An Experimental Study on the Properties of Concrete and Fiber-Reinforced Concrete in Rigid Pavements
Abstract
:1. Introduction
2. Materials and Methods
- -
- -
- -
- -
- Polycarboxylate superplasticizer STACHEMENT 2570/5/G, manufactured by LLC “Stachema Lviv-service” (Lviv, Ukraine) [32];
- -
- Polypropylene fiber “X Mesh” was 39 mm long and 0.45 mm with an equivalent diameter, manufactured by LLC “DIIF” (Dnipro, Ukraine) [33] (Figure 1). The ultimate tensile strength of the fiber was approximately 1000 MPa. Fiber materials of this size were chosen considering the results of past studies by the authors [15]. The actual availability and cost of the fibers from different manufacturers on the Ukrainian market after the start of the war also affected the choice.
- -
- X1, the cement content, from 350 to 450 kg/m3;
- -
- X2, the polypropylene fiber content, from 0 to 3 kg/m3;
- -
- X3, the superplasticizer amount, from 1% to 2% of the cement weight.
3. Results and Analysis
+ 0.009x2 + 0.013x22 ± 0x2x3
− 0.021x3 ± 0x32
± 0x2 − 2.80x22 − 1.13x2x3
+ 2.80x3 ± 0x32
+ 0.95x2 − 2.03x22 − 1.04x2x3
+ 4.39x3 − 2.53x32
+ 0.16x2 ± 0x22 − 0.15x2x3
+ 0.46x3 − 0.33x32
+ 0.07x2 − 0.22x22 ± 0x2x3
+ 0.30x3 − 0.23x32
− 1.13x2 + 1.33x22 ± 0x2x3
− 0.87x3 + 1.63x32
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoxha, E.; Vignisdottir, H.R.; Barbieri, D.M.; Wang, F.; Bohne, R.A.; Kristensen, T.; Passer, A. Life cycle assessment of roads: Exploring research trends and harmonization challenges. Sci. Total Environ. 2021, 759, 143506. [Google Scholar] [CrossRef]
- Tahir, M.F.M.; Abdullah, M.M.A.B.; Rahim, S.Z.A.; Mohd Hasan, M.R.; Sandu, A.V.; Vizureanu, P.; Ghazali, C.M.R.; Kadir, A.A. Mechanical and durability analysis of fly ash based geopolymer with various compositions for rigid pavement applications. Materials 2022, 15, 3458. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Wang, Y.; Wang, X.; Liu, Z.; Liu, Q.; Li, C.; Li, P. Numerical analysis on the structure design of precast cement concrete pavement slabs. Coatings 2022, 12, 1051. [Google Scholar] [CrossRef]
- Hong, X.; Tan, W.; Xiong, C.; Qiu, Z.; Yu, J.; Wang, D.; Wei, X.; Li, W.; Wang, Z. A Fast and non-destructive prediction model for remaining life of rigid pavement with or without asphalt overlay. Buildings 2022, 12, 868. [Google Scholar] [CrossRef]
- Hamim, O.F.; Aninda, S.S.; Hoque, M.S.; Hadiuzzaman, M. Suitability of pavement type for developing countries from an economic perspective using life cycle cost analysis. Int. J. Pavement Res. Technol. 2021, 14, 259–266. [Google Scholar] [CrossRef]
- Hussain, I.; Ali, B.; Akhtar, T.; Jameel, M.S.; Raza, S.S. Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene). Case Stud. Constr. Mater. 2020, 13, e00429. [Google Scholar] [CrossRef]
- Wu, H.; Qin, X.; Huang, X.; Kaewunruen, S. Engineering, mechanical and dynamic properties of basalt fiber reinforced concrete. Materials 2023, 16, 623. [Google Scholar] [CrossRef]
- Vaitkus, A.; Gražulytė, J.; Šernas, O.; Karbočius, M.; Mickevič, R. Concrete modular pavement structures with optimized thickness based on characteristics of high performance concrete mixtures with fibers and silica fume. Materials 2021, 14, 3423. [Google Scholar] [CrossRef]
- Kos, Ž.; Kroviakov, S.; Kryzhanovskyi, V.; Grynyova, I. Research of strength, frost resistance, abrasion resistance and shrinkage of steel fiber concrete for rigid highways and airfields pavement repair. Appl. Sci. 2022, 12, 1174. [Google Scholar] [CrossRef]
- Latifa, E.A.; Aguswari, R.; Wardoyo, P. Performance of steel fiber concrete as rigid pavement. Adv. Mater. Res. 2013, 723, 452–458. [Google Scholar] [CrossRef]
- Kamel, M.A. Quantification of benefits of steel fiber reinforcement for rigid pavement. Am. J. Civ. Eng. Archit. 2016, 4, 189–198. [Google Scholar]
- Kos, Ž.; Kroviakov, S.; Kryzhanovskyi, V.; Crnoja, A. Influence of fibers and hardening accelerator on the concrete for rigid pavements. Mag. Concr. Res. 2023, 75, 2200181. [Google Scholar] [CrossRef]
- Achilleos, C.; Hadjimitsis, D.; Neocleous, K.; Pilakoutas, K.; Neophytou, P.O.; Kallis, S. Proportioning of steel fibre reinforced concrete mixes for pavement construction and their impact on environment and cost. Sustainability 2011, 3, 965–983. [Google Scholar] [CrossRef]
- Cai, Z.; Ren, J.; Shen, G.; Jin, C.; Gu, X.; Cheng, W.; Wang, H. The influence of assembly unit of fibers on the mechanical and long-term properties of reactive powder concrete. Coatings 2023, 13, 412. [Google Scholar] [CrossRef]
- Kos, Ž.; Kroviakov, S.; Kryzhanovskyi, V.; Hedulian, D. Strength, frost resistance, and resistance to acid attacks on fiber-reinforced concrete for industrial floors and road pavements with steel and polypropylene fibers. Materials 2022, 15, 8339. [Google Scholar] [CrossRef] [PubMed]
- Hasani, M.; Nejad, F.M.; Sobhani, J.; Chini, M. Mechanical and durability properties of fiber reinforced concrete overlay: Experimental results and numerical simulation. Constr. Build. Mater. 2021, 268, 121083. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Zhao, B.; Wang, B.; Zhao, Q.; Sun, M. Experimental investigation on physical properties of concrete containing polypropylene fiber and water-borne epoxy for pavement. Coatings 2023, 13, 452. [Google Scholar] [CrossRef]
- Alsabbagh, A.; Wtaife, S.; Shaban, A.; Suksawang, N.; Alshammari, E. Enhancement of rigid pavement capacity using synthetic discrete fibers. IOP Conf. Ser. Mater. Sci. Eng. 2019, 584, 012033. [Google Scholar] [CrossRef]
- Marushchak, U.; Sanytsky, M.; Sydor, N.; Braichenko, S. Research of impact resistance of nanomodified fiberreinforced concrete. MATEC Web. Conf. 2018, 230, 03012. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Chen, J.; Zhao, Z.; Zhao, H.; Zhang, L.; Ren, J. Investigation on shrinkage characteristics of polyester-fiber-reinforced cement-stabilized concrete considering fiber length and content. Buildings 2023, 13, 1027. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, X.; Li, Y.; Yang, H.; Tang, S. Influences of MgO and PVA fiber on the abrasion and cracking resistance, pore structure and fractal features of hydraulic concrete. Fractal Fract. 2022, 6, 674. [Google Scholar] [CrossRef]
- Nobili, A.; Lanzoni, L.; Tarantino, A.M. Experimental investigation and monitoring of a polypropylene-based fiber reinforced concrete road pavement. Constr. Build. Mater. 2013, 47, 888–895. [Google Scholar] [CrossRef]
- Del Savio, A.A.; Esquivel, D.L.T.; de Andrade Silva, F.; Agreda Pastor, J. Influence of synthetic fibers on the flexural properties of concrete: Prediction of toughness as a function of volume, slenderness ratio and elastic modulus of fibers. Polymers 2023, 15, 909. [Google Scholar] [CrossRef] [PubMed]
- Kopecky, L.; Machovic, V.; Králík, V.; Bittnar, Z.; Andertová, J.; Šmilauer, V.; Lhotka, M. Surface modification of pet fibers to improve mechanical properties of cement composites. ICCMA 2011, 33, 355–371. [Google Scholar]
- Singh, S.; Pahsha, E.; Kalla, P. Investigations on GUJCON-CRF Nylon 6 fiber based cement concrete for pavement. Mater. Today: Proc. 2023; in press. [Google Scholar] [CrossRef]
- Dvorkin, L.; Dvorkin, O.; Ribakov, Y. Mathematical Experiment Planning in Concrete Technology; Nova Science Publishers: Hauppauge, NY, USA, 2012; 172p. [Google Scholar]
- BS EN 196-2:2013; Methods of Testing Cement. Chemical Analysis of Cement. British Standard Institution: London, UK, 2013.
- BS EN 196-1:2016; Methods of Testing Cement. Determination of Strength. British Standard Institution: London, UK, 2016.
- DSTU B V.2.7-75-98; Crushed Stone and Gravel are Dense Natural for Building Materials, Products, Structures and Works. State Committee for Construction, Architecture and Housing Policy of Ukraine: Kyiv, Ukraine, 1999. Available online: http://online.budstandart.com/ru/catalog/doc-page?id_doc=4674 (accessed on 18 May 2023).
- ASTM C 33/C33M-18; Standard Specifications for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2018.
- DSTU B V.2.7-32-95; Building Materials. Sand Dense Natural for Construction Materials, Products, Designs and Works. Specifications, State Committee for Urban Planning of Ukraine: Kyiv, Ukraine, 1996. Available online: http://online.budstandart.com/ru/catalog/doc-page?id_doc=4053 (accessed on 18 May 2023).
- Official Site of LLC “Stachema Lviv-Service”. Available online: https://stachema.com.ua/uk/ (accessed on 18 May 2023).
- Official Site of LLC “DIIF”. Available online: https://fiber.ua/en/kompaniya (accessed on 18 May 2023).
- Wu, C.F.; Hamada, M.S. Experiments: Planning, Analysis, and Optimization, 2nd ed.; Wiley: Hoboken, NJ, USA, 2009; 760p. [Google Scholar]
- Lyashenko, T.V.; Voznesenskiy, V.A. Composition-Process Fields Methodology in Computational Building Materials Science; Astroprint: San Diego, CA, USA, 2017; 168p. [Google Scholar]
- DSTU B V.2.7-114-2002; Building Materials. Concrete Mixes. Test Methods. State Committee for Construction, Architecture and Housing Policy of Ukraine: Kyiv, Ukraine, 2002. Available online: http://online.budstandart.com/ru/catalog/doc-page?id_doc=4913 (accessed on 10 July 2023).
- DSTU B V.2.7-214:2009; Building Materials. Concrete. Methods for Determining the Strength of Control Samples. Ministry of Regional Construction of Ukraine: Kyiv, Ukraine, 2010. Available online: http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=25943 (accessed on 10 July 2023).
- DSTU B 2.7-212:2009; Building Materials. Concretes. Methods of Determining Abrasion. Ministry of Regional Development, Construction and Housing and Communal Services of Ukraine: Kyiv, Ukraine, 2009. Available online: http://online.budstandart.com/ua/catalog/doc-page?id_doc=25953 (accessed on 29 May 2023).
- DSTU B V.2.7-49-96; Building Materials. Concretes. Accelerated Methods of Determining Frost Resistance during Repeated Freezing and Thawing. State Committee for Urban Planning of Ukraine: Kyiv, Ukraine, 1996. Available online: http://online.budstandart.com/ua/catalog/doc-page?id_doc=4950 (accessed on 31 May 2023).
- Robalo, K.; Soldado, E.; Costa, H.; Carvalho, L.; do Carmo, R.; Júlio, E. Durability and time-dependent properties of low-cement concrete. Materials 2020, 13, 3583. [Google Scholar] [CrossRef] [PubMed]
- Sambucci, M.; Valente, M. Ground waste tire rubber as a total replacement of natural aggregates in concrete mixes: Application for lightweight paving blocks. Materials 2021, 14, 7493. [Google Scholar] [CrossRef] [PubMed]
- Moretti, L.; Di Mascio, P.; Fusco, C. Porous concrete for pedestrian pavements. Water 2019, 11, 2105. [Google Scholar] [CrossRef]
- DBN V.2.3-4:2015; Highways. Part I. Design. Part II. Construction. Ministry of Regional Development, Construction and Housing and Communal Services of Ukraine: Kyiv, Ukraine, 2015. Available online: http://online.budstandart.com/ru/catalog/doc-page.html?id_doc=62131 (accessed on 22 May 2023).
- Li, X.; Zhang, Q.; Mao, S. Investigation of the bond strength and microstructure of the interfacial transition zone between cement paste and aggregate modified by Bayer red mud. J. Hazard. Mater. 2021, 403, 123482. [Google Scholar] [CrossRef]
- Tolmachev, S.; Belichenko, O.; Tolmachov, D. Abrasion of cement-concrete and his contents investigation. MATEC Web Conf. 2018, 230, 02033. [Google Scholar] [CrossRef]
- Tolmachev, S. Research of the reasons of frost destruction of road concrete. Key Eng. Mater. 2020, 864, 175–179. [Google Scholar] [CrossRef]
- Warudkar, A.; Elavenil, S.; Arunkumar, A. Assessment of abrasion resistance of concrete pavement for durability. Int. J. Civ. Eng. Technol. 2018, 9, 1176–1181. Available online: https://iaeme.com/MasterAdmin/Journal_uploads/IJCIET/VOLUME_9_ISSUE_6/IJCIET_09_06_133.pdf (accessed on 31 May 2023).
- Tolmachev, S.N.; Kondratyeva, I.G.; Chuguenko, A.N.; Grinchenko, R.O. The relationship between abrasion and frost resistance of road concrete. Bull. Kharkiv Natl. Automob. Highw. Univ. 2005, 30, 52–55. [Google Scholar]
- Adewuyi, A.P.; Sulaiman, A.I.; Akinyele, J.O. Compressive strength and abrasion resistance of concretes under varying exposure conditions. Open J. Civ. Eng. 2017, 7, 82–99. [Google Scholar] [CrossRef]
- DSTU B V.2.7-47-96; Building Materials. Concretes. Methods of Determining Frost Resistance. General Requirements. Accelerated Methods of Determining Frost Resistance during Repeated Freezing and Thawing. State Committee for Urban Planning of Ukraine: Kyiv, Ukraine, 1996. Available online: http://online.budstandart.com/ua/catalog/doc-page?id_doc=4061 (accessed on 31 May 2023).
- Wardeh, G.; Mohamed, M.A.; Ghorbel, E. Analysis of concrete internal deterioration due to frost action. J. Build. Phys. 2011, 35, 54–82. [Google Scholar] [CrossRef]
- Wang, J.; Dai, Q.; Si, R.; Guo, S. Mechanical, durability, and microstructural properties of macro synthetic polypropylene (PP) fiber-reinforced rubber concrete. J. Clean. Prod. 2019, 234, 1351–1364. [Google Scholar] [CrossRef]
No. of Mixture | Experimental Plan (Factor Levels) | Concrete and Fibrous Concrete Mixtures | W/C | |||||||
---|---|---|---|---|---|---|---|---|---|---|
X1, Cement | X2, Fiber | X3, Superplasticizer | Cement, kg/m3, (X1) | Crushed Stone, kg/m3 | Sand, kg/m3 | Fiber kg/m3, (X2) | Superplasticizer kg/m3, (X3) | Water, L/m3 | ||
1 | −1 | −1 | −1 | 350 | 1270 | 680 | 0 | 3.50 | 157 | 0.449 |
2 | −1 | −1 | 1 | 350 | 1270 | 700 | 0 | 7.00 | 145 | 0.414 |
3 | −1 | 0 | 0 | 350 | 1270 | 690 | 1.5 | 5.25 | 148 | 0.423 |
4 | −1 | 1 | −1 | 350 | 1270 | 675 | 3.0 | 3.50 | 162 | 0.463 |
5 | −1 | 1 | 1 | 350 | 1270 | 695 | 3.0 | 7.00 | 143 | 0.409 |
6 | 0 | −1 | 0 | 400 | 1250 | 640 | 0 | 6.00 | 148 | 0.370 |
7 | 0 | 0 | −1 | 400 | 1250 | 635 | 1.5 | 4.00 | 161 | 0.403 |
8 | 0 | 0 | 0 | 400 | 1250 | 640 | 1.5 | 6.00 | 151 | 0.378 |
9 | 0 | 0 | 1 | 400 | 1250 | 645 | 1.5 | 8.00 | 145 | 0.363 |
10 | 0 | 1 | 0 | 400 | 1250 | 635 | 3.0 | 6.00 | 167 | 0.418 |
11 | 1 | −1 | −1 | 450 | 1230 | 585 | 0 | 4.50 | 165 | 0.367 |
12 | 1 | −1 | 1 | 450 | 1230 | 600 | 0 | 9.00 | 145 | 0.322 |
13 | 1 | 0 | 0 | 450 | 1230 | 585 | 1.5 | 6.75 | 151 | 0.336 |
14 | 1 | 1 | −1 | 450 | 1230 | 580 | 3.0 | 4.50 | 171 | 0.380 |
15 | 1 | 1 | 1 | 450 | 1230 | 590 | 3.0 | 9.00 | 155 | 0.344 |
No. of Mixture | Experimental Plan (Factor Levels) | Compressive Strength 3 Days (fcm.3), MPa | Compressive Strength 28 Days (fcm), MPa | Flexural Strength 3 Days (fc.tf.3), MPa | Flexural Strength 28 Days (fc.tf), MPa | Abrasion, (G), g/cm2 | Frost Resistance, Cycles | ||
---|---|---|---|---|---|---|---|---|---|
X1, Cement | X2, Fiber | X3, Superplasticizer | |||||||
1 | −1 | −1 | −1 | 34.8 ± 0.56 | 55.1 ± 0.95 | 3.75 ± 0.056 | 5.35 ± 0.075 | 0.344 ± 0.0060 | F150 |
2 | −1 | −1 | 1 | 46.1 ± 0.62 | 65.4 ± 0.72 | 4.86 ± 0.036 | 6.23 ± 0.089 | 0.319 ± 0.0062 | F150 |
3 | −1 | 0 | 0 | 46.2 ± 0.70 | 65.1 ± 0.62 | 4.91 ± 0.070 | 6.14 ± 0.044 | 0.293 ± 0.0062 | F200 |
4 | −1 | 1 | −1 | 41.3 ± 0.75 | 54.9 ± 0.50 | 4.20 ± 0.072 | 5.35 ± 0.079 | 0.319 ± 0.0026 | F150 |
5 | −1 | 1 | 1 | 48.0 ± 0.36 | 66.7 ± 0.36 | 4.05 ± 0.046 | 6.42 ± 0.036 | 0.292 ± 0.0036 | F150 |
6 | 0 | −1 | 0 | 50.6 ± 0.62 | 70.8 ± 1.04 | 4.55 ± 0.070 | 6.17 ± 0.053 | 0.305 ± 0.0052 | F150 |
7 | 0 | 0 | −1 | 46.6 ± 0.85 | 68.5 ± 0.52 | 4.19 ± 0.017 | 6.07 ± 0.095 | 0.304 ± 0.0044 | F150 |
8 | 0 | 0 | 0 | 45.9 ± 0.56 | 71.5 ± 0.70 | 5.47 ± 0.056 | 6.82 ± 0.085 | 0.280 ± 0.0046 | F200 |
9 | 0 | 0 | 1 | 48.8 ± 0.20 | 73.3 ± 0.72 | 5.60 ± 0.053 | 6.32 ± 0.075 | 0.282 ± 0.0030 | F200 |
10 | 0 | 1 | 0 | 39.6 ± 0.70 | 72.0 ± 1.01 | 5.52 ± 0.079 | 6.24 ± 0.080 | 0.275 ± 0.0053 | F200 |
11 | 1 | −1 | −1 | 43.6 ± 0.75 | 64.9 ± 0.60 | 4.96 ± 0.066 | 5.83 ± 0.035 | 0.318 ± 0.0053 | F200 |
12 | 1 | −1 | 1 | 49.7 ± 0.44 | 78.3 ± 0.66 | 6.03 ± 0.061 | 6.50 ± 0.053 | 0.312 ± 0.0035 | F200 |
13 | 1 | 0 | 0 | 51.7 ± 0.95 | 78.9 ± 0.92 | 5.97 ± 0.089 | 6.61 ± 0.087 | 0.272 ± 0.0056 | F200 |
14 | 1 | 1 | −1 | 47.3 ± 0.26 | 73.4 ± 0.36 | 5.41 ± 0.035 | 6.30 ± 0.050 | 0.303 ± 0.0062 | F200 |
15 | 1 | 1 | 1 | 49.0 ± 0.78 | 77.0 ± 0.96 | 6.53 ± 0.085 | 6.44 ± 0.079 | 0.296 ± 0.0046 | F200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kos, Ž.; Kroviakov, S.; Mishutin, A.; Poltorapavlov, A. An Experimental Study on the Properties of Concrete and Fiber-Reinforced Concrete in Rigid Pavements. Materials 2023, 16, 5886. https://doi.org/10.3390/ma16175886
Kos Ž, Kroviakov S, Mishutin A, Poltorapavlov A. An Experimental Study on the Properties of Concrete and Fiber-Reinforced Concrete in Rigid Pavements. Materials. 2023; 16(17):5886. https://doi.org/10.3390/ma16175886
Chicago/Turabian StyleKos, Željko, Sergii Kroviakov, Andrii Mishutin, and Andrii Poltorapavlov. 2023. "An Experimental Study on the Properties of Concrete and Fiber-Reinforced Concrete in Rigid Pavements" Materials 16, no. 17: 5886. https://doi.org/10.3390/ma16175886
APA StyleKos, Ž., Kroviakov, S., Mishutin, A., & Poltorapavlov, A. (2023). An Experimental Study on the Properties of Concrete and Fiber-Reinforced Concrete in Rigid Pavements. Materials, 16(17), 5886. https://doi.org/10.3390/ma16175886