to a higher degree of
depolymerization of GGBFS compared to fly ash.

On the other hand, the first peaks of wood ash-containing samples, regardless of the
grinding process, showed similar results. This suggests that the grinding of wood ash did
not significantly impact its dissolution rate of GGBFS. The second peaks, corresponding to
the formation of the main reaction products, were observed between 24 and 51 h. The second
peak of the SS-20-10 sample occurred earlier and with higher intensity compared to the
SS-CTRL and SS-20 samples. The incorporation of wood ash, particularly the ground wood
ash, led to a shortened induction stage. Moreover, the cumulative heat release of the SS-20-10
sample was the highest at 168 h. The cumulative heat release for the SS-20-10 sample was
148.5 J/g, slightly higher than the control sample, SS-CTRL after 7 days. A third peak, which
is rare in SS-activated materials, was observed in SS-20-10, which might also increase the
cumulative heat. Bílek et al. [105] explained this peak formation as a gelation of activator
or primary C-A-S-H formation. Conversely, the SS-20 sample exhibited a cumulative heat
release of 121.3 J/g, indicating a slightly lower value than the control sample. The positive
effect of grinding on mechanical properties might be supported by these findings. Moreover,
it might be explained by possible nucleation sites that might be created by wood ash, as
discussed in Section 3.2.

The induction period of SC-activated samples was slightly delayed compared to SS
and SH-activated samples [86]. For the SC-activated samples, the second hydration peak of
the slag was at a lower intensity and delayed significantly, as reported by [15]. The period
of hydration induction was longer [86]. The second peaks of the SC-activated samples
were observed between 64.5 and 100 h. The wood ash-containing samples showed lower
intensity peaks and slow hydration processes. SC-20-10 released the highest cumulative
heat in the first 44 h but then SC-CTRL released the highest cumulative heat, which was
160.5 J/g at 168 h. The first peak of SC-20-10 also exhibited a significantly higher peak
compared to SC-CTRL and SC-20.

For the SH-activated samples, the second peak did not occur, possibly due to the low
formation of reaction products within the paste during the 7-day period. This might be
supported by the low intensity of the peak corresponding to C-A-S-H in the XRD pattern.
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The pH value is an important factor for hydration and strength. NaOH has higher pH
compared to Na2SiO3 and it usually may cause a faster dissolving of GGBFS, shorten the
induction period and accelerate the early hydration step [86]. However, it also reduces the
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strength [106]. The selected SH-activated and SS-activated samples demonstrated compara-
ble induction periods. This might be explained by their pH values being in close proximity
to each other. However, the cumulative heat of SH-activated samples was higher compared
to the SS-activated samples during the hydration process, except for the sample SS-20-10.
The cumulative heat of the SH-20 and SH-20-10 was 140 J/g and SH-CTRL released the
highest heat, which was 170.5 J/g. Similar findings were reported in the literature [107].

4. Conclusions

In this study, the strength and microstructure properties of alkali-activated mortars
containing different levels (0 wt%, 10 wt%, and 20 wt%) of partial GGBS replacement of
ground wood ash at two different durations and using three different alkali activators were
compared.

• It has been observed that the grinding of wood ash reduces the particle size and has a
positive effect on the mechanical strength, and the optimum grinding time is 10 min.

• The SS-activated mortars had the highest compressive strength values. Moreover, SS-
activated 10 wt% 10 min ground wood ash improved the compressive strength com-
pared to the control sample.

• The flexural strength results showed similar trend as the compressive strength. How-
ever, SH-activated samples exhibited unexpectedly high results which needs further
investigation.

• Increasing the wood ash ratio increased the porosity for all alkali-activator types. Of
these, the microstructure of SS-activated mortars had the most homogeneous and
denser structure while SC-activated mortars had the most porous.

• The XRD results confirmed that the formation of C-A-S-H was the main reaction
product for all the samples.

The results suggest that wood ash is a promising material for using in alkali-activated
systems and ball milling has a positive effect on the mechanical properties compared to
untreated wood ash.
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