High-Pressure Synthesis and the Enhancement of the Superconducting Properties of FeSe0.5Te0.5
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Structural Analysis
3.2. Elemental Analysis and Mapping
3.3. Microstructural Analysis
3.4. Transport Properties
3.5. Magnetic Property Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.J.; Sturza, M. Bulk and Single Crystal Growth Progress of Iron-Based Superconductors (FBS): 1111 and 1144. Crystals 2022, 12, 20. [Google Scholar] [CrossRef]
- Takano, Y.; Mizuguchi, Y. Review of Fe Chalcogenides as the Simplest Fe-Based Superconductor. J. Phys. Soc. Jpn. 2010, 79, 102001. [Google Scholar]
- Hosono, H.; Yamamoto, A.; Hiramatsu, H.; Ma, Y. Recent advances in iron-based superconductors toward applications. Mater. Today 2018, 21, 278–302. [Google Scholar] [CrossRef]
- Si, Q.; Yu, R.; Abrahams, E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mater. 2016, 1, 16017. [Google Scholar] [CrossRef] [Green Version]
- Shimoyama, J. Potentials of iron-based superconductors for practical future materials. Supercond. Sci. Technol. 2014, 27, 044002. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Tomioka, F.; Tsuda, S.; Yamaguchi, T.; Takano, Y. Substitution Effects on FeSe Superconductor. J. Phys. Soc. Jpn. 2009, 78, 074712. [Google Scholar] [CrossRef] [Green Version]
- Sales, B.C.; Sefat, A.S.; McGuire, M.A.; Jin, R.Y.; Mandrus, D.; Mozharivskyj, Y. Bulk superconductivity at 14 K in single crystals of Fe1+yTexSe1−x. Phys. Rev. B 2009, 79, 094521. [Google Scholar] [CrossRef] [Green Version]
- Predel, B. Fe-Se (Iron-Selenium). In Dy-Er–Fr-Mo; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar] [CrossRef]
- Okamoto, H. The Fe–Se (iron-selenium) system. J. Phase Equilibria 1991, 12, 383. [Google Scholar] [CrossRef]
- Yeh, K.-W.; Huang, T.-W.; Huang, Y.-L.; Chen, T.-K.; Hsu, F.-C.; Wu, P.M.; Lee, Y.-C.; Chu, Y.-Y.; Chen, C.-L.; Luo, J.-Y.; et al. Tellurium substitution effect on superconductivity of the α-phase iron selenide. Europhys. Lett. 2008, 84, 37002. [Google Scholar] [CrossRef] [Green Version]
- Hsu, F.-C.; Luo, J.-Y.; Yeh, K.-W.; Chen, T.-K.; Huang, T.-W.; Wu, P.M.; Lee, Y.-C.; Huang, Y.-L.; Chu, Y.-Y.; Yan, D.-C.; et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. USA 2008, 105, 14262. [Google Scholar] [CrossRef]
- Margadonna, S.; Takabayashi, Y.; Ohishi, Y.; Mizuguchi, Y.; Takano, Y.; Kagayama, T.; Nakagawa, T.; Takata, M.; Prassides, K. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe. Phys. Rev. B 2009, 80, 064506. [Google Scholar] [CrossRef] [Green Version]
- Her, J.L.; Kohama, Y.; Matsuda, Y.H.; Kindo, K.; Yang, W.-H.; Chareev, D.A.; Mitrofanova, E.S.; Volkova, O.S.; Vasiliev, A.N.; Lin, J.-Y. Anisotropy in the upper critical field of FeSe and FeSe0.33Te0.67 single crystals. Supercond. Sci. Technol. 2015, 28, 045013. [Google Scholar] [CrossRef]
- Viennois, R.; Giannini, E.; van der Marel, D.; Černý, R. Effect of Fe excess on structural, magnetic and superconducting properties of single-crystalline Fe1+xTe1−ySey. J. Solid State Chem. 2010, 183, 769. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, T.; Wang, Z.; Xing, Z. Effects of Te and Fe doping on the superconducting properties in FeySe1−xTex thin films. Sci. Rep. 2022, 12, 391. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.G.; Kang, J.H.; Park, E.; Lee, S.; Lin, J.-Y.; Chareev, D.A.; Vasiliev, A.N.; Park, T. Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor FeSe. Sci. Rep. 2015, 5, 16385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.S.; Zhang, Y.; Sinogeikin, S.; Xiao, Y.; Kumar, S.; Chow, P.; Cornelius, A.L.; Chen, C. Crystal and electronic structure of FeSe at high pressure and Low temperature. J. Phys. Chem. B 2010, 114, 12597. [Google Scholar] [CrossRef]
- Nouailhetas, Q.; Koblischka-Veneva, A.; Koblischka, M.R.; Naik, P.; Schäfer, F.; Ogino, H.; Motz, C.; Berger, K.; Douine, B.; Slimani, Y.; et al. Magnetic phases in superconducting, polycrystalline bulk FeSe samples. AIP Adv. 2021, 11, 015230. [Google Scholar] [CrossRef]
- Masi, A.; Alvani, C.; Armenio, A.A.; Augieri, A.; Barba, L.; Campi, G.; Celentano, G.; Chita, G.; Fabbri, F.; Zignani, C.F.; et al. Fe(Se,Te) from melting routes: The influence of thermal processing on microstructure and superconducting properties. Supercond. Sci. Technol. 2020, 33, 084007. [Google Scholar] [CrossRef]
- Singh, S.J.; Diduszko, R.; Iwanowski, P.; Cetner, T.; Wisniewski, A.; Morawski, A. Effect of Pb addition on microstructure, transport properties, and the critical current density in a polycrystalline FeSe0.5Te0.5. Appl. Phys. A 2022, 128, 476. [Google Scholar] [CrossRef]
- Manasa, M.; Azam, M.; Zajarniuk, T.; Diduszko, R.; Cetner, T.; Morawski, A.; Wiśniewski, A.; Singh, S.J. Cometal Addition Effect on Superconducting Properties and Granular Behaviours of Polycrystalline FeSe0.5Te0.5. Materials 2023, 16, 2892. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, M.; Cathey, H.E.; Mackinnon, I.D.R. Stoichiometry of tetragonal and hexagonal FexSe: Phase relations. Supercond. Sci. Technol. 2020, 33, 075003. [Google Scholar] [CrossRef]
- Li, X.; Shi, X.; Wang, J.; Zhang, Y.; Zhuang, J.; Yuan, F.; Shi, Z. Synthesis of high-quality FeSe0.5Te0.5 polycrystal using an easy one-step technique. J. Alloys Compd. 2015, 644, 523–527. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, X.; Nishijima, G.; Watanabe, K.; Awaji, S.; Bai, X. Significantly enhanced critical current densities in MgB2 tapes made by a scaleable nanocarbon addition route. Appl. Phys. Lett. 2006, 88, 072502. [Google Scholar] [CrossRef] [Green Version]
- Sang, L.N.; Li, Z.; Yang, G.S.; Yue, Z.J.; Liu, J.X.; Cai, C.B.; Wu, T.; Dou, S.X.; Ma, Y.W.; Wang, X.L. Pressure effects on iron-based superconductor families: Superconductivity, flux pinning and vortex dynamics. Mater. Today Phys. 2021, 19, 100414. [Google Scholar]
- Flores-Livas, J.A.; Boeri, L.; Sanna, A.; Profeta, G.; Arita, R.; Eremets, M. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep. 2020, 856, 1–78. [Google Scholar]
- Badding, J.V. High Pressure synthesis, charaterization, and tunning of solid state materials. Annu. Rev. Mater. Sci. 1998, 28, 631–658. [Google Scholar] [CrossRef]
- Karpinski, J.; Zhigadlo, N.D.; Katrych, S.; Bukowski, Z.; Moll, P.; Weyeneth, S.; Keller, H.; Puzniak, R.; Tortello, M.; Daghero, D.; et al. Single crystals of LnFeAsO1-xFx (Ln = La, Pr, Nd, Sm, Gd) and Ba1-xRbxFe2As2: Growth, structure and superconducting properties. Phys. C Supercond. 2009, 469, 370–380. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Bontke, T.; Dahal, R.; Xie, Y.; Gao, B.; Li, X.; Yin, K.; Gooch, M.; Rolston, D.; Chen, T.; et al. Pressure-induced high-temperature superconductivity retained without pressure in FeSe single crystals. Proc. Natl. Acad. Sci. USA 2021, 118, e2108938118. [Google Scholar] [CrossRef]
- Morawski, A.; Lada, T.; Paszewin, A.; Przybylski, K. High gas pressure for HTS single crystals and thin layer technology. Supercond. Sci. Technol. 1998, 11, 193. [Google Scholar] [CrossRef]
- Paranthaman, M.; Chakoumakos, B.C. Crystal Chemistry of HgBa2Can−1CunO2n+2+δ(n = 1, 2, 3, 4) Superconductors. J. Solid State Chem. 1996, 122, 221–230. [Google Scholar] [CrossRef]
- Podlesnyak, A.; Mirmeistein, A.; Bobrovskii, V.; Voronin, V.; Karkin, A.; Zhdakhin, I.; Goshchitskii, B.; Midberg, E.; Zubkov, V.; Dyachkova, T.; et al. New elaboration technique, structure and physical properties of infinite-layer Sr1−xLnxCuO2(Ln = Nd, Pr). Phys. C Supercond. 1996, 258, 159–168. [Google Scholar] [CrossRef]
- Karpinski, J.; Schwer, H.; Mangelschots, I.; Conder, K.; Morawski, A.; Lada, T.; Paszewin, A. Single crystals of Hg1−xPbxBa2Can−1CunO2n+2+δ and infinite-layer CaCuO2. synthesis at gas pressure 10 kbar, properties and structure. Phys. C Supercond. 1994, 234, 10–18. [Google Scholar] [CrossRef]
- Tkachenko, O.; Morawski, A.; Zaleski, A.J.; Przyslupski, P.; Dietl, T.; Diduszko, R.P.; Werner-Malento, A.K. Synthesis, Crystal Growth and Epitaxial Layer Deposition of FeSe0.88 Superconductor and Other Poison Materials by Use of High Gas Pressure Trap System. J. Supercond. Nov. Magn. 2009, 22, 599–602. [Google Scholar] [CrossRef]
- Durrell, J.H.; Eom, C.-B.; Gurevich, A.; Hellstrom, E.E.; Tarantini, C.; Yamamoto, A.; Larbalestier, D.C. The behavior of grain boundaries in the Fe-based superconductors. Rep. Prog. Phys. 2011, 74, 124511. [Google Scholar] [CrossRef] [Green Version]
- Pallecchi, I.; Eisterer, M.; Malagoli, A.; Putti, M. Application potential of Fe-based superconductors. Supercond. Sci. Technol. 2015, 28, 114005. [Google Scholar] [CrossRef] [Green Version]
- Kametani, F.; Polyanskii, A.A.; Yamamoto, A.; Jiang, J.; Hellstrom, E.E.; Gurevich, A.; Larbalestier, D.C.; Ren, Z.A.; Yang, J.; Dong, X.L. Combined microstructural and magneto optical study of current flow in Nd and Sm Fe-oxypnictides. Supercond. Sci. Technol. 2009, 22, 015010. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.J.; Shimoyama, J.-I.; Yamamoto, A.; Ogino, H.; Kishio, K. Significant enhancement of the intergrain coupling in lightly F-doped SmFeAsO superconductors. Supercond. Sci. Technol. 2013, 26, 065006. [Google Scholar] [CrossRef]
- Yamamoto, A.; Jiang, J.; Kametani, F.; Polyanskii, A.; Hellstrom, E.; Larbalestier, D.; Martinelli, A.; Palenzona, A.; Tropeano, M.; Putti, M. Evidence for electromagnetic granularity in polycrystalline Sm1111 iron-pnictides with enhanced phase purity. Supercond. Sci. Technol. 2011, 24, 045010. [Google Scholar] [CrossRef]
- Guowei, L.; Zhang, B.; Baluyan, T.; Rao, J.; Wu, J.; Novakova, A.A.; Rudolf, P.; Blake, G.R.; Groot, R.A.; Palstra, T.T. Metal−Insulator Transition Induced by Spin Reorientation in Fe7Se8. Inorg. Chem. 2016, 55, 12912–12922. [Google Scholar]
- Iida, K.; Hänisch, J.; Yamamoto, A. Grain boundary characteristics of Fe-based superconductors. Supercond. Sci. Technol. 2020, 33, 043001. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, D.M.; Holesinger, T.G.; Feenstra, R.; Larbalestier, D.C. A Review of the Influence of Grain Boundary Geometry on the Electromagnetic Properties of Polycrystalline YBa2Cu3O7−x Films. J. Am. Ceram. Soc. 2008, 91, 1869. [Google Scholar] [CrossRef]
- Singh, S.J.; Bristow, M.; Meier, W.R.; Taylor, P.; Blundell, S.J.; Canfield, P.C.; Coldea, A.I. Ultrahigh critical current densities, the vortex phase diagram, and the effect of granularity of the stoichiometric high-Tc superconductor CaKFe4As4. Phys. Rev. Mater. 2018, 2, 074802. [Google Scholar] [CrossRef]
- Chen, D.X.; Pardo, E.; Sanchez, A. Demagnetizing factors of rectangular prisms and ellipsoids. IEEE Trans. Magnet. 2002, 38, 1742–1752. [Google Scholar] [CrossRef]
- Prozorov, R.; Kogan, V.G. Effective Demagnetizing Factors of Diamagnetic Samples of Various Shapes. Phys. Rev. Appl. 2018, 10, 014030. [Google Scholar] [CrossRef] [Green Version]
- Tsurkan, V.; Deisenhofer, J.; Gunther, A.; Kant, C.; Nidda, H.-A.K.; Schrettle, F.; Loidl, A. Physical properties of FeSe0.5Te0.5 single crystals grown under different conditions. Eur. Phys. J. B 2011, 79, 289–299. [Google Scholar] [CrossRef]
- Bean, P.C. Magnetization of high-field superconductors. Rev. Mod. Phys. 1985, 36, 31. [Google Scholar] [CrossRef]
- Anderson, P.W.; Kim, Y.B. Hard Superconductivity: Theory of the Motion of Abrikosov Flux Lines. Rev. Mod. Phys. 1964, 36, 39. [Google Scholar] [CrossRef]
- Chen, N.; Liu, Y.; Ma, Z.; Li, H.; Hossain, M.S. Enhancement of superconductivity in the sintered FeSe0.5Te0.5 bulks with proper amount of Sn addition. J. Alloys Compd. 2015, 633, 233–236. [Google Scholar] [CrossRef]
- Zignani, C.F.; Marzi, G.D.; Corato, V.; Mancini, A.; Vannozzi, A.; Rufoloni, A.; Leo, A.; Guarino, A.; Galluzzi, A.; Nigro, A.; et al. Improvements of high-field pinning properties of polycrystalline Fe(Se, Te) material by heat treatments. J. Mater. Sci. 2019, 54, 5092–5100. [Google Scholar] [CrossRef]
- Galluzzi, A.; Buchkov, K.; Tomov, V.; Nazarova, E.; Leo, A.; Grimaldi, G.; Polichetti, M. High Pinning Force Values of a Fe(Se, Te) Single Crystal Presenting a Second Magnetization Peak Phenomenon. Materials 2021, 14, 5214. [Google Scholar] [CrossRef] [PubMed]
- Dew-Hughes, D. Flux pinning mechanisms in type II superconductors. Philos. Mag. 1974, 30, 293–305. [Google Scholar] [CrossRef]
- Eisterer, M. Magnetic properties and critical currents of MgB2. Supercond. Sci. Technol. 2007, 20, R47–R73. [Google Scholar] [CrossRef]
- Kováč, P.; Hušek, I.; Melišek, T. MgB2 Composite Superconductors Made by Ex-Situ and In-Situ Process. Adv. Sci. Technol. 2006, 47, 131–136. [Google Scholar]
Sample Synthesis Conditions | Growth Process | Sample’s Code |
---|---|---|
First step: 600 °C, 11 h, ambient pressure Second step: 600 °C, 4 h at ambient pressure (without Ta-tube) | Parent | Parent |
First step: 600 °C, 11 h, ambient pressure Second step: 600 °C, 1 h, 1 GPa (with Ta-tube) | ex situ | HIP-S1 |
First step: 600 °C, 11 h, ambient pressure Second step: 600 °C, 11 h, 1 GPa (with Ta-tube) | ex situ | HIP-S2 |
First step: 600 °C, 11 h, 1 GPa (with Ta-tube) | in situ | HIP-S3 |
First step: 700 °C, 1 h, 1 GPa (without Ta-tube) | in situ | HIP-S4 |
First step: 600 °C, 11 h, 1 GPa (without Ta-tube) | in situ | HIP-S5 |
First step: 600 °C, 11 h, ambient pressure Second step: 600 °C, 11 h, 700 MPa (without Ta-tube) | ex situ | HIP-S6 |
First step: 600 °C, 11 h, ambient pressure Second step: 600 °C, 11 h, 1 GPa-750MPa (without Ta-tube) | ex situ | HIP-S7 |
First step: 600 °C, 11 h, ambient pressure Second step: 600 °C, 1 h, 500MPa (without Ta-tube) | ex situ | HIP-S8 |
First step: 600 °C, 11 h, ambient pressure Second step: 600 °C, 1 h, 500 MPa (with Ta-tube) | ex situ | HIP-S9 |
First step: 600 °C, 11 h, 500 MPa (with Ta-tube) | in situ | HIP-S10 |
First step: 600 °C, 1 h, 500 MPa (with Ta-tube) | in situ | HIP-S11 |
First step: 600 °C, 11 h, 300 MPa (with Ta-tube) | in situ | HIP-S12 |
First step: 600 °C, 1 h, 300 MPa (with Ta-tube) | in situ | HIP-S13 |
Sample’s Code | Lattice ‘a’ (Å) | Lattice ‘c’ (Å) | FeSe0.5Te0.5 (%) | FeSe2 (%) | Hexagonal (%) |
---|---|---|---|---|---|
Parent sample | 3.7950(2) | 5.9713 | 93 | - | ~6 |
HIP-S1 | 3.8004(2) | 6.0434(5) | 70 | ~2 | ~27 |
HIP-S2 | 3.7963(5) | 5.9578(1) | 35 | ~2–3 | ~62 |
HIP-S3 | 3.8074(3) | 6.0838(5) | 70 | ~2–3 | ~26 |
HIP-S4 | 3.7966(7) | 6.0075(1) | 69 | 6 | ~25 |
HIP-S5 | 3.7971(4) | 6.0088(3) | 65 | ~2–3 | ~33 |
HIP-S6 | 3.7977(5) | 5.9837(1) | 80 | ~3 | ~17 |
HIP-S7 | 3.8033(9) | 6.060(2) | 30 | ~7 | ~65 |
HIP-S8 | 3.7992(5) | 5.9843(9) | 80 | ~1–2 | ~20 |
HIP-S9 | 3.7976(6) | 5.9679(1) | 93 | - | ~6 |
HIP-S10 | -- | -- | 55 | ~2–3 | ~42 |
HIP-S11 | 3.7976(5) | 5.9579 (2) | 89 | ~2 | ~9 |
HIP-S12 | ---- | --- | 26 | ~3–4 | ~70 |
HIP-S13 | ---- | -- | 35 | ~3–4 | ~60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azam, M.; Manasa, M.; Zajarniuk, T.; Diduszko, R.; Cetner, T.; Morawski, A.; Więckowski, J.; Wiśniewski, A.; Singh, S.J. High-Pressure Synthesis and the Enhancement of the Superconducting Properties of FeSe0.5Te0.5. Materials 2023, 16, 5358. https://doi.org/10.3390/ma16155358
Azam M, Manasa M, Zajarniuk T, Diduszko R, Cetner T, Morawski A, Więckowski J, Wiśniewski A, Singh SJ. High-Pressure Synthesis and the Enhancement of the Superconducting Properties of FeSe0.5Te0.5. Materials. 2023; 16(15):5358. https://doi.org/10.3390/ma16155358
Chicago/Turabian StyleAzam, Mohammad, Manasa Manasa, Tatiana Zajarniuk, Ryszard Diduszko, Tomasz Cetner, Andrzej Morawski, Jarosław Więckowski, Andrzej Wiśniewski, and Shiv J. Singh. 2023. "High-Pressure Synthesis and the Enhancement of the Superconducting Properties of FeSe0.5Te0.5" Materials 16, no. 15: 5358. https://doi.org/10.3390/ma16155358
APA StyleAzam, M., Manasa, M., Zajarniuk, T., Diduszko, R., Cetner, T., Morawski, A., Więckowski, J., Wiśniewski, A., & Singh, S. J. (2023). High-Pressure Synthesis and the Enhancement of the Superconducting Properties of FeSe0.5Te0.5. Materials, 16(15), 5358. https://doi.org/10.3390/ma16155358