Mechanical and Structural Characterization of Laser-Cladded Medium-Entropy FeNiCr-B4C Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Design
2.2. Characterization Methods
3. Results and Discussion
3.1. Microstructure and Chemical Composition
3.2. Mechanical Characterization
3.3. X-ray Diffraction Analysis
3.4. TEM Analysis
3.5. Raman Spectroscopy Analysis
4. Conclusions
- The formed FeNiCr-B4C (0, 1, and 3 wt.% B4C) coatings were characterized by an equiaxed coarse-grained structure. According to XRD analysis, the coatings were homogeneous solid solutions and consisted of a single FCC γ-phase, space group Fm-3m, regardless of the B4C content. Additional TEM analysis of the FeNiCr coating with 3 wt.% B4C showed that it consisted of the grains (FCC-1 phase, Fm-3m) up to 1 µm in size and banded interlayers (FCC-2 phase, Fm-3m) between the grains. The grains were clean with a low density of dislocations.
- The cross-sections of all the obtained samples were characterized by an average coating thickness of 400 ± 20 μm and a sufficiently narrow (100 ± 20 μm) “coating-substrate” transition zone. This indicated that the coating, after 120 μm height, consisted only of the equiatomic FeNiCr powder material without mixing with the substrate due to the double-pass laser cladding.
- All the obtained coatings possessed the same and insignificant number of defects, including cracks and pores. This was probably due to the presence of 0.37 wt.% carbon and the coarse dispersion (50–150 μm) of the initial FeNiCr powder. Thus, it can be concluded that there was no impact of B4C addition on the defect formation.
- Raman spectroscopy confirmed the presence of B4C carbides in the FeNiCr + 1 wt.% B4C and FeNiCr + 3 wt.% B4C coatings by detected peaks corresponding to amorphous carbon and peaks indicating the stretching of C-B-C chains in B4C carbides.
- The mechanical characterization of the FeNiCr-B4C coatings specified that additions of 1 and 3 wt.% B4C resulted in a notable increase in microhardness of 16% and 38%, respectively, with a slight decrease in ductility of 4% and 10%, respectively, compared to the B4C-free FeNiCr coating. Thus, the B4C addition can be considered a promising method for strengthening laser-cladded MEA FeNiCr-B4C coatings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, Z.; Liang, S.; Yang, J.; Wei, R.; Zhang, C. A superior combination of strength-ductility in CoCrFeNiMn high-entropy alloy induced by asymmetric rolling and subsequent annealing treatment. Mater. Charact. 2018, 145, 619–626. [Google Scholar] [CrossRef]
- Wang, X.; Guo, W.; Fu, Y. High-entropy alloys: Emerging materials for advanced functional applications. J. Mater. Chem. A 2021, 9, 663–701. [Google Scholar]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Okulov, A.V.; Joo, S.-H.; Kim, H.S.; Kato, H.; Okulov, I.V. Nanoporous High-Entropy Alloy by Liquid Metal Dealloying. Metals 2020, 10, 1396. [Google Scholar] [CrossRef]
- Garcıa, J.; Collado Cipres, V.; Blomqvist, A.; Kaplan, B. Cemented carbide microstructures: A review. Int. J. Refract. Met. Hard Mater. 2019, 80, 40–68. [Google Scholar] [CrossRef]
- Korobov, Y.; Khudorozhkova, Y.; Hillig, H.; Vopneruk, A.; Kotelnikov, A.; Burov, S.; Balu, P.; Makarov, A.; Chernov, A. The Effect of Thickness on the Properties of Laser-Deposited NiBSi-WC Coating on a Cu-Cr-Zr Substrate. Photonics 2019, 6, 127. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, R.; Yuan, T.; Feng, X.; Li, L.; Xie, S.; Weng, Q. Densification and properties of B4C-based ceramics with CrMnFeCoNi high entropy alloy as a sintering aid by spark plasma sintering. Powder Technol. 2019, 343, 58–67. [Google Scholar] [CrossRef]
- Li, X.; Feng, Y.; Liu, B.; Yi, D.; Yang, X.; Zhang, W.; Chen, G.; Liu, Y.; Bai, P. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. J. Alloys Compd. 2019, 788, 485–494. [Google Scholar] [CrossRef]
- Jiang, D.; Cui, H.; Chen, H.; Zhao, X.; Ma, G.; Song, X. Wear and corrosion properties of B4C-added CoCrNiMo high-entropy alloy coatings with in-situ coherent ceramic. Mater. Des. 2021, 210, 110068. [Google Scholar] [CrossRef]
- Peng, Y.B.; Zhang, W.; Li, T.C.; Zhang, M.Y.; Wang, L.; Song, Y.; Hu, S.H.; Hu, Y. Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding. Int. J. Refract. Met. Hard Mater. 2019, 84, 105044. [Google Scholar] [CrossRef]
- Domnich, V.; Reynaud, S.; Haber, R.A.; Chhowalla, M. Boron Carbide: Structure, Properties, and Stability under Stress. J. Am. Ceram. Soc. 2011, 94, 3605–3628. [Google Scholar] [CrossRef]
- Xie, K.Y.; Domnich, V.; Farbaniec, L.; Chen, B.; Kuwelkar, K.; Ma, L.; McCauley, J.W.; Haber, R.A.; Ramesh, K.T.; Chen, M.; et al. Microstructural characterization of boron-rich boron carbide. Acta Mater. 2017, 136, 202–214. [Google Scholar] [CrossRef]
- Gokhfeld, N.V.; Okulov, A.V.; Filippov, M.A.; Estemirova, S.K.; Korobov, Y.S.; Morozov, S.O. The Comparative Analysis of the Fe–Cr–C–Ti–Al Coatings Synthesized by Laser, Arc and Hybrid Cladding Methods. Phys. Solid State 2022, 64, 356–361. [Google Scholar] [CrossRef]
- Lin, K.-H.; Chang, S.-Y.; Lo, Y.-C.; Wang, C.-C.; Lin, S.-J.; Yeh, J.-W. Differences in texture evolution from low-entropy to high-entropy face-centered cubic alloys during tension test. Intermetallics 2020, 118, 106635. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Wang, L.; Liang, J.; Liu, C. Laser cladding FeCrCoNiTiAl high entropy alloy coatings reinforced with self-generated TiC particles. J. Laser Appl. 2017, 29, 012004. [Google Scholar] [CrossRef]
- Suzuki, K.; Koyama, M.; Noguchi, H. Small fatigue crack growth in a high entropy alloy. Procedia Struct. Integr. 2018, 13, 1065–1070. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, B.; Guo, W.; Fu, A.; Duan, H.; Li, W. Corrosion behavior and mechanism of FeCrNi medium entropy alloy prepared by powder metallurgy. J. Alloys Compd. 2021, 867, 159094. [Google Scholar] [CrossRef]
- Fu, A.; Liu, B.; Lu, W.; Liu, B.; Li, J.; Fang, Q.; Li, Z.; Liu, Y. A novel supersaturated medium entropy alloy with superior tensile properties and corrosion resistance. Scr. Mater. 2020, 186, 381–386. [Google Scholar] [CrossRef]
- Liang, D.; Zhao, C.; Zhu, W.; Wei, P.; Jiang, F.; Zhang, Y.; Sun, Q.; Ren, F. Overcoming the strength-ductility trade-off via the formation of nanoscale Cr-rich precipitates in an ultrafine-grained FCC CrFeNi medium entropy alloy matrix. Mater. Sci. Eng. A 2019, 762, 138107. [Google Scholar] [CrossRef]
- Schneider, M.; Laplanche, G. Effects of temperature on mechanical properties and deformation mechanisms of the equiatomic CrFeNi medium-entropy alloy. Acta Mater. 2021, 204, 116470. [Google Scholar] [CrossRef]
- Li, Y.; Dong, S.; He, P.; Yan, S.; Li, E.; Liu, X.; Xu, B. Microstructure characteristics and mechanical properties of new-type FeNiCr laser cladding alloy coating on nodular cast iron. J. Mater. Process. Technol. 2019, 269, 163–171. [Google Scholar] [CrossRef]
- Wang, K.; Jin, X.; Zhang, Y.; Liaw, P.K.; Qiao, J. Dynamic tensile mechanisms and constitutive relationship in CrFeNi medium entropy alloys at room and cryogenic temperatures. Phys. Rev. Mater. 2021, 5, 113608. [Google Scholar] [CrossRef]
- Liang, D.; Zhao, C.; Zhu, W.; Wei, P.; Jiang, F.; Ren, F. Significantly Enhanced Wear Resistance of an Ultrafine-Grained CrFeNi Medium-Entropy Alloy at Elevated Temperatures. Metall. Mater. Trans. A 2020, 51, 2834–2850. [Google Scholar] [CrossRef]
- Chen, H.; Fang, Q.; Zhou, K.; Liu, Y.; Li, J. Unraveling atomic-scale crystallization and microstructural evolution of a selective laser melted FeCrNi medium-entropy alloy. CrystEngComm 2020, 22, 4136–4146. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Zhang, T.; Jin, X.; Yang, H.; Qiao, J. Tuning Cr-rich nanoprecipitation and heterogeneous structure in equiatomic CrFeNi medium-entropy stainless alloys. J. Iron Steel Res. Int. 2021, 29, 529–536. [Google Scholar] [CrossRef]
- Han, T.; Shen, Y.; Feng, X. Microstructure and phase transformations of Fe-Ni-Cr mixed powder by laser cladding on Q235 mild steel. In Proceedings of the 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 9–13 January 2018; pp. 63–69. [Google Scholar]
- Dadbakhsh, S.; Mertens, R.; Hao, L.; Van Humbeeck, J.; Kruth, J.-P. Selective Laser Melting to Manufacture “In Situ” Metal Matrix Composites: A Review. Adv. Eng. Mater. 2019, 21, 1801244. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Xue, P.; Lan, Q.; Meng, G.; Ren, Y.; Yang, Z.; Xu, P.; Liu, Z. Recent research and development status of laser cladding: A review. Opt. Laser Technol. 2021, 138, 106915. [Google Scholar] [CrossRef]
- Kharanzhevskiy, E.V.; Ipatov, A.G.; Makarov, A.V.; Gil’mutdinov, F.Z.; Soboleva, N.N.; Krivilyov, M.D. Tribological performance of boron-based superhard coatings sliding against different materials. Wear 2021, 477, 203835. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Cheng, C.M. Relationships between hardness, elastic modulus and the work of indentation. Appl. Phys. Lett. 1998, 73, 614. [Google Scholar] [CrossRef]
- Page, T.F.; Hainsworth, S.V. Using nanoindentation techniques for the characterization of coated systems: A critique. Surf. Coat. Technol. 1993, 62, 201–208. [Google Scholar] [CrossRef]
- Petrzhik, M.I.; Levashov, E.A. Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing. Crystallogr. Rep. 2007, 52, 966–974. [Google Scholar] [CrossRef]
- Mayrhofer, P.H.; Mitterer, C.; Musil, J. Structure-property relationships in single- and dual-phase nanocrystalline hard coatings. Surf. Coat. Technol. 2003, 174–175, 725–731. [Google Scholar] [CrossRef]
- Milman, Y.V.; Chugunova, S.I.; Goncharova, I.V.; Golubenko, A.A. Plasticity of Materials Determined by the Indentation Method. Usp. Fiz. Met. 2018, 19, 271–307. [Google Scholar] [CrossRef]
- Faria, D.L.A.; Silva, S.V.; Oliveir, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Kim, J.; Choi, K.J.; Bahn, C.B.; Kim, J.H. In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water. J. Nucl. Mater. 2014, 449, 181–187. [Google Scholar] [CrossRef]
- Yan, X.Q.; Li, W.J.; Goto, T.; Chen, M.W. Raman spectroscopy of pressure-induced amorphous boron carbide. Appl. Phys. Lett. 2006, 88, 131905. [Google Scholar] [CrossRef]
- Kunka, C.; Awasthi, A.; Subhash, G. Evaluating boron-carbide constituents with simulated Raman spectra. Scr. Mater. 2017, 138, 32–34. [Google Scholar] [CrossRef]
Fe | Ni | Cr | C | S | P | Si |
---|---|---|---|---|---|---|
Base | 35.6 | 29.8 | 0.37 | <0.001 | 0.008 | 1.62 |
Fe | Mn | C | S | P | Si |
---|---|---|---|---|---|
98.6–99 | 0.6–0.9 | 0.37–0.44 | ≤0.05 | ≤0.04 | 0.15–0.35 |
Sample | ||||||
---|---|---|---|---|---|---|
B4C-free FeNiCr | 3.228 | 172.11 | 0.0188 | 0.0011 | 5.9 | 0.86 |
FeNiCr + 1 wt.% B4C | 3.825 | 178.34 | 0.0214 | 0.0018 | 6.6 | 0.83 |
FeNiCr + 3 wt.% B4C | 5.167 | 190.64 | 0.0271 | 0.0038 | 8.3 | 0.78 |
The comparison of 0 and 3 wt.% B4C | 60 ↑ | 11 ↑ | 44 ↑ | 245 ↑ | 41 ↑ | 9 ↓ |
Sample | Phase | Unit Cell Parameters, Å | |
---|---|---|---|
a | V | ||
B4C-free FeNiCr | γ-phase, Fm-3m | 3.598 | 46.58 |
FeNiCr + 3 wt.% B4C | γ-phase, Fm-3m | 3.599 | 46.617 |
Peak Position, cm−1 | Interpretation | |||
---|---|---|---|---|
AISI 1040 Steel | B4C-Free FeNiCr | FeNiCr + 1 wt.% B4C | FeNiCr + 3 wt.% B4C | |
207 | 196 | 194 | 209 | α-Fe2O3 |
267 | 293 | 279 | 273 | α-Fe2O3 |
380 | - | 377 | 383 | γ-Fe2O3 |
- | - | 469 | 478 | Stretching of C-B-C chains in B4C |
480 | 477 | - | - | NiO |
- | 518 | - | - | Fe3O4 |
- | - | 533 | 532 | Vibrational mode of B11C icosahedra |
- | 527 | 528 | 543 | Cr2O3 |
578 | - | - | - | γ-Fe2O3 |
645 | 648 | - | - | γ-Fe2O3 |
- | 672 | 665 | 657 | NiCr2O4 |
1280 | - | - | - | α-Fe2O3 |
- | 1330 | 1328 | 1330 | Amorphous carbon (D peak) |
- | - | 1560 | 1554 | Amorphous carbon (G peak) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okulov, A.; Korobov, Y.; Stepchenkov, A.; Makarov, A.; Iusupova, O.; Korkh, Y.; Kuznetsova, T.; Kharanzhevskiy, E.; Liu, K. Mechanical and Structural Characterization of Laser-Cladded Medium-Entropy FeNiCr-B4C Coatings. Materials 2023, 16, 5479. https://doi.org/10.3390/ma16155479
Okulov A, Korobov Y, Stepchenkov A, Makarov A, Iusupova O, Korkh Y, Kuznetsova T, Kharanzhevskiy E, Liu K. Mechanical and Structural Characterization of Laser-Cladded Medium-Entropy FeNiCr-B4C Coatings. Materials. 2023; 16(15):5479. https://doi.org/10.3390/ma16155479
Chicago/Turabian StyleOkulov, Artem, Yury Korobov, Alexander Stepchenkov, Aleksey Makarov, Olga Iusupova, Yulia Korkh, Tatyana Kuznetsova, Evgeny Kharanzhevskiy, and Kun Liu. 2023. "Mechanical and Structural Characterization of Laser-Cladded Medium-Entropy FeNiCr-B4C Coatings" Materials 16, no. 15: 5479. https://doi.org/10.3390/ma16155479
APA StyleOkulov, A., Korobov, Y., Stepchenkov, A., Makarov, A., Iusupova, O., Korkh, Y., Kuznetsova, T., Kharanzhevskiy, E., & Liu, K. (2023). Mechanical and Structural Characterization of Laser-Cladded Medium-Entropy FeNiCr-B4C Coatings. Materials, 16(15), 5479. https://doi.org/10.3390/ma16155479