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Abstract: A weldable Al–Mg–Zn–Sc alloy was produced using vacuum induction melting and
an argon-protected casting method to achieve high strength and ductility, and the effects of heat
treatment on the microstructure evolution and mechanical properties of Al–Mg–Zn–Sc alloys were
comparatively investigated. The results reveal that fine equiaxed grains with an average grain
size of 40 µm in an as-cast Al–Mg–Zn–Sc alloy change little after heat treatments, bringing about a
grain-boundary strengthening of 46.1 MPa. The coarse T-Mg32(Al, Zn)49 phases at grain boundaries
are completely dissolved into the matrix through solid-solution treatment, and T-Mg32(Al, Zn)49 with
diameters ranging from 10 to 25 nm and Al3Sc with diameters ranging from 5 to 20 nm gradually
precipitate during the artificial aging process. The Mg solid solubility is 4.67% in the as-cast Al–Mg–
Zn–Sc alloy, and it increased to 5.33% after solid-solution treatment and dramatically decreased to
4.15% after post-aging treatment. The contributions of solid-solution strengthening to as-cast, post-
solid-solution and post-aging Al–Mg–Zn–Sc alloys are 78.2 MPa, 85.4 MPa and 72.3 MPa, respectively.
The precipitation strengthening of the post-aging alloy is 49.7 MPa, which is an increase of 21% in
comparison to that of both as-cast and post-solid-solution alloys. The alloy achieves an optimal
tensile strength of 355.3 MPa, yield strength of 175 MPa and elongation of 22% after undergoing
solid-solution treatment.

Keywords: Al–Mg–Zn–Sc alloys; microstructure evolution; mechanical properties; heat treatments

1. Introduction

5xxx Al-Mg alloys provide a high degree of weldability and corrosion resistance with
a medium level of strength due to their high Mg content [1–3]. However, Al–Mg alloys
with high Mg content tend to form β-Al3Mg2 phases, resulting in the deterioration of
mechanical properties [4]. Moreover, nonbeneficial kinetics impede precipitation hardening
by β-Al3Mg2, which renders Al–Mg alloys non-heat-treatable [5]. For the traditional Al–Mg
alloys, the inability to strengthen through heat treatment poses a significant challenge for
their widespread application. Thus, it is necessary to develop new strategies to solve the
above problems and improve the mechanical properties of Al–Mg alloys.

Some attempts have been made to eliminate dendrites, refine grains and introduce
secondary phases in order to enhance the mechanical properties of Al–Mg alloys [6]. In ad-
dition to the conventional strategy of optimizing casting process parameters [7–9], adding
alloy elements for boosting the precipitation hardening of Al–Mg alloys is a promising at-
tempt to enhance their mechanical properties. Ratchev et al. [10] found that adding Cu was
sufficient to induce rapid hardening due to the formation of the precursor to the S-Al2CuMg
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phase but at the expense of the poor corrosion resistance of such alloys [11]. Zn-modified
Al–Mg alloys lead to the formation of the T-Mg32(Al, Zn)49 phases, which exhibit improved
corrosion resistance and increased strength caused by precipitation hardening [12,13], in
spite of the trade-off between precipitation and solid-solution strengthening. Newer grades
of 5xxx alloys have additions of Sc to improve mechanical properties. Taendl et al. [14]
demonstrated that an effective aging treatment can induce the diffusion of Sc into the
alloy to form Al3Sc nanoprecipitates and thus harden the alloy during a controlled heat
treatment. While Al3Sc precipitates are more likely to occur along grain boundaries, the
inhomogeneous distribution of the secondary phases has a significant impact on strength
and ductility [15].

The precipitation of Mg-rich nanoprecipitates in Al–Mg alloys has been manipulated
for the strengthening of Cu/Zn-modified Al–Mg alloys by means of appropriate heat
treatments [16,17]. However, these high-Mg nanoprecipitates are obtained at the cost of a
large proportion of solute Mg atoms in the α–Al matrix, and such age-strengthened Al–Mg
alloys exhibit a reduced ductility [18]. In order to achieve an enhanced combination of
strength and ductility, a high-Mg Al–Mg–Zn–Sc alloy was designed in our study, which
simultaneously includes high yield strength and elongation. However, so far little work
has been done about the detailed information of strength contribution and microstructure
evolution of this Al–Mg–Zn–Sc alloy in different heat treatments. It is also important to
clarify the hedging relationship between solid-solution strengthening and precipitation
strengthening.

The aim of this study is to investigate the microstructure evolution and mechanical
properties of the Al–Mg–Zn–Sc alloys under solid-solution treatment and solution-aging
treatment. The Mg solid solubility at different heat treatments is quantitatively calculated
by X-ray diffractometer (XRD); dual-nanoprecipitation phases of Al3Sc and T-Mg32(Al,
Zn)49 after post-aging are analyzed by transmission electron microscope (TEM); and a
quantitative elaboration on the strengthening mechanism is discussed.

2. Experimental Section

The experimental Al–Mg–Zn–Sc alloy used in this work was prepared by melting
in a vacuum and casting in a steel mold under the protection of argon. The chemical
compositions of the studied alloy are listed in Table 1.

Table 1. Chemical compositions of the studied Al–Mg–Zn–Sc alloy (wt.%).

Elements Mg Zn Sc Mn Cr Ti Fe Si Al

Al–Mg–Zn–Sc 5.45 1.49 0.40 0.152 0.062 0.103 0.022 0.008 Bal.

In this study, two sets of heat treatment experiments were conducted on the as-cast
Al–Mg–Zn–Sc alloy, and the schematic diagrams of the heat treatment procedures are
shown in Figure 1. Both samples were solid-solution treated with an air furnace at 495 ◦C
for 50 min and then quenched to room temperature in water. A uniform supersaturated
solid solution was obtained in this step. One of the quenched samples was artificially aged
at 120 ◦C for 48 h. For clarity, the as-cast sample is called “AC”, the solid-solution-treatment
sample is called “ST” and the artificial-aging sample is called “AA”.

Microstructural characterization was performed using optical microscopy (OM Ax-
iovert 200 MAT ZEISS), scanning electron microscopy (SEM JSM. 7001F) equipped with
energy dispersive spectroscopy (EDS) and a transmission electron microscope (TEM Tecnal
G2 F20 S-TWIN). X-ray diffraction (XRD D8 ADVANCE) was performed to identify the
phase types at a scan step of 0.5◦/min. Tensile specimens of 35 mm gauge length and 5 mm
diameter were machined from the ingot along the casting direction. Tensile tests were
performed on the CSS-4100 electronic universal material testing machine with a strain rate
of 1.5 × 10−3 s−1.
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Figure 1. Schematic diagrams of two heat treatments for Al–Mg–Zn–Sc alloy: (a) ST sample; (b) ST 
+ AA sample. 
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process caused a reprecipitation and coarsening of GB phases, as well as an increasing 
tendency of the granular second phases to form clusterlike second phases, as shown in 
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Figure 1. Schematic diagrams of two heat treatments for Al–Mg–Zn–Sc alloy: (a) ST sample;
(b) ST + AA sample.

3. Results
3.1. Microstructure Evolution

The microstructure of the Al–Mg–Zn–Sc alloy after different heat treatments is shown
in Figure 2. Fine and equiaxed grains are found in all Al–Mg–Zn–Sc alloy samples under
various conditions. The average grain size is approximately 40 µm. The microstructural
evolution during heat treatment is shown in Figure 2d–f. As shown in the OM image of
Figure 2d, the as-cast microstructure of the Al–Mg–Zn–Sc alloy is composed of α-Al phases,
a large fraction of grain boundary (GB) phases and a small fraction of second phases. After
solid-solution treatment, the coarse GB phases and discontinuous GB phases are almost
totally solubilized into the matrix, promoting the dispersion of the clusterlike second phases
into the granular second phases in high-temperature solid-solution treatment, as shown
in Figure 2e [19]. As for ST + AA samples, the nanophases progressively precipitated
during the artificial aging process (TEM images of Figure 5). However, this process caused
a reprecipitation and coarsening of GB phases, as well as an increasing tendency of the
granular second phases to form clusterlike second phases, as shown in Figure 2f.

Materials 2023, 16, x FOR PEER REVIEW 4 of 14 
 

 

 

 
Figure 2. Microstructure of Al–Mg–Zn–Sc alloy: (a,d) AC sample; (b,e) ST sample; and (c,f) ST + AA 
sample. 

Figure 3 depicts the SEM and TEM images of the as-cast Al–Mg–Zn–Sc alloy. Four 
phases with different contrasts are observed in a backscattered electrons (BSE) image of 
the AC alloy, as shown in Figure 3a. According to the EDS mapping results, Mg and Zn 
are deposited at grain boundaries, and Al is slightly depleted, which implies that the GB 
phases are Al–Mg–Zn phases. In the bright-white phase marked with “spectrum 2” shown 
in Figure 3a, which is an Fe-rich and Mn-rich phase, the Fe element can be derived from 
the raw materials to form Al6(Fe, Mn) phases [20]. The gray phases marked with “spec-
trum 3” and “spectrum 4” are viewed as Al–Sc–Ti phases due to the overlap of the distri-
bution of Sc and Ti elements, as displayed in Figure 3a. The Al–Mg–Zn phases are con-
firmed to be T-Mg32(Al, Zn)49 phases in combination with the TEM analysis in Figure 3b. 
The T phase shows a semicontinuous irregular block morphology with narrow dimension 
size less than 2 µm in the bright-field (BF) TEM image. Figure 3c presents a high-angle 
annular dark-field (HAADF) image of a micron-size tetragonal primary phase. As can be 
seen from the selected area electron diffraction (SAED) pattern, the primary phase exhibits 
an L12 ordered superlattice of Al3Sc diffraction spots with the central grain oriented par-
allel to the axis of the [112] zone. Ti can replace up to the Sc to form Al3(Sc, Ti) phases 
while retaining the L12 structure [21]. There are fine and spherical precipitates with a size 
of 5–20 nm distributed in the α–Al matrix in the dark-field (DF) TEM image, as shown in 
Figure 3d. While performing fast Fourier transform (FFT) on the high-resolution transmis-
sion electron microscopy (HRTEM) image, it can be seen that the diffraction spots of Al3Sc 
are located in the 1/2 (200) Al and (022) Al positions. Meanwhile, the Al3Sc phase and the α–
Al matrix have the orientation relations of [011] Al3Sc//[011] Al.  

(a) (b) (c) 

(d) (e) (f) 

Coarse GB phases 

Discontinuous GB phases 

Granular second phase 

Cluster-like second phase 

Figure 2. Microstructure of Al–Mg–Zn–Sc alloy: (a,d) AC sample; (b,e) ST sample; and (c,f) ST + AA
sample.

Figure 3 depicts the SEM and TEM images of the as-cast Al–Mg–Zn–Sc alloy. Four
phases with different contrasts are observed in a backscattered electrons (BSE) image of
the AC alloy, as shown in Figure 3a. According to the EDS mapping results, Mg and Zn
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are deposited at grain boundaries, and Al is slightly depleted, which implies that the GB
phases are Al–Mg–Zn phases. In the bright-white phase marked with “spectrum 2” shown
in Figure 3a, which is an Fe-rich and Mn-rich phase, the Fe element can be derived from the
raw materials to form Al6(Fe, Mn) phases [20]. The gray phases marked with “spectrum
3” and “spectrum 4” are viewed as Al–Sc–Ti phases due to the overlap of the distribution
of Sc and Ti elements, as displayed in Figure 3a. The Al–Mg–Zn phases are confirmed
to be T-Mg32(Al, Zn)49 phases in combination with the TEM analysis in Figure 3b. The T
phase shows a semicontinuous irregular block morphology with narrow dimension size
less than 2 µm in the bright-field (BF) TEM image. Figure 3c presents a high-angle annular
dark-field (HAADF) image of a micron-size tetragonal primary phase. As can be seen from
the selected area electron diffraction (SAED) pattern, the primary phase exhibits an L12
ordered superlattice of Al3Sc diffraction spots with the central grain oriented parallel to the
axis of the [112] zone. Ti can replace up to the Sc to form Al3(Sc, Ti) phases while retaining
the L12 structure [21]. There are fine and spherical precipitates with a size of 5–20 nm
distributed in the α–Al matrix in the dark-field (DF) TEM image, as shown in Figure 3d.
While performing fast Fourier transform (FFT) on the high-resolution transmission electron
microscopy (HRTEM) image, it can be seen that the diffraction spots of Al3Sc are located
in the 1/2 (200)Al and (022)Al positions. Meanwhile, the Al3Sc phase and the α–Al matrix
have the orientation relations of [011]Al3Sc//[011]Al.

Materials 2023, 16, x FOR PEER REVIEW 5 of 14 
 

 

 

 
Figure 3. SEM and TEM images of as-cast (AC) Al–Mg–Zn–Sc alloy: (a) BSE image and correspond-
ing EDS mapping; (b) BF-TEM image and SAD pattern of T-Mg32(Al, Zn)49 phase; (c) HAADF image 
and SAED pattern of Al3(Sc, Ti) phase; and (d) DF-TEM, BF-TEM and HRTEM images and corre-
sponding FFT of nano-Al3Sc particles. 

SEM and TEM characterizations of the solid-solution-treated Al–Mg–Zn–Sc alloy are 
shown in Figure 4. As can be seen in Figure 4a, there are no obvious Al–Mg–Zn phases to 
be observed in the BSE image. This demonstrates that Mg and Zn atoms are dissolved into 
the α–Al matrix after solid-solution treatment. Based on the results of EDS analysis, the 
Al6(Fe, Mn) phases with less content did not disappear in the ST alloy, since the solid-
solution temperature is much lower than the dissolution temperature of Al6(Fe, Mn) [22]. 
Figure 4b revealed these tetragonal primary Al3(Sc, Ti) phases distributed along the Al 
grain boundaries, which are similar to those in the AC sample (Figure 3a). The Al3Sc de-
composition is limited at high solid-solution temperature, but this can inhibit the coars-
ening of nanoscale Al3Sc precipitates, as shown in Figure 4c [19].  

(a) 

(b) (c) (d) 

Figure 3. SEM and TEM images of as-cast (AC) Al–Mg–Zn–Sc alloy: (a) BSE image and corresponding
EDS mapping; (b) BF-TEM image and SAD pattern of T-Mg32(Al, Zn)49 phase; (c) HAADF image and
SAED pattern of Al3(Sc, Ti) phase; and (d) DF-TEM, BF-TEM and HRTEM images and corresponding
FFT of nano-Al3Sc particles.

SEM and TEM characterizations of the solid-solution-treated Al–Mg–Zn–Sc alloy
are shown in Figure 4. As can be seen in Figure 4a, there are no obvious Al–Mg–Zn
phases to be observed in the BSE image. This demonstrates that Mg and Zn atoms are
dissolved into the α–Al matrix after solid-solution treatment. Based on the results of EDS
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analysis, the Al6(Fe, Mn) phases with less content did not disappear in the ST alloy, since
the solid-solution temperature is much lower than the dissolution temperature of Al6(Fe,
Mn) [22]. Figure 4b revealed these tetragonal primary Al3(Sc, Ti) phases distributed along
the Al grain boundaries, which are similar to those in the AC sample (Figure 3a). The
Al3Sc decomposition is limited at high solid-solution temperature, but this can inhibit the
coarsening of nanoscale Al3Sc precipitates, as shown in Figure 4c [19].
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Figure 4. SEM and TEM images of solid-solution-treatment (ST) Al–Mg–Zn–Sc alloy: (a) BSE image
and corresponding EDS mapping; (b) BF-TEM image (red arrows for Al3(Sc, Ti) phases and green
arrows for nano Al3Sc phases) and SAED pattern of Al3(Sc, Ti) phase; and (c) BF-TEM image and
SAED pattern of nano-Al3Sc particles.

Figure 5a shows that the BSE image of the micron-scale second phase of the Al–Mg–
Zn–Sc alloy after artificial aging is similar to that of the ST sample, as characterized by SEM.
However, the volume fraction and dispersion of precipitates increased significantly after
aging, as shown in Figure 5b. Meanwhile, the nanoscale phase shows two morphologies,
beanlike (shown by green arrow) and squarelike (shown by red arrow), respectively. By
analyzing the diffraction spots of the FFT in Figure 5e, the tiny beanlike precipitates were
identified as Al3Sc phases. As shown in Figure 5g–i, new squarelike precipitated phases
after the aging process were indexed as T-Mg32(Al, Zn)49 phases using high-resolution
transmission electron microscopy (HRTEM), fast Fourier transform (FFT) and inverse fast
Fourier transform (IFFT). The above results show that the dual-nanoprecipitation of the
Al–Mg–Zn–Sc alloy can be induced after artificial aging treatment. The nanoprecipitations
included T-Mg32(Al, Zn)49 10–25 nm in diameter and Al3Sc 5–20 nm in diameter, as shown
in Figure 5b,c.
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Figure 5. SEM and TEM images of artificially aged (AA) Al–Mg–Zn–Sc alloy: (a) BSE image of two
phases (beanlike and squarelike phases are shown by green arrows and red arrows, respectively), and
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phase and red box for squarelike phase); (c) high magnification nanoparticles in (b); (d) HRTEM
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(h) corresponding FFT of (g); and (i) corresponding IFFT image of (g) after applying Bragg filter to
FFT spots.

3.2. Characterization of the Solid Solubility

XRD patterns of the Al–Mg–Zn–Sc alloy after various heat treatments are seen in
Figure 6. The reflections (111), (200), (220), (311) and (222) of the aluminum appeared in
the XRD pattern. The obvious offset to smaller diffraction angles of the XRD diffraction
peaks is noticed for all Al–Mg–Zn–Sc alloy samples with respect to the pure aluminum.
The offset of diffraction peaks is due to the variation in the lattice constant of the aluminum
caused by the solid solution of Mg in the matrix α–Al [23]. The literature shows that for
each 1 at% increase in the solid solution of Mg in Al, the lattice constant of Al increases by
4.6 × 10−4 nm [24]. The results of the lattice constant and solid solubility calculation of the
studied Al–Mg–(Zn–Sc) alloy by XRD analysis are given in Table 2. The solid solubility of
AC, ST and ST + AA samples were 4.67%, 5.33% and 4.15%, respectively. The Al–Mg–Zn–Sc
alloy after solid-solution alloy has the largest solid solubility, which increases by 12.4%
compared to the as-cast alloy and by 22.1% compared to the post-aging alloy.
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Table 2. The results of the lattice constant and solid solubility calculation of the studied
Al–Mg–(Zn–Sc) alloy by XRD analysis.

Sample Lattice Parameter/nm
Crystal Indices

Solid Solubility/%
(111) (200)

Pure aluminum
d 0.23379 0.20247

/a 0.40494 0.40494
Average value of a 0.40494

AC
d 0.23513 0.20343

4.67a 0.40726 0.40692
Average value of a 0.40709

ST
d 0.23529 0.20362

5.33a 0.40753 0.40724
Average value of a 0.40739

ST + AA
d 0.23495 0.20337

4.15a 0.40694 0.40675
Average value of a 0.40685

3.3. Mechanical Properties

Figure 7a illustrates the engineering stress–strain curves of the Al–Mg–Zn–Sc alloy
studied after different heat treatments. The corresponding strengths and elongations are
shown in Figure 7b. The strength and elongation of the alloy after solid-solution treatment
are both significantly higher than those of the alloy as-cast and after aging. In comparison
to the AC sample, the tensile strength of ST is 355.3 MPa, which is a 6.9% increase. ST
provides an increase of 10.3 MPa and achieves a yield strength of 175 MPa, while the
elongation increases from 15.5% to 22%. After the artificial aging treatment, the ST + AA
sample exhibits a weakening response compared to the ST sample. In particular, the yield
strength is reduced by 7.6% compared to that of the ST sample. Additionally, ST + AA has
the lowest yield strength, with a reduction of 13.3 MPa and 3 MPa compared to that of ST
and AC, respectively.
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curves and (b) mechanical properties.

4. Discussion

In this study, the Al–Mg–Zn–Sc alloy was obtained by metal mold casting. It exhibits
fine equiaxed grains (Figure 2a), multiple dispersed phases of Al3Sc (Figure 3d) and high
Mg solid solubility (Table 2) in as-cast Al–Mg–Zn–Sc alloy. These beneficial effects together
enhance the mechanical properties of the Al–Mg–Zn–Sc alloy (Figure 7). Meanwhile,
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primary Al3(Sc, Ti) phases act as heterogeneous nuclei of the matrix during the solidification
process and strongly refine the grains (Figure 2c). Moreover, the formation of micron
T-Mg32(Al, Zn)49 phases along the grain boundaries dramatically enhance the corrosion
resistance [25]. The expectation of microstructure evolution during heat treatment is plotted
in Figure 8. After solid-solution treatment, the coarsening of the T-Mg32(Al, Zn)49 phases at
the grain boundaries dissolve into α–Al matrix, leading to the supersaturated solid solution
(SSSS) of Mg, as seen in Figure 4a. According to the previous studies of Al–Mg–Zn alloy, it
was confirmed that the supersaturated vacancies are attached to Mg atoms rather than Zn
atoms after water quenching owing to the stronger Mg-to-vacancy binding energy [5]. In
addition, Mg atoms are 12% larger than Al atoms, whereas Zn atoms are smaller by 2.8% in
size; therefore, the solid-solution effect mainly comes from the solid solubility of Mg atoms
in Al [26]. The dissolution of primary Al3(Sc, Ti) phases and nano-Al3Sc precipitates are
limited by the fact that the solid-solution temperature is much lower than the dissolution
temperature of Al3(Sc, Ti) and Al3Sc phases (Figure 3a) [27]. When artificial aging is
performed on the quenched sample, there is almost no strengthening effect compared to
the as-cast alloy (Figure 7b). Affirmatively, some Al3Sc phases were precipitated from the
α–Al matrix of as-cast Al–Mg–Zn–Sc with oversaturated Sc under the aging condition
of 120 ◦C/48 h. However, overaging also leads to the aggregation and growth of the
Al3Sc phases, as shown in Figure 8. According to the study of precipitation behavior in
Zn-modified Al–Mg alloy at aging, there exists a precipitation sequence described as SSSS
→ GP-zone→ T′ → T-Mg32(Al, Zn)49 [27]. Consequently, the precipitation of nanoscaled
T phase improved the age-hardening behavior of Al–Mg–Zn alloys [13]. As analyzed in
Figure 5b,c, the average volume fraction of nano-T-Mg32(Al, Zn)49 is 0.1%, causing only
a small contribution to the precipitation hardening effect (Figure 7b). According to the
analysis above, the strength and elongation of the Al–Mg–Zn–Sc alloy can be improved
by proper solid-solution treatment (Figure 7), while in the aging treatment of the alloy,
there is a contradictory strengthening effect with increased precipitation strengthening and
reduced solid-solution strengthening (Table 2).
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To elucidate the effectiveness of the heat treatment, the strengthening contributions
coming from grain boundaries, solid soluble atoms and precipitates are quantified in the
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Al–Mg–Zn–Sc alloy. As shown in Figure 8, the yield strength (σy) of the studied Al–Mg–
Zn–Sc alloy can be calculated from grain boundary strengthening (σGB), solid-solution
strengthening (σss) and precipitation strengthening (σp).

Since all the Al–Mg–Zn–Sc alloys show an almost identical average grain size of
40 µm (Figure 2), the change in grain boundary strengthening should be insignificant.
Grain boundary strengthening arising from Al3(Sc, Ti) heterogeneous nucleation points is
thought to be equivalent before and after heat treatment. The relationship between σGB and
the average grain size (d) of the alloys is in accordance with the Hall–Petch equation [13],
as described below:

σGB = σ0 + kd− 1/2 (1)

where σ0 (19.2 MPa) is the lattice intrinsic resistance to dislocation motion [28]. k is a coeffi-
cient representing relative grain boundary strengthening contribution (0.17 MPa·m0.5) [29].
d is the average size of the grains taken as 40 µm. The increase in yield strength due to
grain boundary strengthening is thus calculated to be approximately 46.1 MPa.

Of all the strengthening factors, solid-solution strengthening is considered to be the
most important strengthening mechanism governing the overall strength of Al–Mg–Zn–Sc
alloys. The solid solubility of Mg in the Al–Mg–Zn–Sc alloy changed significantly both
before and after heat treatment (as detailed in Table 2). This increase in yield strength can
be roughly calculated by the following equation relating the number of solute atoms to the
increase in strength [30]:

σss = HCn
Mg (2)

where H and n are material related constants with values of 25–28 MPa (wt% Mg)−n and
2/3, respectively [31,32]. C denotes the number of solute atoms of Mg (wt%). As a result,
the σss values for the as-cast, post-solid solution and post-aging Al–Mg–Zn–Sc alloys are
78.2 MPa, 85.4 MPa and 72.3 MPa.

In our study, precipitation enhancement included the contributions from different
types of precipitation. The volume fraction of Al3Sc precipitates is 0.28% for both as-cast
and post-solid solution Al–Mg–Zn–Sc alloy, as observed in Figures 3d and 4c, suggesting
that both have the same precipitation-intensifying effect. Additionally, given the significant
amounts of Al3Sc (volume fraction of 0.15%) and T-Mg32(Al, Zn)49 (volume fraction of 0.1%)
in the post-aging Al–Mg–Zn–Sc alloy, it is essential to account for the contribution of dual
precipitation strengthening in the Al–Mg–Zn–Sc alloy. The contribution of the Al3Sc and
T-Mg32(Al, Zn)49 phases to the total strength can be calculated using the Ashby–Orowan
equation [33]:

σOrowan = M
0.4Gb

πλ

ln
( 2r

b
)

√
1− ν

(3)

where r is the mean radius of the precipitate. M = 3.06 is the Taylor factor [34]. ν is the
Poisson’s ratio of this alloy (0.32). G is the shear modulus (about 26.9 GPa [35]). b is the
Burgers vector of Al (0.286 nm). λ is the precipitate edge spacing, which can be calculated
by the following equation (the volume fraction (f )) [34]:

λ = r
(

2π

3 f

)1/2
(4)

The calculation results show that the contribution of the precipitation strengthening
was around 41.1 MPa, 41.1 MPa and 49.7 MPa for the as-cast, post-solid-solution and
post-aging Al–Mg–Zn–Sc alloys, respectively. The Al–Mg–Zn–Sc alloy demonstrates a less
significant contribution of precipitation strengthening through the aging treatment.

As shown in Figure 9, the strengthening contribution to the yield strength was calcu-
lated to be approximately 165.4 MPa, 172.6 MPa and 168.1 MPa for the as-cast, post-solid-
solution and post-aging Al–Mg–Zn–Sc alloys, respectively. After solid-solution treatment,
the significant strengthening of the Al–Mg–Zn–Sc alloy originates from solid-solution
strengthening. The strengthening contribution of solution Mg in the Al–Mg–Zn–Sc alloy
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improves by 9.2% compared to the as-cast alloy. However, in the post-aging alloy, the
contribution of solid-solution strengthening decreased by 7.5% and the contribution of
precipitation strengthening increased by 21% compared to the as-cast alloy. There was a
difference between the theoretical calculations and experimental results for the post-aging
Al–Mg–Zn–Sc alloy. This calculation result is not a reflection of the age-hardening effect.
However, the calculation results show that there is a contradictory strengthening effect
with increased precipitation strengthening and reduced solid-solution strengthening in the
post-aging alloy, which is the same as the experimental results. In the case of Al–Mg–Zn–Sc
alloys, it is an appropriate way to improve the mechanical properties by increasing the
solid solution of Mg in the alloy.
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5. Conclusions

In this study, the microstructure evolution, mechanical properties, solid-solution effect
and aging behavior of Al–Mg–Zn–Sc alloys produced by vacuum melting and argon-
protected casting were investigated. The strengthening mechanisms induced by the mi-
crostructure were elucidated. The main conclusions drawn are as follows.

(1) As-cast Al–Mg–Zn–Sc alloy has fine equiaxed grains 40 µm in size with a high Mg
solid solubility of 4.67% and large volume fraction of 0.15% Al3Sc nanoprecipitations.
The solid solubility of Mg is increased to 5.33% after solid-solution treatment and dra-
matically decreased to 4.15% after post-aging treatment, but a dual nanoprecipitation
including T-Mg32(Al, Zn)49 with diameters of 10 to 25 nm and Al3Sc with diameters
of 5 to 20 nm is observed.

(2) The solid-solution strengthening contributions to the as-cast, post-solid-solution and
post-aging Al–Mg–Zn–Sc alloys are 78.2 MPa, 85.4 MPa and 72.3 MPa, respectively.
The precipitation strengthening of the post-aging alloy is 49.7 MPa, which is an
increase of 21% in comparison to that of both as-cast and post-solid-solution alloy.
The tensile strength of 355.3 MPa, yield strength of 175 MPa and elongation of 22%
for the alloy are optimally obtained after solid-solution treatment.

(3) Solid-solution strengthening is the main strengthening mechanism controlling the
ultimate strength of the Al–Mg–Zn–Sc alloys. Contradictory strengthening effects
exists in the post-aging alloy with increased precipitation strengthening and reduced
solid-solution strengthening. It is an effective way to improve the strengthening effect
by increasing the solid solution of Mg in the Al–Mg–Zn–Sc alloys.
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