He-ion Irradiation Effects on the Microstructures and Mechanical Properties of the Ti-Zr-Hf-V-Ta Low-Activation High-Entropy Alloys
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterization of Microstructure and Mechanical Properties of As-Cast Samples
2.3. Irradiation Experiment and Characterization of Microstructure of Irradiated Samples
2.4. Nanoindentation Test
3. Results and Discussion
3.1. Microstructures of the As-Cast Ti2ZrHfxV0.5Ta0.2 HEAs
3.2. Mechanical Properties of the As-Cast Ti2ZrHfxV0.5Ta0.2 HEAs
3.3. TEM Characterization of the Irradiated Ti2ZrHfV0.5Ta0.2 HEA
3.4. Irradiation Hardening
4. Conclusions
- (1)
- The as-cast Ti2ZrHfxV0.5Ta0.2 HEAs exhibited BCC solid solution structure and the plastic strain exceeded 50%. Due to the solid solution strengthening caused by the increase of Hf content, the yield strength of the Ti2ZrHfxV0.5Ta0.2 HEAs enhanced from 745 to 873 MPa at room temperature and from 480 to 662 MPa at 873 K.
- (2)
- No obvious radiation-induced element segregations or precipitations were found in the He-implanted Hf1Ta HEA, which reflected fine structural stability under He ion irradiation at 1023 K.
- (3)
- The morphology of the He bubbles in the Hf1Ta HEA was faceted, which was similar to that found in the BCC structured conventional materials, Ti-Zr-Nb-V-Mo, and Ti-V-Nb-Ta RHEAs at elevated temperatures.
- (4)
- As the irradiation fluence increased from 1 × 1016 to 3 × 1016 ions/cm2, the average size of the He bubbles in Hf1Ta HEA increased from 10.5 to 13.7 nm and number density increased from 9.09 × 1020 to 2.42 × 1021 m−3.
- (5)
- With improving fluence, the irradiation hardness increment increased from 0.67 to 1.34 GPa, and the hardening fraction increased from 17.7% to 34.1%. Due to the low residual defect density and fine structural stability, the hardening fraction of the irradiated Hf1Ta HEA was lower than those of most reported conventional low-activation materials at similar He ions’ irradiation fluences. The experimental results indicated that the novel low-activation RHEA may be one of the promising candidate structural materials for advanced nuclear energy system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.P.; Huang, H.F.; Gao, X.; Ren, C.; Gao, J.; Zhang, H.Z.; Zheng, S.; Jin, Q.; Zhao, Y.; Lu, C.Y.; et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J. Mater. Sci. Technol. 2019, 35, 369–373. [Google Scholar] [CrossRef]
- Lu, C.Y.; Niu, L.; Chen, N.; Jin, K.; Yang, T.; Xiu, P.; Zhang, Y.; Gao, F.; Bei, H.; Shi, S.; et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 2016, 7, 13564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, A.; Khan, S.A.; Sharma, S.K.; Sudarshan, K.; Sharma, S.K.; Singh, C.; Kulriya, P.K. Influence of defect dynamics on the nanoindentation hardness in NiCoCrFePd high entropy alloy under high dose Xe+3 irradiation. Mater. Sci. Eng. A 2023, 863, 144523. [Google Scholar] [CrossRef]
- Griffiths, M. Effect of neutron irradiation on the mechanical properties, swelling and creep of Austenitic stainless steels. Materials 2021, 14, 2622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.W.; Stocks, G.M.; Jin, K.; Lu, C.Y.; Bei, H.; Sales, B.C.; Wang, L.; Beland, L.K.; Stoller, R.E.; Samolyuk, G.D.; et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 2015, 6, 8736. [Google Scholar] [CrossRef] [Green Version]
- Ullah, M.W.; Aidhy, D.S.; Zhang, Y.; Weber, W.J. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys. Acta Mater. 2016, 109, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Moschetti, M.; Burr, P.A.; Obbard, E.; Kruzic, J.J.; Hosemann, P.; Gludovatz, B. Design considerations for high entropy alloys in advanced nuclear applications. J. Nucl. Mater. 2022, 567, 153814. [Google Scholar] [CrossRef]
- Hussain, A.; Dhaka, R.S.; Ryu, H.J.; Sharma, S.K.; Kulriya, P.K. A critical review on temperature dependent irradiation response of high entropy alloys. J. Alloys Compd. 2023, 948, 169624. [Google Scholar] [CrossRef]
- Amanzhulov, B.; Ivanov, I.; Uglov, V.; Zlotski, S.; Ryskulov, A.; Kurakhmedov, A.; Koloberdin, M.; Zdorovets, M. Composition and structure of NiCoFeCr and NiCoFeCrMn high-entropy alloys irradiated by helium ions. Materials 2023, 16, 3695. [Google Scholar] [CrossRef]
- Ayyagari, A.; Salloom, R.; Muskeri, S.; Mukherjee, S. Low activation high entropy alloys for next generation nuclear applications. Materialia 2018, 4, 99–103. [Google Scholar] [CrossRef]
- Sadeghilaridjani, M.; Ayyagari, A.; Muskeri, S.; Hasannaeimi, V.; Salloom, R.; Chen, W.Y.; Mukherjee, S. Ion irradiation response and mechanical behavior of reduced activity high entropy alloy. J. Nucl. Mater. 2020, 529, 151955. [Google Scholar] [CrossRef]
- Carruthers, A.W.; Li, B.S.; Rigby, M.; Raquet, L.C.; Mythili, R.; Ghosh, C.; Dasgupta, A.; Armstrong, D.E.J.; Gandy, A.S.; Pickering, E.J. Novel reduced-activation TiVCrFe based high entropy alloys. J. Alloys Compd. 2021, 856, 157399. [Google Scholar] [CrossRef]
- Klimenkov, M.; Jäntsch, U.; Rieth, M.; Dürrschnabel, M.; Möslang, A.; Schneider, H.C. Post-irradiation microstructural examination of EUROFER-ODS steel irradiated at 300 °C and 400 °C. J. Nucl. Mater. 2021, 557, 153259. [Google Scholar] [CrossRef]
- Šćepanović, M.; de Castro, V.; García-Cortés, I.; Sánchez, F.J.; Gigl, T.; Hugenschmidt, C.; Leguey, T. Characterisation of open volume defects in Fe–Cr and ODS Fe–Cr alloys after He+ and Fe+ ion irradiations. J. Nucl. Mater. 2020, 538, 152230. [Google Scholar] [CrossRef]
- Mandal, S.; Sharma, S.K.; Gayathri, N.; Sudarshan, K.; Mukherjee, P.; Pujari, P.K.; Menon, R.; Nabhiraj, P.Y.; Sagdeo, A. Synchrotron GIXRD and slow positron beam characterisation of Ar ion irradiated pure V and V-4Cr-4Ti alloy: Candidate structural material for fusion reactor application. Fusion Eng. Des. 2020, 154, 111518. [Google Scholar] [CrossRef]
- Miyazawa, T.; Saito, H.; Hishinuma, Y.; Nagasaka, T.; Muroga, T.; Shen, J.; Okuno, Y.; Yu, H.; Kasada, R.; Hasegawa, A. Effect on impact properties of adding tantalum to V-4Cr-4Ti ternary vanadium alloy. Nucl. Mater. Energy 2022, 31, 101198. [Google Scholar] [CrossRef]
- Ramachandran, R.; Julie, S.; Rajaraman, R.; Govindaraj, R.; David, C.; Amarendra, G. High-temperature radiation damage studies of Reduced Activation Ferritic/Martensitic (RAFM) steel at fusion relevant He/dpa ratio using positron beam based doppler broadening spectroscopy. J. Nucl. Mater. 2021, 544, 152697. [Google Scholar] [CrossRef]
- Kachko, O.; Puype, A.; Terentyev, D.; Bonny, G.; Renterghem, W.V.; Petrov, R.H. Development of RAFM steels for high temperature applications guided by thermodynamic modelling. Nucl. Mater. Energy 2022, 32, 101211. [Google Scholar] [CrossRef]
- Fu, Z.Y.; Liu, P.P.; Wan, F.R.; Zhan, Q. Helium and hydrogen irradiation induced hardening in CLAM steel. Fusion Eng. Des. 2015, 91, 73–78. [Google Scholar] [CrossRef]
- Wei, Y.P.; Liu, P.P.; Zhu, Y.M.; Wang, Z.Q.; Wan, F.R.; Zhan, Q. Evaluation of irradiation hardening and microstructure evolution under the synergistic interaction of He and subsequent Fe ions irradiation in CLAM steel. J. Alloys Compd. 2016, 676, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.C.; Liaw, P.K.; Yeh, J.W.; Zhang, Y. High-Entropy Alloys: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Ferreirós, P.A.; von Tiedemann, S.O.; Parkes, N.; Gurah, D.; King, D.J.M.; Norman, P.; Gilbert, M.R.; Knowles, A.J. VNbCrMo refractory high-entropy alloy for nuclear applications. Int. J. Refract. Met. Hard Mat. 2023, 113, 106200. [Google Scholar] [CrossRef]
- Iroc, L.K.; Tukac, O.U.; Tanrisevdi, B.B.; El-Atwani, O.; Tunes, M.A.; Kalay, Y.E.; Aydogan, E. Design of oxygen-doped TiZrHfNbTa refractory high entropy alloys with enhanced strength and ductility. Mater. Des. 2022, 223, 111239. [Google Scholar] [CrossRef]
- Thorhallsson, A.I.; Fanicchia, F.; Davison, E.; Paul, S.; Olafsson, D. Erosion and corrosion resistance performance of laser metal deposited high-entropy alloy coatings at hellisheidi geothermal site. Materials 2021, 14, 3071. [Google Scholar] [CrossRef] [PubMed]
- Quiambao, K.F.; McDonnell, S.J.; Schreiber, D.K.; Gerard, A.Y.; Freedy, K.M.; Lu, P.; Saal, J.E.; Frankel, G.S.; Scully, J.R. Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions. Acta Mater. 2019, 164, 362–376. [Google Scholar] [CrossRef]
- Mehmood, K.; Umer, M.A.; Munawar, A.U.; Imran, M.; Shahid, M.; Ilyas, M.; Firdous, R.; Kousar, H.; Usman, M. Microstructure and corrosion behavior of atmospheric plasma sprayed NiCoCrAlFe high entropy alloy coating. Materials 2022, 15, 1486. [Google Scholar] [CrossRef]
- Miao, J.W.; Li, T.X.; Li, Q.; Chen, X.H.; Ren, Z.; Lu, Y.P. Enhanced surface properties of the Al0.65CoCrFeNi high-entropy alloy via laser remelting. Materials 2023, 16, 1085. [Google Scholar] [CrossRef]
- Nagarjuna, C.; Sharma, A.; Lee, K.; Hong, S.-J.; Ahn, B. Microstructure, mechanical and tribological properties of oxide dispersion strengthened CoCrFeMnNi high-entropy alloys fabricated by powder metallurgy. J. Mater. Res. Technol. 2023, 22, 1708–1722. [Google Scholar] [CrossRef]
- Kumar, P.; Kim, S.J.; Yu, Q.; Ell, J.; Zhang, M.; Yang, Y.; Kim, J.Y.; Park, H.K.; Minor, A.M.; Park, E.S.; et al. Compressive vs. tensile yield and fracture toughness behavior of a body-centered cubic refractory high-entropy superalloy Al0.5Nb1.25Ta1.25TiZr at temperatures from ambient to 1200 °C. Acta Mater. 2023, 245, 118620. [Google Scholar] [CrossRef]
- Chakraborty, P.; Sarkar, A.; Ali, K.; Jha, J.; Jothilakshmi, N.; Arya, A.; Tewari, R. Design and development of low density, high strength ZrNbAlVTi high entropy alloy for high temperature applications. Int. J. Refract. Met. Hard Mat. 2023, 113, 106222. [Google Scholar] [CrossRef]
- Kumar, N.A.P.K.; Li, C.; Leonard, K.J.; Bei, H.; Zinkle, S.J. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 2016, 113, 230–244. [Google Scholar] [CrossRef] [Green Version]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Razumov, N.; Makhmutov, T.; Kim, A.; Shemyakinsky, B.; Popovich, A.J.M. Refractory CrMoNbWV high-entropy alloy manufactured by mechanical alloying and spark plasma sintering: Evolution of microstructure and properties. Materials 2021, 14, 621. [Google Scholar] [CrossRef]
- Ceritbinmez, F.; Kanca, E.; Yünlü, L.; Patel, K.; Akhtar, M.A.; Mukherjee, S.; Günen, A. Wire electric discharge machining and its effect on the surface finish of HfNbTaTiZr refractory high-entropy alloy. Int. J. Adv. Manuf. Technol. 2023, 125, 1419–1427. [Google Scholar] [CrossRef]
- Günen, A.; Ceritbinmez, F.; Patel, K.; Akhtar, M.A.; Mukherjee, S.; Kanca, E.; Karakas, M.S. WEDM machining of MoNbTaTiZr refractory high entropy alloy. CIRP J. Manuf. Sci. Technol. 2022, 38, 547–559. [Google Scholar] [CrossRef]
- El-Atwani, O.; Li, N.; Li, M.; Devaraj, A.; Martinez, E.J.S.A. Outstanding radiation resistance of Tungsten-based high entropy alloys. Sci. Adv. 2019, 5, eaav2002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys. J. Nucl. Mater. 2017, 490, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Jin, K.; Lu, C.Y.; Wang, L.M.; Qu, J.; Weber, W.J.; Zhang, Y.; Bei, H. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scr. Mater. 2016, 119, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Tseng, K.K.; Yang, T.Y.; Chao, D.S.; Yeh, J.W.; Liang, J.H. Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy. Mater. Lett. 2020, 272, 127832. [Google Scholar] [CrossRef]
- He, M.R.; Wang, S.; Shi, S.; Jin, K.; Bei, H.; Yasuda, K.; Matsumura, S.; Higashida, K.; Robertson, I.M. Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys. Acta Mater. 2017, 126, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.Y.; Yang, T.; Jin, K.; Gao, N.; Xiu, P.; Zhang, Y.; Gao, F.; Bei, H.; Weber, W.J.; Sun, K.; et al. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys. Acta Mater. 2017, 127, 98–107. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, E.H.; Xiang, C. Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding. J. Mater. Sci. Technol. 2021, 84, 230–238. [Google Scholar] [CrossRef]
- Abhaya, S.; Rajaraman, R.; Kalavathi, S.; David, C.; Panigrahi, B.K.; Amarendra, G. Effect of dose and post irradiation annealing in Ni implanted high entropy alloy FeCrCoNi using slow positron beam. J. Alloys Compd. 2016, 669, 117–122. [Google Scholar] [CrossRef]
- Zhao, S.J. Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure. J. Mater. Sci. Technol. 2020, 44, 133–139. [Google Scholar] [CrossRef]
- Shi, T.; Su, Z.; Li, J.; Liu, C.; Yang, J.; He, X.; Yun, D.; Peng, Q.; Lu, C. Distinct point defect behaviours in body-centered cubic medium-entropy alloy NbZrTi induced by severe lattice distortion. Acta Mater. 2022, 229, 117806. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Huang, H.F.; He, T.; Yan, H.W.; Zhang, Y.A.; Lu, Y.P.; Wang, T.M.; Li, T.J. Microstructures, mechanical properties, and irradiation tolerance of the Ti–Zr–Nb–V–Mo refractory high-entropy alloys. Intermetallics 2023, 157, 107873. [Google Scholar] [CrossRef]
- WebElements. The Periodic Table of the Elements. Available online: https://www.webelements.com (accessed on 1 March 2023).
- Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Duemmler, K.; Zheng, C.; Baumier, C.; Gentils, A.; Kaoumi, D. Helium bubble nucleation and growth in alloy HT9 through the use of in situ TEM: Sequential he-implantation and heavy-ion irradiation versus dual-beam irradiation. J. Nucl. Mater. 2021, 545, 152641. [Google Scholar] [CrossRef]
- Chen, D.; Tong, Y.; Li, H.; Wang, J.; Zhao, Y.L.; Hu, A.; Kai, J.J. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation. J. Nucl. Mater. 2018, 501, 208–216. [Google Scholar] [CrossRef]
- Daghbouj, N.; Sen, H.S.; Callisti, M.; Vronka, M.; Karlik, M.; Duchoň, J.; Čech, J.; Havránek, V.; Polcar, T. Revealing nanoscale strain mechanisms in ion-irradiated multilayers. Acta Mater. 2022, 229, 117807. [Google Scholar] [CrossRef]
- Daghbouj, N.; Li, B.S.; Callisti, M.; Sen, H.S.; Karlik, M.; Polcar, T. Microstructural evolution of helium-irradiated 6H–SiC subjected to different irradiation conditions and annealing temperatures: A multiple characterization study. Acta Mater. 2019, 181, 160–172. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, T.; Lin, Y.; Lu, Y.; Su, Y.; Zinkle, S.J.; Wang, Y. Effects of temperature on helium bubble behaviour in Fe–9Cr alloy. J. Nucl. Mater. 2020, 532, 152045. [Google Scholar] [CrossRef]
- Ofan, A.; Zhang, L.; Gaathon, O.; Bakhru, S.; Bakhru, H.; Zhu, Y.; Welch, D.; Osgood, R.M. Spherical solid He nanometer bubbles in an anisotropic complex oxide. Phys. Rev. B 2010, 82, 104113. [Google Scholar] [CrossRef]
- Jia, N.; Li, Y.; Huang, H.; Chen, S.; Li, D.; Dou, Y.; He, X.; Yang, W.; Xue, Y.; Jin, K. Helium bubble formation in refractory single-phase concentrated solid solution alloys under MeV He ion irradiation. J. Nucl. Mater. 2021, 550, 152937. [Google Scholar] [CrossRef]
- Liu, S.; Lin, W.; Chen, D.; Han, B.; Zhao, S.; He, F.; Niu, H.; Kai, J.J. Effects of temperature on helium cavity evolution in single-phase concentrated solid-solution alloys. J. Nucl. Mater. 2021, 557, 153261. [Google Scholar] [CrossRef]
- Jiang, S.; Yu, C.; Zheng, P.; Guo, L.; Zhou, X.; Rao, W.F. Bubbles and precipitates formation and effects on the hardening of irradiated vanadium alloys. J. Nucl. Mater. 2021, 544, 152712. [Google Scholar] [CrossRef]
- Wu, Z.F.; Xu, L.D.; Chen, H.Q.; Liang, Y.X.; Du, J.L.; Wang, Y.F.; Zhang, S.L.; Cai, X.C.; Sun, B.R.; Zhang, J.; et al. Significant suppression of void swelling and irradiation hardening in a nanograined/nanoprecipitated 14YWT-ODS steel irradiated by helium ions. J. Nucl. Mater. 2022, 559, 153418. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, H.; Muránsky, O.; Liu, J.; Zhu, Z.; Huang, Y. On the irradiation tolerance of nano-grained Ni–Mo–Cr alloy: 1 MeV He+ irradiation experiment. J. Nucl. Mater. 2021, 544, 152694. [Google Scholar] [CrossRef]
- Bai, J.; Li, J.; Fu, C.; Ren, C.; Chen, S.; Li, Y.; Li, Z.; Chen, Q.; Zhu, Z.; Lin, J. Effect of helium bubbles on the irradiation hardening of GH3535 welded joints at 650 °C. J. Nucl. Mater. 2021, 557, 153241. [Google Scholar] [CrossRef]
- Cui, M.; Wang, J.; Wang, Z.; Shen, T.; Wei, K.; Yao, C.; Sun, J.; Gao, N.; Zhu, Y.; Pang, L.; et al. Helium irradiation induced hardening in MNHS steels. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2017, 406, 611–617. [Google Scholar] [CrossRef]
- Zhou, X.L.; Huang, H.F.; Xie, R.; Thorogood, G.J.; Yang, C.; Li, Z.J.; Xu, H.J. Helium ion irradiation behavior of Ni-1wt.%SiCNP composite and the effect of ion flux. J. Nucl. Mater. 2015, 467, 848–854. [Google Scholar] [CrossRef]
- Liu, P.P.; Han, W.T.; Yi, X.O.; Zhan, Q.; Wan, F.R. Effect of He and H synergy on mechanical property of ion-irradiated Fe-10Cr alloy. Fusion Eng. Des. 2018, 129, 221–229. [Google Scholar] [CrossRef]
- Wang, Q.; Judge, C.D.; Howard, C.; Mattucci, M.; Rajakumar, H.; Hoendermis, S.; Dixon, C.; Daymond, M.R.; Bickel, G. Investigation on the deformation mechanisms and size-dependent hardening effect of He bubbles in 84 dpa neutron irradiated Inconel X-750. Nucl. Mater. Energy 2021, 28, 101025. [Google Scholar] [CrossRef]
- Simar, A.; Voigt, H.J.L.; Wirth, B.D. Molecular dynamics simulations of dislocation interaction with voids in nickel. Comput. Mater. Sci. 2011, 50, 1811–1817. [Google Scholar] [CrossRef]
- Sobie, C.; Bertin, N.; Capolungo, L. Analysis of obstacle hardening models using dislocation dynamics: Application to irradiation-induced defects. Metall. Mater. Trans. A 2015, 46, 3761–3772. [Google Scholar] [CrossRef]
Elements | Fe | Ti | Zr | Cr | V | Hf | Ta | W |
---|---|---|---|---|---|---|---|---|
Tm (K) | 1811 | 1941 | 2128 | 2180 | 2183 | 2506 | 3290 | 3695 |
r (nm) | 0.126 | 0.147 | 0.160 | 0.128 | 0.134 | 0.159 | 0.146 | 0.139 |
ρ (g/cm3) | 7.87 | 4.51 | 6.51 | 7.14 | 6.11 | 13.31 | 16.65 | 19.25 |
VEC | 8 | 4 | 4 | 6 | 5 | 4 | 5 | 6 |
Alloys | VEC | Δ | Ω | ΔHmix | ΔSmix |
---|---|---|---|---|---|
Hf0.25Ta | 4.18 | 5.51 | 27.52 | −0.82 | 10.64 |
Hf0.5Ta | 4.17 | 5.54 | 32.09 | −0.83 | 11.20 |
Hf0.75Ta | 4.16 | 5.54 | 36.17 | −0.69 | 11.48 |
Hf1Ta | 4.15 | 5.52 | 283.96 | −0.63 | 11.60 |
Alloys | Regions | Ti | Zr | V | Hf | Ta |
---|---|---|---|---|---|---|
Hf0.25Ta | D | 45.65 | 24.43 | 9.76 | 14.04 | 6.12 |
ID | 45.35 | 25.39 | 11.83 | 12.96 | 4.47 | |
Hf0.5Ta | D | 45.18 | 23.50 | 9.70 | 15.81 | 5.81 |
ID | 45.31 | 24.02 | 10.56 | 14.72 | 5.40 | |
Hf0.75Ta | D | 44.11 | 22.39 | 9.53 | 18.37 | 5.60 |
ID | 44.02 | 22.80 | 10.31 | 17.60 | 5.26 | |
Hf1Ta | D | 42.24 | 21.01 | 9.04 | 23.26 | 4.45 |
ID | 42.42 | 21.53 | 9.58 | 22.54 | 4.11 |
Alloys | σ (MPa) | ε (%) | Tm (K) |
---|---|---|---|
Hf0.25Ta | 745 | >50 | 2122 |
Hf0.5Ta | 789 | >50 | 2145 |
Hf0.75Ta | 832 | >50 | 2165 |
Hf1Ta | 873 | >50 | 2183 |
Fluence (ions/cm2) | Average Size (nm) | Number Density (×1020 m−3) |
---|---|---|
1 × 1016 | 10.5 | 9.09 |
3 × 1016 | 13.7 | 24.21 |
Alloys | Temperature (K) | Fluence (ions/cm2) | Peak He Concentration (at.%) | Average Size (nm) | |
---|---|---|---|---|---|
HEAs | TiVTa [57] | 973 | 1 × 1017 | 5.0 | 13.4 |
TiVNbTa [57] | 973 | 1 × 1017 | 5.0 | 8.1 | |
TiZrNbV [46] | 1023 | 6 × 1016 | 3.9 | 12.5 | |
TiZrNbVMo [46] | 1023 | 6 × 1016 | 3.9 | 10.4 | |
NiCo [58] | 973 | 6.4 × 1016 | 3.6 | 25.1 | |
NiCoCr [58] | 973 | 6.4 × 1016 | 3.6 | 34.1 | |
NiCoFeCrMn [58] | 973 | 6.4 × 1016 | 3.6 | 85.6 | |
CMs | V-4Cr-4Ti [59] | 573 | 5 × 1016 | 4.0 | 2.7 |
ODS [60] | 723 | 1 × 1017 | 5.6 | 3.9 | |
RAFM [63] | 773 | 3 × 1016 | 5.7 | 5.1 | |
GH3535 [62] | 923 | 1 × 1017 | 5.0 | 2.3 | |
Ni-SiC [64] | 923 | 6 × 1016 | 3.5 | 8.1 |
Fluence (ions/cm2) | H0 (GPa) | ΔH (GPa) | ΔH/H0 (%) |
---|---|---|---|
0 | 3.78 | - | - |
1 × 1016 | 4.45 | 0.67 | 17.7 |
3 × 1016 | 5.07 | 1.34 | 34.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, Q.; Li, C.; Zhu, Z.; Huang, H.; Lu, Y. He-ion Irradiation Effects on the Microstructures and Mechanical Properties of the Ti-Zr-Hf-V-Ta Low-Activation High-Entropy Alloys. Materials 2023, 16, 5530. https://doi.org/10.3390/ma16165530
Zhang H, Wang Q, Li C, Zhu Z, Huang H, Lu Y. He-ion Irradiation Effects on the Microstructures and Mechanical Properties of the Ti-Zr-Hf-V-Ta Low-Activation High-Entropy Alloys. Materials. 2023; 16(16):5530. https://doi.org/10.3390/ma16165530
Chicago/Turabian StyleZhang, Huanzhi, Qianqian Wang, Chunhui Li, Zhenbo Zhu, Hefei Huang, and Yiping Lu. 2023. "He-ion Irradiation Effects on the Microstructures and Mechanical Properties of the Ti-Zr-Hf-V-Ta Low-Activation High-Entropy Alloys" Materials 16, no. 16: 5530. https://doi.org/10.3390/ma16165530
APA StyleZhang, H., Wang, Q., Li, C., Zhu, Z., Huang, H., & Lu, Y. (2023). He-ion Irradiation Effects on the Microstructures and Mechanical Properties of the Ti-Zr-Hf-V-Ta Low-Activation High-Entropy Alloys. Materials, 16(16), 5530. https://doi.org/10.3390/ma16165530