Effect of Grain Structure and Quenching Rate on the Susceptibility to Exfoliation Corrosion in 7085 Alloy
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Immersion Tests
2.3. Microstructure Examination
3. Results
3.1. Grain Structure
3.2. Grain Boundary Quenching Precipitated Phase
3.3. Exfoliation Corrosion Immersion Test Results
4. Conclusions
- For the 7085 alloy, BG samples exhibit higher sensitivity to EXCO compared to EG samples, regardless of the cooling rate. This is because BG samples have larger aspect ratio grains, which lead to the accumulation of surface stress during the corrosion process, resulting in faster crack propagation along the GBs. Additionally, BG samples have a higher number of GBs, which results in a greater amount of GBPs and a higher sensitivity to EXCO.
- With a decrease in cooling rate, both EG and BG samples show an increasing trend in EXCO sensitivity. This is attributed to the slower cooling rate, which leads to an increase in the size of GBPs and the width of the PFZ. Both the maximum corrosion depth and average corrosion depth significantly increase with decreasing cooling rates, with a higher rise observed in BG samples. In the meantime, a linear correlation can be established between the average depth of corrosion and the logarithm of the cooling rate.
- GBPs and their PFZ have a lower potential compared to the matrix, causing them to act as anodes and preferentially dissolve during corrosion. Consequently, corrosion cracks propagate along the GBs. Corrosion cracks in both EG and BG samples primarily propagate along HAGBs. At lower cooling rates, crack propagation along SGBs is observed in BG samples.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wloka, J.; Virtanen, S. Influence of scandium on the pitting behaviour of Al-Zn-Mg-Cu alloys. Acta Mater. 2007, 55, 6666–6672. [Google Scholar] [CrossRef]
- Sun, Y.W.; Pan, Q.L.; Lin, S.; Zhao, X.J.; Liu, Z.L.; Li, W.J.; Wang, G.Q. Effects of critical defects on stress corrosion cracking of Al-Zn-Mg-Cu-Zr alloy. J. Mater. Res. Technol. 2021, 12, 1303–1318. [Google Scholar] [CrossRef]
- Ren, J.; Wang, R.C.; Wang, C.Q.; Feng, Y. Multistage aging treatment influenced precipitate characteristics improve mechanical and corrosion properties in powder hot-extruded 7055 Al alloy. Mater. Charact. 2020, 170, 110683. [Google Scholar] [CrossRef]
- Rout, P.K.; Ghosh, M.M.; Ghosh, K.S. Effect of solution pH on electrochemical and stress corrosion cracking behaviour of a 7150 Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 2014, 604, 156–165. [Google Scholar] [CrossRef]
- Kittur, M.Y.; Kittur, M.I.; Reddy, A.R.; Baig, M.A.A.; Ridwan, S.A.K.; Faheem, M. Mechanical response of aluminum 7075 with heat treatment and exfoliation corrosion. Mat. Today Proc. 2021, 47, 6173–6179. [Google Scholar] [CrossRef]
- Masoud, M.; Mahdieh, S.; Shigeru, K.; Tomohiko, H. Unraveling the effect of dislocations and deformation-induced boundaries on environmental hydrogen embrittlement behavior of a cold-rolled Al–Zn–Mg–Cu alloy. Int. J. Hydrogen Energy 2021, 46, 8285–8299. [Google Scholar]
- Wloka, J.; Hack, T.; Virtanen, S. Influence of temper and surface condition on the exfoliation behavior of high strength Al-Zn-Mg-Cu alloys. Corros. Sci. 2007, 49, 1437–1449. [Google Scholar] [CrossRef]
- Huang, T.S.; Frankel, G.S. Influence of grain structure on anisotropic localized corrosion kinetics of AA7xxx-T6 alloys. Corros. Eng. Sci. Technol. 2006, 41, 192–199. [Google Scholar] [CrossRef]
- Marlaud, T.; Malki, B.; Deschamps, A.; Baroux, B. Electrochemical aspects of exfoliation corrosion of aluminum alloys: The effects of heat treatment. Corros. Sci. 2011, 53, 1394–1400. [Google Scholar] [CrossRef]
- Lu, X.H.; Han, X.L.; Du, Z.H.; Wang, G.J.; Lu, L.Y.; Lei, J.Q.; Zhou, T.T. Effect of microstructure on exfoliation corrosion resistance in an Al-Zn-Mg alloy. Mater. Charact. 2018, 135, 167–174. [Google Scholar] [CrossRef]
- Mcnaughtan, D.; Worsfold, M.; Robinson, M.J. Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminum alloys. Corros. Sci. 2003, 45, 2377–2389. [Google Scholar] [CrossRef]
- Keddam, M.; Kuntz, C.; Takenouti, H.; Schustert, D.; Zuili, D. Exfoliation corrosion of aluminum alloys examined by electrode impedance. Electrochim. Acta 1997, 42, 87–97. [Google Scholar] [CrossRef]
- Chen, K.; Fang, H.; Zhang, Z.; Chen, X.; Liu, G. Effect of Yb, Cr and Zr additions on recrystallization and corrosion resistance of Al–Zn–Mg–Cu alloys. Mater. Sci. Eng. A 2008, 497, 426–431. [Google Scholar] [CrossRef]
- Fan, X.; Jiang, D.; Li, Z.; Tao, W.; Ren, S. Influence of microstructure on the crack propagation and corrosion resistance of Al-Zn-Mg-Cu alloy 7150. Mater. Character. 2007, 58, 24–28. [Google Scholar] [CrossRef]
- Liu, S.; Zhong, Q.; Zhang, Y.; Liu, W.; Zhang, X.; Deng, Y. Investigation of quench sensitivity of high strength Al-Zn-Mg-Cu alloys by time- temperature-properties diagrams. Mater. Des. 2010, 31, 3116–3120. [Google Scholar] [CrossRef]
- Dorward, R.C.; Beerntsen, D. Grain structure and quench-rate effects on strength and toughness of AA7050 Al-Zn-Mg-Cu-Zr alloy plate. Metall. Trans. A 1995, 26, 2481–2484. [Google Scholar] [CrossRef]
- Tang, J.; Yang, Z.; Liu, S.; Wang, Q.; Chen, J.; Chai, W.; Ye, L. Quench sensitivity of AA 7136 alloy: Contribution of grain structure and dispersoids. Metall. Mater. Trans. A 2019, 50, 4900–4912. [Google Scholar] [CrossRef]
- Sánchez-Amaya, J.M.; Bethencourt, M.; González-Rovira, L.; Botana, F.J. Noise resistance and shot noise parameters on the study of IGC of aluminium alloys with different heat treatments. Electrochim. Acta 2007, 52, 6569–6583. [Google Scholar] [CrossRef]
- Marlaud, T.; Malki, B.; Henon, C.; Deschamps, A.; Baroux, B. Relationship between alloy composition, microstructure and exfoliation corrosion in Al-Zn-Mg-Cu alloys. Corros. Sci. 2011, 53, 3139–3149. [Google Scholar] [CrossRef]
- Li, D.F.; Ming, Z.X.; Dan, L.S.; Wen, Y.B.; Yue, L. Effects of Quenching Rate on Exfoliation Corrosion of Al-5Zn-3Mg-1Cu Aluminum Alloy Thick Plate. J. Hunan Univ. 2015, 42, 47–52. [Google Scholar]
- Liu, S.D.; Li, C.B.; Deng, Y.L.; Zhang, X.M. Influence of grain structure on quench sensitivity relative to localized corrosion of high strength aluminum alloy. Mat. Chem. Phys. 2015, 167, 320–329. [Google Scholar] [CrossRef]
- Chen, M.Y.; Zheng, X.; He, K.H.; Liu, S.D.; Zhang, Y. Local corrosion mechanism of an Al-Zn-MgCu alloy in oxygenated chloride solution: Cathode activity of quenching induced η precipitates. Corros. Sci. 2021, 191, 109743. [Google Scholar] [CrossRef]
- Ma, Z.M.; Liu, J.; Yang, Z.S.; Liu, S.D.; Zhang, Y. Effect of cooling rate and grain structure on the exfoliation corrosion susceptibility of AA7136 alloy. Mater. Charact. 2020, 168, 110533. [Google Scholar] [CrossRef]
- Yuan, D.L.; Chen, K.H.; Chen, S.G.; Zhou, L.; Chang, J.Y.; Huang, L.P.; Yi, Y.P. Enhancing stress corrosion cracking resistance of low Cu-containing Al-Zn-Mg-Cu alloys by slow quench rate. Mater. Design 2019, 164, 107558. [Google Scholar] [CrossRef]
- Song, F.X.; Zhang, X.M.; Liu, S.D.; Tan, Q.; Li, D.F. The effect of quench rate and over-ageing temper on the corrosion behaviour of AA7050. Corros. Sci. 2014, 78, 276–286. [Google Scholar] [CrossRef]
- Li, C.B. Study on Quenching Sensitivity of 7085 Aluminum Alloy. Ph.D. Thesis, Central South University, Changsha, China, 2017. [Google Scholar]
- GB/T 22639-2008; Test method of exfoliation corrosion for wrought aluminium and aluminium alloys. Standardization Administration of the People’s Republic of China: Beijing, China, 2008.
- Sun, Y.; Pan, Q.; Sun, Y.; Wang, W.; Huang, Z.; Wang, X.; Hu, Q. Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al-Zn-Mg-Cu-Zr alloy. J. Alloy. Compd. 2019, 783, 329–340. [Google Scholar] [CrossRef]
- Li, C.; Deng, Y.; Tang, J. Effect of recrystallization fraction on quenching sensitivity of Al-Zn-Mg-Cu alloy. J. Mater. Res. 2018, 32, 881–888. [Google Scholar]
- Liu, S.; Liu, W.; Yong, Z.; Zhang, X.; Deng, Y. Effect of microstructure on the quench sensitivity of Al-Zn-Mg-Cu alloys. J. Alloy. Compd. 2010, 507, 53–61. [Google Scholar] [CrossRef]
- Liu, S.; Chen, B.; Li, C.; Dai, Y.; Deng, Y.; Zhang, X. Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminum alloy. Corros. Sci. 2015, 91, 203–212. [Google Scholar] [CrossRef]
- Ogura, T.; Hirose, A.; Sato, T. Effect of PFZ and grain boundary precipitate on mechanical properties and fracture morphologies in Al-Zn-Mg (Ag) alloys. Mater. Sci. Forum 2010, 638, 297–302. [Google Scholar] [CrossRef]
- Kelly, D.J.; Robinson, M.J. Influence of heat treatment and grain shape on exfoliation corrosion of Al-Li alloy 8090. Corrosion 1993, 49, 787–795. [Google Scholar] [CrossRef]
- Yu, M.Y.; Zhang, Y.A.; Li, X.W.; Wen, K.B.; Xiong, Q.; Li, Z.H.; Yan, L.Z.; Yan, H.G.; Liu, H.W.; Li, Y.N. Effect of recrystallization on plasticity, fracture toughness and stress corrosion cracking of a high-alloying Al-Zn-Mg-Cu alloy. Mater. Lett. 2020, 275, 128074. [Google Scholar] [CrossRef]
- Dan, L.S.; Chen, G.; Yin, Y.L.; Shen, Y.Z.; Lai, D.Y. Influence of Quenching Rate on Peel Corrosion Resistance of 7020 Aluminum Alloy Sheets. J. Mater. Res. 2018, 32, 423–431. [Google Scholar]
- Fang, H.C.; Chen, K.H.; Chen, X.; Chao, H.; Peng, G.S. Effect of Cr, Yb and Zr additions on localized corrosion of Al-Zn-Mg-Cu alloy. Corros. Sci. 2009, 51, 2872–2877. [Google Scholar] [CrossRef]
- Du, Y.; Chang, Y.A.; Huang, B.Y.; Gong, W.P.; Jin, Z.P.; Xu, H.H.; Yuan, Z.H.; Liu, Y.; He, Y.H.; Xie, F.Y. Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation. Mater. Sci. Eng. A 2003, 363, 140–151. [Google Scholar] [CrossRef]
Element | Zn | Mg | Cu | Zr | Fe | Si | Al |
---|---|---|---|---|---|---|---|
Content | 7.5 | 1.6 | 1.7 | 0.11 | <0.08 | <0.06 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, P.; Li, C.; Zhu, D.; Zhao, C.; Xiao, B.; Xie, G. Effect of Grain Structure and Quenching Rate on the Susceptibility to Exfoliation Corrosion in 7085 Alloy. Materials 2023, 16, 5934. https://doi.org/10.3390/ma16175934
Cao P, Li C, Zhu D, Zhao C, Xiao B, Xie G. Effect of Grain Structure and Quenching Rate on the Susceptibility to Exfoliation Corrosion in 7085 Alloy. Materials. 2023; 16(17):5934. https://doi.org/10.3390/ma16175934
Chicago/Turabian StyleCao, Puli, Chengbo Li, Daibo Zhu, Cai Zhao, Bo Xiao, and Guilan Xie. 2023. "Effect of Grain Structure and Quenching Rate on the Susceptibility to Exfoliation Corrosion in 7085 Alloy" Materials 16, no. 17: 5934. https://doi.org/10.3390/ma16175934
APA StyleCao, P., Li, C., Zhu, D., Zhao, C., Xiao, B., & Xie, G. (2023). Effect of Grain Structure and Quenching Rate on the Susceptibility to Exfoliation Corrosion in 7085 Alloy. Materials, 16(17), 5934. https://doi.org/10.3390/ma16175934