Comparison of Wood-Based Biocomposites with Polylactic Acid (PLA) Density Profiles by Desaturation and X-ray Spectrum Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Compaction in the Heating Plates
2.3. Microscope Aperture
2.4. Picture Desaturation
2.5. Density Profile
2.6. Statistical Processing of Results
3. Results
3.1. Material Properties
3.2. Optical Solid Structure Analyses
3.2.1. Microscopy Optical Analyses
3.2.2. Computer Program Analyses
3.3. Density Profile Structure Analyses
3.4. The Density Comparison of Mixtures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomczak, A.; Pazdrowski, W.; Jelonek, T.; Grzywiński, W. Jakość drewna sosny zwyczajnej (Pinus sylvestris L.) I. Charakterystyka wybranych cech i właściwości drewna wpływających na jego jakość. Sylwan 2009, 153, 363–372. [Google Scholar]
- Ramanadha, S.; Venkatachalapathi, N. A review on characteristic variation in PLA material with a combination of various nano composites. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Wnorowska, M.; Dziurka, D.; Fierek, A.; Mrozek, M.; Borysiuk, P.; Hikiert, M.; Kowaluk, G. Przewodnik po Płytach Drewnopochodnych; Stowarzyszenie Producentów Płyt Drewnopochodnych w Polsce: Poznań, Poland, 2017; p. 14. [Google Scholar]
- Tomczak, A.; Jelonek, T. Parametry techniczne młodocianego i dojrzałego drewna sosny zwyczajnej (Pinus sylvestris L.). Sylwan 2012, 156, 695–702. [Google Scholar]
- Suchorab, B.; Roman, K. The PLA content influence selected properties of wood-based composites. Ann. WULS-SGGW For. Wood Technol. 2022, 120, 57–67. [Google Scholar] [CrossRef]
- Vinod, A.; Sanjay, M.R.; Suchart, S.; Jyotishkumar, P. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Faludi, G.; Dora, G.; Renner, K.; Móczó, J.; Pukánszky, B. Improving interfacial adhesion in pla/wood biocomposites. Compos. Sci. Technol. 2013, 89, 77–82. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Rakesh, P.K. Study on the degradation behavior of natural fillers based PLA composites. In Advances in Bio-Based Fiber; Woodhead Publishing: Sawston, UK, 2022; pp. 499–509. [Google Scholar]
- Madhu, P.; Sanjay, M.R.; Senthamaraikannan, P.; Pradeep, S.; Saravanakumar, S.S.; Yogesha, B. A review on synthesis and characterization of commercially available natural fibers: Part II. J. Nat. Fibers 2019, 16, 25–36. [Google Scholar] [CrossRef]
- Madhu, P.; Sanjay, M.R.; Senthamaraikannan, P.; Pradeep, S.; Saravanakumar, S.S.; Yogesha, B. A review on synthesis and characterization of commercially available natural fibers: Part-I. J. Nat. Fibers 2019, 16, 1132–1144. [Google Scholar] [CrossRef]
- Ranakoti, L.; Gangil, B.; Mishra, S.K.; Singh, T.; Sharma, S.; Ilyas, R.A.; El-Khatib, S. Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials 2022, 15, 4312. [Google Scholar] [CrossRef]
- Ngo, T.-D. Natural fibers for sustainable bio-composites. Nat. Artif. Fiber-Reinf. Compos. Renew. Sources 2018, 3, 107–126. [Google Scholar]
- Shanmugam, V.; Das, O.; Neisiany, R.E.; Babu, K.; Singh, S.; Hedenqvist, M.S.; Berto, F.; Ramakrishna, S. Polymer recycling in additive manufacturing: An opportunity for the circular economy. Mater. Circ. Econ. 2020, 2, 11. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Harussani, M.M.; Hakimi, M.Y.A.Y.; Haziq, M.Z.M.; Atikah, M.S.N.; Asyraf, M.R.M.; Ishak, M.R.; Razman, M.R.; Nurazzi, N.M.; et al. Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications. Polymers 2021, 13, 1326. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, K.; Piszczek, K.; Kaczmarek, M. Reologiczne własności kompozytów polimerowo-drzewnych. Postępy W Inżynierii Mech. 2014, 4, 5–12. [Google Scholar]
- Mitra, B.C. Environment Friendly composite materials: Biocomposites and Green composites. Def. Sci. J. 2014, 64, 244–261. [Google Scholar] [CrossRef]
- Kamperidou, V. Chemical and Structural Characterization of Poplar and Black Pine Wood Exposed to Short Thermal Modification. Drv. Ind. 2021, 72, 155–167. [Google Scholar] [CrossRef]
- Almgren, K.M.; Gamstedt, E.K.; Berthold, F.; Lindström, M. Moisture uptake and hygroexpansion of wood fiber composite materials with polylactide and polypropylene matrix materials. Polym. Compos. 2009, 30, 1809–1816. [Google Scholar] [CrossRef]
- Mooney, B.P. The second green revolution? Production of plant-based biodegradable plastics. Biochem. J. 2009, 418, 219–232. [Google Scholar] [CrossRef]
- Włodarczyk-Flieger, A.; Polok-Rubiniec, M.; Chmielnicki, B. Polimers compoistes with natural filler. Przetwórstwo Tworzyw 2018, 5, 55. [Google Scholar]
- Bajerlejn, M.; Stawecki, W.; Merkisz, J.; Daszkiewicz, P.; Rymniak, Ł. Możliwość redukcji hałasu w pojazdach kolejowych poprzez wykorzystanie wzmocnionych tworzyw sztucznych. TTS Tech. Transp. Szyn. 2017, 12, 233. [Google Scholar]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Cheung, H.Y.; Lau, K.T.; Tao, X.M.; Hui, D. A potential material for tissue engineering: Silkworm silk/PLA biocomposite. Compos. Part B Eng. 2008, 39, 1026–1033. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Gupta, M.K.; Singh, H. PLA based biocomposites for sustainable products: A review. Adv. Ind. Eng. Polym. Res. 2023, 2542–5048. [Google Scholar] [CrossRef]
- EN ISO 15149-1:2011; Solid Biofuels-Determination of Particle Size Distribution-Part 1: Oscillating Screen Method Using Sieve Apertures of 1 mm and Above. iTeh, Inc.: Newark, DE, USA, 2011.
- EN ISO 15149-2:2011; Solid Biofuels-Determination of Particle Size Distribution-Part 2: Vibrating Screen Method Using Sieve Apertures of 3.15 mm and Below. iTeh, Inc.: Newark, DE, USA, 2011.
- Serafimova, E.; Mladenov, M.; Mihailova, I.; Pelovski, Y. Study on the characteristics of waste wood ash. J. Univ. Chem. Technol. Metall. 2011, 46, 31–34. [Google Scholar]
- Postawa, P.; Stachowiak, T.; Szarek, A. Badania właściwości kompozytów drewno-polimer metodą DMTA. Kompozyty 2003, 10, 266–269. [Google Scholar]
- Gardner, D.J.; Han, Y.; Wang, L. Wood–Plastic Composite Technology. Curr. For. Rep. 2015, 1, 139–150. [Google Scholar] [CrossRef]
- Roman, K.; Barwicki, J.; Rzodkiewicz, W.; Dawidowski, M. Evaluation of Mechanical and Energetic Properties of the Forest Residues Shredded Chips during Briquetting Process. Energies 2021, 14, 3270. [Google Scholar] [CrossRef]
- Babiarz, M.; Bednarczuk, Ł. Popiół ze Spalania Biomasy i Jego Wykorzystanie; WPIA AGH: Peoria, IL, USA, 2013; Volume 3. [Google Scholar]
- Georgiopoulos, P.; Kontou, E.; Christopoulos, A. Short-term creep behavior of a biodegradable polymer reinforced with woodfibers. Compos. B Eng. 2015, 80, 134–144. [Google Scholar] [CrossRef]
- Mohanty, P.S.; Misra, M.; Drzal, L.T. Processing, Morphology, and Properties of Biodegradable Polylactide (PLA) and Natural Fiber Composites: A Comprehensive Review. Compos. Part A Appl. Sci. Manuf. 2006, 37, 425–445. [Google Scholar]
PLA Content, % | Position | Density |
---|---|---|
50 | Up | 0.720 d |
50 | Half | 0.683 c,d |
50 | Side | 0.777 e |
25 | Up | 0.559 a |
25 | Half | 0.617 b |
25 | Side | 0.633 b,c |
PLA Content, % | Sample Name | Sample Dimensions, mm | Weight, g | The Mean Sample Density, kg/m3 | ||
---|---|---|---|---|---|---|
Height | Width | Thickness | ||||
50 | Sample I | 52.04 | 51.42 | 7.13 | 10.115 | 530.16 |
Sample II | 50.54 | 50.95 | 7.32 | 11.828 | 627.51 | |
Sample III | 51.30 | 50.83 | 7.21 | 9.515 | 506.10 | |
25 | Sample I | 49.32 | 51.16 | 7.12 | 10.402 | 579.01 |
Sample II | 50.11 | 52.41 | 7.01 | 10.172 | 552.52 | |
Sample III | 49.2 | 50.12 | 7.29 | 10.369 | 576.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pycka, S.; Roman, K. Comparison of Wood-Based Biocomposites with Polylactic Acid (PLA) Density Profiles by Desaturation and X-ray Spectrum Methods. Materials 2023, 16, 5729. https://doi.org/10.3390/ma16175729
Pycka S, Roman K. Comparison of Wood-Based Biocomposites with Polylactic Acid (PLA) Density Profiles by Desaturation and X-ray Spectrum Methods. Materials. 2023; 16(17):5729. https://doi.org/10.3390/ma16175729
Chicago/Turabian StylePycka, Seweryn, and Kamil Roman. 2023. "Comparison of Wood-Based Biocomposites with Polylactic Acid (PLA) Density Profiles by Desaturation and X-ray Spectrum Methods" Materials 16, no. 17: 5729. https://doi.org/10.3390/ma16175729
APA StylePycka, S., & Roman, K. (2023). Comparison of Wood-Based Biocomposites with Polylactic Acid (PLA) Density Profiles by Desaturation and X-ray Spectrum Methods. Materials, 16(17), 5729. https://doi.org/10.3390/ma16175729