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Abstract: This paper presents an analysis of the causes of damage and fragmentation to the high-
pressure turbine (HTP) disc of the RD-33 engine mounted in the MIG-29 aircraft. The authors have
carried out an analysis of the changes to the structure of the disc material, both in the areas containing
cracks and in the undamaged areas. The impact of structural changes on the alterations in the analysed
strength properties along the disc radius was assessed. Material tests were correlated with the analysis
of the recorded engine parameters, indicating potential causes of the HPT disc fragmentation.

Keywords: turbine jet engine; material tests; ember-resistant alloys

1. Introduction

An analysis of the causes of aviation accidents related to the MiG-29 aircraft operated
in Poland has indicated that 9% of these failures resulted from damage to the RD-33
engine [1]. A vast majority of these events were caused by foreign object damage (FOD),
leading to the destruction of both the low- and high-pressure compressor blades. Another
significant problem, constituting 13% of RD-33 engine failure cases, is damage to the high-
pressure turbine (HPT) blades. The existing literature analyses [2–7] indicate that the main
cause of damage to these engine components are thermomechanical loads facilitated by
the erosive and corrosive effect of exhaust gases. In addition, there have been two cases
of stage IV fatigue cracks of the fan disc, the indirect cause of which was the extension of
the service life of the engines from the original 1200 h to 1600 h of operation, leading to
mechanical damage and resulting in the initiation and propagation of fatigue cracks [1].

Extending the service life of engines entails an increase in the number of their start-
ups, take-offs, and landings, as well as an extension of their operating time in the ranges
characterised by the maximum temperature of exhaust gases, which increases the number
of engine work cycles. These factors have a huge impact on the structural changes in
the materials of the engine components exposed to high temperatures and may lead to a
reduction in the general strength properties, even causing the destruction of individual
components. The engine components that are most exposed to thermomechanical loads
undoubtedly include the HPT turbine blades and disc. In the case of the RD-33 engine,
to a certain, limited extent, diagnostics related to the turbine disc blades are possible in
operating conditions, although the analysis of its condition can only occur only after engine
disassembly during an overhaul. Therefore, turbine discs must be designed in such a way as
to exclude the possibility of their failure, which, in extreme cases, leads to defragmentation
due to the possibility of aircraft damage caused by the huge kinetic energy found in the
fragments torn from the disc. The modern disc design process is focused on rotating
elements exposed to maximum stress, such as the turbine blades root and the turbine disc
rim. This means that damage may be expected in these areas. The impact of changes in
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the microstructure caused by thermal and mechanical loads during engine operation is
also significant [8,9]. One study [3] states that after exceeding the limit temperature (even
for a short period of time), there is a rapid deterioration of the basic heat resistance of the
material, leading to its destruction even after 200 h of operation. However, by increasing
the operating temperature by 200 ◦C above the limit, the material can fail even within
1 h at the same load. The reason for this behaviour of the material is the expansion of
grains in the γ’ superstructure, the limit size of which, ensuring the appropriate strength
parameters, has been set at 12 µm [10]. In order to prevent the expansion of the γ’ phase
grains, the chemical composition of heat-resistant nickel superalloys is modified with
additives, which are designed to create carbides within the grain boundaries of the matrix,
inhibiting the expansion of the strengthening phase. Nevertheless, the greater chemical
activity of these elements can lead to unfavourable phenomena, such as the formation of
oxide precipitates within the grain boundaries of the matrix, which is conducive to the
initiation and propagation of fatigue cracks [11].

Failure to meet the above material and strength conditions may lead to exceeding the
permissible level of stress, leading to decohesion of the turbine disc material, resulting in
its defragmentation and, therefore, the destruction of the engine (Figure 1).
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Before proceeding with the basic macroscopic examinations, an element of the tur-
bine disc rim cut out from the damaged area was subjected to a preliminary inspection, 
based on which the areas for further material tests were selected. In order to obtain sam-
ples for metallographic tests, the disc was cut into smaller fragments using a plasma cut-
ter. The samples were successively marked with the numbers one to five in the undam-
aged part of the disc (Figure 2), while in the damaged area, they were marked with the 
numbers six to nine (Figure 3). 

Figure 1. Area where a fragment of the HCP turbine disc of the RD-33 engine has been torn out (a),
with a view of the resulting fracture in the material decohesion zone (b).

In this work, changes in the structure of the disc material were analysed, both in the
areas of the resulting damage and in zones free of deformations and cracks, while assessing
the impact of structural changes on alterations in the strength properties occurring along
the disc radius. The material tests were supplemented with an analysis of the course of the
changes in the recorded exhaust gas temperature in the tested turbine.

2. Test Results and Discussion
2.1. Structural and Strength Analysis

Before proceeding with the basic macroscopic examinations, an element of the turbine
disc rim cut out from the damaged area was subjected to a preliminary inspection, based
on which the areas for further material tests were selected. In order to obtain samples for
metallographic tests, the disc was cut into smaller fragments using a plasma cutter. The
samples were successively marked with the numbers one to five in the undamaged part of
the disc (Figure 2), while in the damaged area, they were marked with the numbers six to
nine (Figure 3).
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Figure 3. A view of the damaged part of the disc cut into pieces with markings of the
respective samples.

Macro examinations (Figure 4) carried out with the use of a Keyence VHX-950F digital
microscope in the area of disc rim damage allow the conclusion that the damage to this
element of the engine was progressing over a long period of time and was not of a temporary
nature. This is evidenced by the surface of the analysed fractures without zones of obvious
plastic deformation and by the areas which, despite strong oxidation, are characterised
by the occurrence of local sites typical of material fatigue damage. Additional evidence
confirming this thesis is the observation of discolourations on the surfaces of the analysed
fractures, with the darkest shade near the disc surface and decreasing discolouration
intensity with increasing distance from the surface. The strongest discolouration starts in
the zones where the holes supplying cooling air to the blade interior penetrate the front
surface of the turbine disc (Figure 4a). These areas contain morphological changes typical
of fatigue sites, where fatigue damage of the material is initiated and crack propagation
develops (Figure 4b). A characteristic feature of the analysed fractures is also the occurrence
of clusters of bright spots of precipitation, which may constitute non-metallic inclusions in
the material structure of the analysed disc (Figure 4c).
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Figure 4. Macroscopic image of the fracture with visible traces of gaseous corrosion (sample 7) (a) and
the site of fatigue cracking (sample 9) (b) in the area of the cooling holes, with a view of bright
non-metallic precipitates (sample 9) (c).

Macroscopic observation of the disc in the undamaged zone has confirmed the above
assumptions. It was found that cracks initiated on the surface of the cooling channels at
the front surface of the disc progressed around the periphery in the areas between the
holes and then combined in this area, leading to complete decohesion of the disc material
(Figure 5).

The conclusion regarding the long-term fatigue damage of the turbine disc material in
the area of the cooling channels in the turbine disc rim area is confirmed by the analysis of
the geometric structure of the channels’ surface using the TOPO-01 profilographometer
(IOS, Krakow, Poland). The visible effects of the material removal processing on the
surface of the channels in the undamaged areas of the disc are characterised by roughness
parameters at a level of Rz = 3–7 µm and Ra = 0.3–0.7 µm (Figure 6a). On the other hand,
in the fracture developing on the surface of the channel in sample six, these parameters
reached the values of Rz = 39.95 µm and Ra = 5.93 µm (Figure 6b).

In order to unambiguously determine the causes and nature of damage to the material
of the tested turbine disc, the following examinations were performed: structural and
fractographic tests, assessment of wear traces and chemical composition of this structural
element, and assessment of other selected elements of the analysed turbine assembly, such
as blades, dampers, and the retaining ring. These analyses were carried out using a Quanta
3D FEG (SEM/FIB) (FEI Company, Hillsboro, OR, USA) high-resolution scanning electron
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microscope equipped with an integrated EDS/WDS/EBSD system (EDAX, Inc. Mahwah,
NJ, USA) (EDS—energy dispersive X-ray spectroscopy, WDS—wavelength dispersive X-ray
spectroscopy, EBSD—electron backscatter diffraction).
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The structure of the appropriately prepared metallographic micro-sections collected
from the areas of observed cracks and undamaged zones has been comprehensively exam-
ined. The fractures have also been assessed using samples collected from selected areas of
the damaged turbine.

Fractographic studies of the surfaces were carried out using samples collected from
the “damaged” area of the turbine before and after cleaning the analysed surface in an
ultrasonic cleaner with the use of acetone. Based on these observations, it was found
that the analysed fragments demonstrated characteristic features of a fatigue fracture.
Numerous fatigue crack origin sites were observed by the fracture surface (Figure 7a). Each
time, fatigue bands (Figure 7b) and a residual fracture zone (Figure 7c) were observed in
the fatigue area above the fatigue sites.
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Figure 7. Localised fatigue site in the cooling channel area (a), fatigue crack propagation zone with
characteristic fatigue bands (b), and fracture area with visible traces of a plastic fracture (c).

In addition, observations of fractures in the crack fracture zone revealed the presence
of numerous clusters of fine non-metallic precipitates (Figure 8a). The point analyses of the
chemical composition of samples collected from specific areas demonstrated that they were
hafnium oxides (Figure 9). The confirmation of this observation is the surface distribution
of elements shown in Figure 10, which, apart from identifying hafnium oxides, also allows
for observation of the occurrence of aluminium oxide spots.
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Figure 10. Surface distribution of elements in the residual fracture zone, showing clusters of hafnium
and aluminium oxides.

In addition, in the fatigue fracture zones, we identified areas of about 50 µm made of
complex oxide carbide structures (Figure 11), which were undoubtedly structural notches
in the analysed alloy volume. These undesirable precipitates could not have formed during
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thermal processing or exploitation, which suggests that they were formed in the structure
of the material during the metallurgical process of alloy production.
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Figure 11. Spectrum and results of the qualitative analysis of the chemical composition in the area
marked with a red square, containing complex carbide-oxide inclusions identified in the fatigue
cracking zone.

In order to unambiguously link the observed fatigue damage of the turbine disc
material to the grain structure of the alloy used, microscopic observations were carried out,
which clearly demonstrated that the material from which the turbine disc was made had a
grain structure typical of the heat-resistant nickel superalloy produced using the powder
metallurgy process. The observation of metallographic micro-sections revealed that the
tested alloy was composed of primary γ grains containing cubic γ’ phase precipitations
(Figure 12). It has been estimated that the size of the primary γ areas is in the range of
50–150 µm. Along the boundaries of the observed primary grains, there are overgrown
precipitates of the γ’ phase and carbide precipitates preventing grain growth and high-
temperature creep. The microanalysis of the chemical composition of the tested material
corresponds to the Russian EP741NP superalloy used for the construction of turbine discs
in high-load turbine jet engines [12].
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Figure 12. Two-phase γ + γ’ structure of the tested alloy with carbide precipitations within grain
boundaries, with an analysis of the chemical composition and literature data [13,14] regarding the
composition of the EP741NP alloy.

Nevertheless, due to the observed changes in strength properties along the disc radius
and due to the identified fatigue cracks, it was necessary to carry out observations in these
areas. Changes in the grain structure along the disc radius were analysed first (Figure 13).
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Figure 13. Changes in the cubic grains of the γ’ phase in the alloy matrix and the growth of γ’ and
carbide precipitates within the boundaries of the original γ grains of the examined EP741NP alloy in
the areas of samples collected for strength tests along the disc radius; distance from the foot plate of
the disc: 23 mm (a), 63 mm (b), 85 mm (c), 128 mm (d), and 175 mm (e).
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Based on the microscopic observations, it was found that the grain structure of the alloy
in the area of the turbine disc rim (Figure 13a), i.e., in the zone of maximum thermal impact
of hot exhaust gases, revealed clear differences in the morphology of the grain structure
compared to the areas located below the rim (Figure 13b–e). A clear, selective growth of
cuboidal grains of the γ’ phase can be observed, leading to strong disorientation within
the primary grains of the solid γ solution. In addition, within the original boundaries,
the effects of anomalous growth of the γ’ superstructure and carbide precipitates were
observed. Such a morphological alteration is conducive to the development of cracks in
the material between disoriented, expanded precipitates of the γ’ phase, both along the
primary grain boundaries and transcrystalline [15,16].

The cause of these structural changes is the long-term impact of high temperatures
on the alloy structure. Literature reports on temperature changes in the structure of the
EP741NP alloy and their impact on changes in mechanical properties, including mainly
high-temperature creep resistance, clearly indicate that exceeding the total operating time
of more than 200 h at a temperature of 750 ◦C causes structural changes, which were also
observed in our study, leading to a decrease in strength properties [16–19]. Due to the
observed structural component alterations, the structure in the crack areas was assessed.
Sample six, from the damaged area of the disc, confirmed the literature reports that the
fatigue cracks originated in overheated areas of primary grain boundaries of γ solid solution
characterised by overgrown grains of the γ’ phase and carbide precipitates (Figure 14a) and
propagating between the grains of the γ’ phase (Figure 14b), which confirms the cracking
mechanism described in the works [15,16].
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Figure 14. Crack origin in the primary grain boundaries of γ solid solution in the area of γ’ phase
grains and carbide precipitates marked with the number 1 (a) and crack propagation between γ’
phase grains (b).

When analysing the observations of the tested alloy microstructure, it is impossible
to ignore the identified hafnium oxide precipitates (Figures 9 and 10). According to
literature reports, this element was added to the EP741NP alloy to form hafnium carbides,
limiting the growth of other M23C6 and MC carbides within the grain boundaries and
thus improving the resistance to high-temperature creep [20,21]. However, according to
the results presented in [22], failure to maintain the technological process regime at the
alloy production stage may lead to the formation of hafnium oxide (HfO2) precipitates
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with a monoclinic structure, significantly contributing to the development of fatigue cracks,
which was also confirmed in the case of the examined disc material. It should also be noted
that, in addition to the previously found and described material defects in the structure
of the analysed alloy, in the area of fatigue crack origin, primary particles of the powder
used in the disc material sintering process were observed, which were covered with oxide
impurities, which prevented the proper occurrence of the diffusion processes and obtention
of a homogeneous sinter (Figure 15a). In addition, numerous oxides and nitrides were
identified in the areas of the primary grain boundaries of the solid γ solution, weakening
the cohesion and strength of the boundaries (Figure 15b).
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numerous ceramic precipitates within the primary grains of the matrix (b).

The growth of carbide phases, which are the direct cause of the initiation and propaga-
tion of fatigue cracks (see Figures 13e and 14a), was also confirmed by the microhardness
measurements (Figure 16). They demonstrated homogeneous distribution of this parameter
value at the level of 450HV0.1 in all undamaged areas (Figure 16b), regardless of their
location as a function of the disc radius, indicating the macroscopic homogeneity of the ma-
terial. On the other hand, a noticeable increase in microhardness, to the level of 600HV0.1,
was observed in the area of fatigue crack propagation (Figure 16a).

The structural changes of the material observed along the disc radius (Figure 13)
should also be reflected in the mechanical properties. In order to determine the basic, static
strength parameters in the disc sections (Figure 17), tensile test samples were collected
from five areas: one—disc foot plate, two—disc zone between the labyrinth seal and the
connecting drum, three—drum zone, four—zone between the blade rim and drum part, and
five—retaining ring area. The prepared samples were subjected to tension on an Instron
8501 testing machine using an extensometer with a measuring length of 12.5 mm and
TestXpert III v.1.5 software. The tests were carried out in accordance with the requirements
of the PN-EN ISO 6892-1:2020-05 standard [23].
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As a result of the test, stress–strain curves (б-ε) (Figure 18) were obtained based on
which the basic strength properties of the tested samples were determined, including: yield
strength Rp0,2, tensile strength Rm, and relative elongation A (Table 1).
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Figure 18. Sample stress–strain curve obtained for a sample collected from the retaining ring zone.

Table 1. Dimensions and determined strength properties of the tested samples.

Sample
Specification

Thickness [c]
[mm]

Width
[mm]

Yield Strength
Rp0.2 [MPa]

Tensile Strength
Rm [MPa]

Elongation
A [%]

1-1 2.43 4.14 896 1391 19.5

1-2 2.47 4.14 894 1371 19.6

1-3 2.44 4.13 894 1398 23.5

2-1 2.43 4.12 907 1421 23.4

2-2 2.45 4.12 908 1419 25.6

2-3 2.43 4.12 908 1413 23.4

3-1 2.45 4.12 911 1423 23.8

3-2 2.46 4.12 910 1306 15.9

3-3 2.45 4.12 919 1397 21.3

4-1 2.41 4.12 911 1423 20.4

4-2 2.40 4.13 917 1392 20.0

4-3 2.43 4.12 916 1396 20.3

5-1 1.76 4.12 905 1391 19.7

5-2 1.75 4.12 911 1400 18.0

5-3 1.76 4.12 900 1361 18.8

The changes in the determined average strength parameter values along the line
running from the turbine foot plate are shown in Table 2 and Figure 19.



Materials 2023, 16, 5939 16 of 22

Table 2. The changes in the average strength parameter values as a function of the distance from the
turbine foot plate.

Distance from the Disc Foot
Plate [mm] Rp0.2 [MPa] Rm [MPa] A [%]

23 (area 1) 894.7 ± 0.9 1386.7 ± 11.4 20.9 ± 1.9

63 (area 2) 907.7 ± 0.5 1417.7 ± 3.4 24.1 ± 1.0

85 (area 3) 913.3 ± 4.0 1375.3 ± 50.2 20.3 ± 3.3

128 (area 4) 914.7 ± 2.6 1403.7 ± 13.8 20.2 ± 0.2

175 (area 5) 905.3 ± 4.5 1384.0 ± 16.7 18.8 ± 0.7
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Figure 19. Changing the yield point R0.2 (a), tensile strength Rm (b) and strain A (c) of the turbine
material as a function of the distance from the disc base.

The strength properties of the turbine disc material, determined by means of a static
tensile test, show a non-monotonic change in the strength properties along the disc radius,
with the maximum value of R0.2 and Rm for the distance from the disc foot plate in the
range of 60–130 mm, i.e., in the zone of maximum cooling, with a noticeable decrease
in plasticity in the rim area, i.e., the maximum temperature impact area. In addition, it
should be noted that the values of strength and plastic properties determined at ambient
temperature are lower than those reported in the literature [16,24] for the EP741NP alloy
of the 1995 generation, while meeting the requirements for the EP741NP alloy of the 1981
generation (Table 3).
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Table 3. Comparison of strength properties obtained during a static tensile test with literature data.

Parameter Tested Disc Material EP741NP Generation
1981 [16]

EP741NP Generation
1995 [16] EP741NP [24]

Rm [MPa]

r = 23 1387

1355 1420 1560

r = 63 1418

r = 85 1375

r = 128 1403

r = 175 1384

R0.2 [MPa]

r = 23 895

885 1025 1020

r = 63 908

r = 85 913

r = 128 915

r = 175 905

A[%]

r = 23 21

17 20 19

r = 63 24

r = 85 20

r = 128 20

r = 175 19

2.2. Analysis of the Engine Operating Parameters

Material tests were correlated with the analysis of the recorded engine parameters,
such as exhaust gas temperature behind the turbine. They indicated the potential causes of
HTP disc fragmentation.

In the case of the RD-33 engine, its operating manual defines the permissible oper-
ating temperatures of the engine in the turbine area by means of the temperature behind
the turbine. Based on the manual, the temperature change behind the turbine t4 was
characterised as a function of the temperature at the engine inlet tH , which is shown in
Figure 20. This temperature characteristic results from the engine control program based
on the temperature behind the turbine in relation t4 to the temperature before the turbine
combined with compressor maps, which depends on the temperature of the air entering tH
the engine and the rotational speed. The characteristic t4 = f (tH) involves two ranges of
engine operation (Figure 20) as a function of ambient temperature, the first from −30 ◦C to
+15 ◦C and the second from +15 ◦C to +50 ◦C.

After determining the characteristics t4 = f (tH), we analysed the selected flight
parameter changes. The temperature t4 was assessed in terms of the possibility of exceeding
the limit values. Sample temperature value differences dt4 between the permissible value
t4,D resulting from the limitations imposed by the manufacturer (Figure 20) and the value

recorded in the engine t4,L are shown in Figures 21–23.
Three intervals of excessive temperature dt4, i.e., temperature exceeding the permissi-

ble limit for this engine, have been established:

- First—(680–710) s—Figure 21;
- Second—(737–746) s—Figure 22;
- Third—(758–762) s—Figure 23.

In the first interval (Figure 21), we observed excess temperature values of even up to
dt4 = 8 ◦C. In the initial period, from 680 s, the exceedance was of a temporary nature,
maintaining more or less the same value in the order of 3 ◦C. After 15 s, they assumed
the character of a continuous exceedance, with the value increasing for 16 s. Temperature
exceedance subsided at 711 s.
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Figure 23. Temperature t4 deviations from engine characteristics in the time interval (758–762) s.

The second interval (Figure 22) is characterised by a different course of the temperature
exceedance dt4 compared to the first one. The event was not continuous and had an
oscillatory character. Exceedances of 2.5 ◦C are achieved, and the time of the entire interval
lasted about 8 s.

The third interval (Figure 23) had a completely different course of temperature ex-
ceedance. At 759 s, there was a slight exceeding of the permitted limit temperature, which
then became continuous in nature, lasting about 12 s, and then reaching a value of up to
3 ◦C.

This type of exceeding the permitted limit temperature, due to its cyclical nature, may
cause turbine strength reduction by increasing the load of this assembly in terms of the
thermal stress and low-cycle fatigue. These types of loads are important in the long term
because of their cumulative effect, which, in the analysed case, led to the destruction of the
tested engine subassembly, the high-pressure turbine disc.
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3. Summary and Conclusions

As a result of the structural and strength tests of the material of the damaged disc of
the RD-33 engine, it can be concluded that:

The chemical composition of the examined disc lets us unequivocally state that it is
type EP741NP Russian-made heat-resistant nickel-based alloy.

The phase structure of the alloy used in the examined disc production corresponds to
the typical structure of heat-resistant nickel-based superalloys and consists of a two-phase
γ + γ’ matrix with carbide precipitations.

The morphology of the grain structure allows us to clearly state that the examined
turbine disc was made using the powder metallurgy process.

In the entire volume of the material structure of the examined disc, local areas with the
occurrence of clusters of hafnium oxide and titanium nitride spots were observed, which
were classified as a 0.5 purity class according to the Polish Standard PN-64/H-04510 [25].

In the area of the blade rim, the effects of the strong, selective growth of the γ’ phase
were observed, both in the area of grain boundaries and in the matrix, as well as intensive
growth of the carbide phase in the areas of grain boundaries, caused, according to the
literature data, by the effect of long-term, over 200 h long periods of continuous exposure
to temperatures above 750 ◦C, causing overheating of the turbine disc material in this area.

The strength properties of the turbine disc material, determined by means of a static
tensile test, show a non-monotonic change in the strength properties along the disc radius,
with the maximum value of R0.2 and Rm for the distance from the disc foot plate in the
range of 60–130 mm, i.e., in the zone of maximum cooling, with a noticeable decrease in
plasticity in the rim area, i.e., the maximum temperature impact area.

The values of the strength and plastic properties determined at ambient temperature
are lower than those reported in the literature [14,15] for the EP741NP alloy of the 1995
generation while meeting the requirements for the EP741NP alloy of the 1981 generation.

The Vickers microhardness measurements carried out with a load of 100 G demon-
strated a uniform distribution of the parameter value of 450HV0.1 over the entire surface
of all the tested areas, indicating the macroscopic homogeneity of the material of the tested
samples. A noticeable increase in microhardness up to the level of 550-600HV01 was
observed in the area of fatigue crack propagation.

Numerous fatigue cracks, characterised by changes in the morphology of the grain
structure, were observed in the rim area. The analysis of fracture morphology, both in
the uncleaned state and after cleaning, reveals numerous fatigue bands propagating into
the disc material from the foci located on the surface in the cooling hole area. The crack
development follows a typical mechanism characteristic for heat-resistant nickel alloys
produced using the powder metallurgy process along the expanded carbide precipitates
within the grain boundaries and between the expanded crystallites of the γ’ phase.

In numerous cases, hafnium oxide clusters were found on the revealed fractures,
whose precipitates, according to literature reports, are areas conducive to the origination
and propagation of fatigue cracks [22].

The undamaged surfaces of the cooling channels in the area of the disc rim have
visible effects of machining, characterised by the roughness parameters Rz = 3–7 µm and
Ra = 0.3–0.7 µm.

No effects of high-temperature oxidation were observed on the surfaces of the cooling
channels, which proves the correct flow of cooling air during the disc operation.

In the case of the RD-33 engine, its operating manual defines the permissible operating
temperatures of the engine in the turbine area. Based on the manual, a graph of the
temperature change behind the turbine (t4) was made as a function of the temperature
at the entrance to the engine (tH) and the behaviour of the exhaust gas temperature (t4)
during the flight of the examined engine to check for possible exceedances. As a result of
the analysis, three types of the permitted limit temperature excess were obtained. In the
first type, there were excess temperature values of even up to 8 ◦C. In the initial period, the
exceedances were of a temporary nature, maintaining more or less the same value. They
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were of a continuous nature with an increasing value. The second interval is characterised
by a different course of the temperature exceedance compared to the first one. The event
was not continuous and had an oscillatory character. The temperature exceedance reached a
value of 2.5 ◦C, and the entire event lasted for about 8 s. The third interval has a completely
different course of temperature exceedance. There was a slight exceeding of the permitted
limit temperature, which then became continuous in nature, lasting about 12 s and then
reaching a value of up to 3 ◦C. This type of exceeding the permitted limit temperature, due
to its cyclical nature, may cause turbine strength reduction by increasing the load of this
assembly in terms of the thermal stress and low-cycle fatigue.
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