Axion Field Influence on Josephson Junction Quasipotential
Abstract
:1. Introduction
2. Model
2.1. RCSJ Model
2.2. Axion
2.3. Axion–JJ System
3. Calculation of the Quasipotential
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
JJ | Josephson junction |
RCSJ | resistively and capacitively shunted junction |
References
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef]
- Abbott, L.; Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The not-so-harmless axion. Phys. Lett. B 1983, 120, 137–141. [Google Scholar] [CrossRef]
- Alesini, D.; Babusci, D.; Barone, C.; Buonomo, B.; Beretta, M.M.; Bianchini, L.; Castellano, G.; Chiarello, F.; Di Gioacchino, D.; Falferi, P.; et al. Status of the SIMP Project: Toward the Single Microwave Photon Detection. J. Low Temp. Phys. 2020, 199, 348–354. [Google Scholar] [CrossRef]
- Rettaroli, A.; Alesini, D.; Babusci, D.; Barone, C.; Buonomo, B.; Beretta, M.M.; Castellano, G.; Chiarello, F.; Di Gioacchino, D.; Felici, G.; et al. Josephson Junctions as Single Microwave Photon Counters: Simulation and Characterization. Instruments 2021, 5, 25. [Google Scholar] [CrossRef]
- Barbieri, R.; Braggio, C.; Carugno, G.; Gallo, C.; Lombardi, A.; Ortolan, A.; Pengo, R.; Ruoso, G.; Speake, C. Searching for galactic axions through magnetized media: The QUAX proposal. Phys. Dark Universe 2017, 15, 135–141. [Google Scholar] [CrossRef]
- McAllister, B.T.; Flower, G.; Ivanov, E.N.; Goryachev, M.; Bourhill, J.; Tobar, M.E. The ORGAN experiment: An axion haloscope above 15 GHz. Phys. Dark Universe 2017, 18, 67–72. [Google Scholar] [CrossRef]
- Crescini, N.; Alesini, D.; Braggio, C.; Carugno, G.; D’Agostino, D.; Di Gioacchino, D.; Falferi, P.; Gambardella, U.; Gatti, C.; Iannone, G.; et al. Axion Search with a Quantum-Limited Ferromagnetic Haloscope. Phys. Rev. Lett. 2020, 124, 171801. [Google Scholar] [CrossRef]
- Beck, C. Possible Resonance Effect of Axionic Dark Matter in Josephson Junctions. Phys. Rev. Lett. 2013, 111, 231801. [Google Scholar] [CrossRef]
- Grimaudo, R.; Valenti, D.; Spagnolo, B.; Filatrella, G.; Guarcello, C. Josephson-junction-based axion detection through resonant activation. Phys. Rev. D 2022, 105, 033007. [Google Scholar] [CrossRef]
- Grimaudo, R.; Valenti, D.; Filatrella, G.; Spagnolo, B.; Guarcello, C. Coupled quantum pendula as a possible model for Josephson-junction-based axion detection. Chaos Solitons Fractals 2023, 173, 113745. [Google Scholar] [CrossRef]
- Beck, C. Possible resonance effect of dark matter axions in SNS Josephson junctions. arXiv 2017, arXiv:1710.04299. [Google Scholar]
- Hoffmann, C.; Lefloch, F.; Sanquer, M.; Pannetier, B. Mesoscopic transition in the shot noise of diffusive superconductor–normal-metal–superconductor junctions. Phys. Rev. B 2004, 70, 180503. [Google Scholar] [CrossRef]
- Bae, M.H.; Dinsmore, R.C., III; Sahu, M.; Lee, H.J.; Bezryadin, A. Zero-crossing Shapiro steps in high-Tc superconducting microstructures tailored by a focused ion beam. Phys. Rev. B 2008, 77, 144501. [Google Scholar] [CrossRef]
- He, L.; Wang, J.; Chan, M.H. Shapiro Steps in the Absence of Microwave Radiation. arXiv 2011, arXiv:1107.0061. [Google Scholar]
- Golikova, T.E.; Hübler, F.; Beckmann, D.; Batov, I.E.; Karminskaya, T.Y.; Kupriyanov, M.Y.; Golubov, A.A.; Ryazanov, V.V. Double proximity effect in hybrid planar superconductor-(normal metal/ferromagnet)-superconductor structures. Phys. Rev. B 2012, 86, 064416. [Google Scholar] [CrossRef]
- Bretheau, L.; Girit, Ç.Ö.; Pothier, H.; Esteve, D.; Urbina, C. Exciting Andreev pairs in a superconducting atomic contact. Nature 2013, 499, 312–315. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Wang, P. Magnetic field enhanced critical current and subharmonic structures in dissipative superconducting gold nanowires. Quantum Front. 2022, 1, 21. [Google Scholar] [CrossRef]
- Braginski, A.I. Superconductor Electronics: Status and Outlook. J. Supercond. Nov. Magn. 2019, 32, 23–44. [Google Scholar] [CrossRef]
- Tafuri, F. Fundamentals and Frontiers of the Josephson Effect; Springer Nature: Berlin/Heidelberg, Germany, 2019; Volume 286. [Google Scholar]
- Valenti, D.; Denaro, G.; Spagnolo, B.; Mazzola, S.; Basilone, G.; Conversano, F.; Brunet, C.; Bonanno, A. Stochastic models for phytoplankton dynamics in Mediterranean Sea. Ecol. Complex. 2016, 27, 84–103. [Google Scholar] [CrossRef]
- Valenti, D.; Fazio, G.; Spagnolo, B. Stabilizing effect of volatility in financial markets. Phys. Rev. E 2018, 97, 062307. [Google Scholar] [CrossRef]
- Tobiska, J.; Nazarov, Y.V. Josephson Junctions as Threshold Detectors for Full Counting Statistics. Phys. Rev. Lett. 2004, 93, 106801. [Google Scholar] [CrossRef]
- Pekola, J.P. Josephson Junction as a Detector of Poissonian Charge Injection. Phys. Rev. Lett. 2004, 93, 206601. [Google Scholar] [CrossRef]
- Ankerhold, J. Detecting Charge Noise with a Josephson Junction: A Problem of Thermal Escape in Presence of Non-Gaussian Fluctuations. Phys. Rev. Lett. 2007, 98, 036601. [Google Scholar] [CrossRef]
- Sukhorukov, E.V.; Jordan, A.N. Stochastic Dynamics of a Josephson Junction Threshold Detector. Phys. Rev. Lett. 2007, 98, 136803. [Google Scholar] [CrossRef]
- Timofeev, A.V.; Meschke, M.; Peltonen, J.T.; Heikkilä, T.T.; Pekola, J.P. Wideband Detection of the Third Moment of Shot Noise by a Hysteretic Josephson Junction. Phys. Rev. Lett. 2007, 98, 207001. [Google Scholar] [CrossRef]
- Huard, B.; Pothier, H.; Birge, N.O.; Esteve, D.; Waintal, X.; Ankerhold, J. Josephson junctions as detectors for non-Gaussian noise. Ann. Phys. 2007, 16, 736–750. [Google Scholar] [CrossRef]
- Grabert, H. Theory of a Josephson junction detector of non-Gaussian noise. Phys. Rev. B 2008, 77, 205315. [Google Scholar] [CrossRef]
- Filatrella, G.; Pierro, V. Detection of noise-corrupted sinusoidal signals with Josephson junctions. Phys. Rev. E 2010, 82, 046712. [Google Scholar] [CrossRef]
- Guarcello, C.; Valenti, D.; Augello, G.; Spagnolo, B. The Role of Non-Gaussian Sources in the Transient Dynamics of Long Josephson Junctions. Acta Phys. Pol. B 2013, 44, 997–1005. [Google Scholar] [CrossRef]
- Guarcello, C.; Filatrella, G.; Spagnolo, B.; Pierro, V.; Valenti, D. Voltage drop across Josephson junctions for Lévy noise detection. Phys. Rev. Res. 2020, 2, 043332. [Google Scholar] [CrossRef]
- Guarcello, C. Lévy noise effects on Josephson junctions. Chaos Solitons Fractals 2021, 153, 111531. [Google Scholar] [CrossRef]
- Walsh, E.D.; Efetov, D.K.; Lee, G.H.; Heuck, M.; Crossno, J.; Ohki, T.A.; Kim, P.; Englund, D.; Fong, K.C. Graphene-Based Josephson-Junction Single-Photon Detector. Phys. Rev. Appl. 2017, 8, 024022. [Google Scholar] [CrossRef]
- Kuzmin, L.S.; Sobolev, A.S.; Gatti, C.; Di Gioacchino, D.; Crescini, N.; Gordeeva, A.; Il’ichev, E. Single Photon Counter Based on a Josephson Junction at 14 GHz for Searching Galactic Axions. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Guarcello, C.; Braggio, A.; Solinas, P.; Giazotto, F. Nonlinear Critical-Current Thermal Response of an Asymmetric Josephson Tunnel Junction. Phys. Rev. Appl. 2019, 11, 024002. [Google Scholar] [CrossRef]
- Revin, L.S.; Pankratov, A.L.; Gordeeva, A.V.; Yablokov, A.A.; Rakut, I.V.; Zbrozhek, V.O.; Kuzmin, L.S. Microwave photon detection by an Al Josephson junction. Beilstein J. Nanotechnol. 2020, 11, 960–965. [Google Scholar] [CrossRef]
- Yablokov, A.; Glushkov, E.; Pankratov, A.; Gordeeva, A.; Kuzmin, L.; Il’ichev, E. Resonant response drives sensitivity of Josephson escape detector. Chaos Solitons Fractals 2021, 148, 111058. [Google Scholar] [CrossRef]
- Piedjou Komnang, A.; Guarcello, C.; Barone, C.; Gatti, C.; Pagano, S.; Pierro, V.; Rettaroli, A.; Filatrella, G. Analysis of Josephson junctions switching time distributions for the detection of single microwave photons. Chaos Solitons Fractals 2021, 142, 110496. [Google Scholar] [CrossRef]
- Guarcello, C.; Piedjou Komnang, A.S.; Barone, C.; Rettaroli, A.; Gatti, C.; Pagano, S.; Filatrella, G. Josephson-Based Scheme for the Detection of Microwave Photons. Phys. Rev. Appl. 2021, 16, 054015. [Google Scholar] [CrossRef]
- Pankratov, A.L.; Revin, L.S.; Gordeeva, A.V.; Yablokov, A.A.; Kuzmin, L.S.; Il’ichev, E. Towards a microwave single-photon counter for searching axions. NPJ Quantum Inf. 2022, 8, 61. [Google Scholar] [CrossRef]
- Pankratov, A.L.; Gordeeva, A.V.; Revin, L.S.; Ladeynov, D.A.; Yablokov, A.A.; Kuzmin, L.S. Approaching microwave photon sensitivity with Al Josephson junctions. Beilstein J. Nanotechnol. 2022, 13, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.; Tél, T. Weak-noise limit of Fokker-Planck models and non differentiable potentials for dissipative dynamical systems. Phys. Rev. A 1985, 31, 1109. [Google Scholar] [CrossRef] [PubMed]
- Kautz, R.L. Thermally induced escape: The principle of minimum available noise energy. Phys. Rev. A 1988, 38, 2066–2080. [Google Scholar] [CrossRef]
- Kautz, R.L. Shapiro steps in large-area metallic-barrier Josephson junctions. J. Appl. Phys. 1995, 78, 5811–5819. [Google Scholar] [CrossRef]
- Kautz, R.L. Noise, chaos, and the Josephson voltage standard. Rep. Prog. Phys. 1996, 59, 935–992. [Google Scholar] [CrossRef]
- Pountougnigni, O.V.; Yamapi, R.; Filatrella, G.; Tchawoua, C. Noise and disorder effects in a series of birhythmic Josephson junctions coupled to a resonator. Phys. Rev. E 2019, 99, 032220. [Google Scholar] [CrossRef]
- McConnell, A.; Idris, S.; Opatosky, B.; Amet, F.M.C. Phase locking and noise-driven dynamics in a Josephson-junction electronic analog. Phys. Rev. B 2021, 104, 184513. [Google Scholar] [CrossRef]
- Dykman, M.I.; Smelyanskiy, V.N.; Luchinsky, D.G.; Mannella, R.; McClintock, P.V.E.; Stein, N.D. Large Fluctuations in a Periodically Driven Dynamical System. Int. J. Bifurc. Chaos 1998, 08, 747–754. [Google Scholar] [CrossRef]
- Kraut, S.; Feudel, U. Enhancement of noise-induced escape through the existence of a chaotic saddle. Phys. Rev. E 2003, 67, 015204. [Google Scholar] [CrossRef]
- Kraut, S.; Feudel, U. Noise-induced escape through a chaotic saddle: Lowering of the activation energy. Phys. D Nonlinear Phenom. 2003, 181, 222–234. [Google Scholar] [CrossRef]
- Khovanov, I.A.; Khovanova, N.A. Numerical simulations versus theoretical predictions for a non-Gaussian noise induced escape problem in application to full counting statistics. Phys. Rev. B 2014, 89, 085419. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X. Noise induced escape in one-population and two-population stochastic neural networks with internal states. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 023137. [Google Scholar] [CrossRef]
- Frimmer, M.; Heugel, T.L.; Nosan, I.C.V.; Tebbenjohanns, F.; Hälg, D.; Akin, A.; Degen, C.L.; Novotny, L.; Chitra, R.; Zilberberg, O.; et al. Rapid Flipping of Parametric Phase States. Phys. Rev. Lett. 2019, 123, 254102. [Google Scholar] [CrossRef]
- Barone, A.; Paterno, G. Physics and Applications of the Josephson Effect; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Likharev, K. Dynamics of Josephson Junctions and Circuits; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- McCumber, D.E. Effect of ac Impedance on dc Voltage-Current Characteristics of Superconductor Weak-Link Junctions. J. Appl. Phys. 1968, 39, 3113–3118. [Google Scholar] [CrossRef]
- Guarcello, C.; Valenti, D.; Spagnolo, B.; Pierro, V.; Filatrella, G. Josephson-based Threshold Detector for Lévy-Distributed Current Fluctuations. Phys. Rev. Appl. 2019, 11, 044078. [Google Scholar] [CrossRef]
- Beenakker, C.W.J. Three “Universal” Mesoscopic Josephson Effects. In Low-Dimensional Electronic Systems; Bauer, G., Kuchar, F., Heinrich, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 78–82. [Google Scholar]
- Kramers, H. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 1940, 7, 284–304. [Google Scholar] [CrossRef]
- Sikivie, P. Experimental Tests of the “Invisible” Axion. Phys. Rev. Lett. 1983, 51, 1415–1417. [Google Scholar] [CrossRef]
- Visinelli, L. Axion-electromagnetic waves. Mod. Phys. Lett. A 2013, 28, 1350162. [Google Scholar] [CrossRef]
- Sikivie, P.; Yang, Q. Bose-Einstein condensation of dark matter axions. Phys. Rev. Lett. 2009, 103, 111301. [Google Scholar] [CrossRef]
- Duffy, L.D.; van Bibber, K. Axions as dark matter particles. New J. Phys. 2009, 11, 105008. [Google Scholar] [CrossRef]
- Yan, J.; Beck, C. Nonlinear dynamics of coupled axion-Josephson junction systems. Phys. D Nonlinear Phenom. 2020, 403, 132294. [Google Scholar] [CrossRef]
- Gordeeva, A.V.; Pankratov, A.L. Minimization of timing errors in reproduction of single flux quantum pulses. Appl. Phys. Lett. 2006, 88, 022505. [Google Scholar] [CrossRef]
- Blackburn, J.A.; Marchese, J.E.; Cirillo, M.; Grønbech-Jensen, N. Classical analysis of capacitively coupled superconducting qubits. Phys. Rev. B 2009, 79, 054516. [Google Scholar] [CrossRef]
- Dubos, P.; Courtois, H.; Pannetier, B.; Wilhelm, F.K.; Zaikin, A.D.; Schön, G. Josephson critical current in a long mesoscopic S-N-S junction. Phys. Rev. B 2001, 63, 064502. [Google Scholar] [CrossRef]
- Bergeret, F.S.; Cuevas, J.C. The Vortex State and Josephson Critical Current of a Diffusive SNS Junction. J. Low Temp. Phys. 2008, 153, 304–324. [Google Scholar] [CrossRef]
- Du, X.; Skachko, I.; Andrei, E.Y. Josephson current and multiple Andreev reflections in graphene SNS junctions. Phys. Rev. B 2008, 77, 184507. [Google Scholar] [CrossRef]
- Graham, R.; Tél, T. Nonequilibrium potential for coexisting attractors. Phys. Rev. A 1986, 33, 1322–1337. [Google Scholar] [CrossRef]
- Pankratov, A.L.; Gordeeva, A.V.; Kuzmin, L.S. Drastic Suppression of Noise-Induced Errors in Underdamped Long Josephson Junctions. Phys. Rev. Lett. 2012, 109, 087003. [Google Scholar] [CrossRef]
- Risken, H. The Fokker-Planck Equation: Methods of Solution and Applications; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Kumar, B.V.K.V.; Carroll, C.W. Performance Of Wigner Distribution Function Based Detection Methods. Opt. Eng. 1984, 23, 732–737. [Google Scholar] [CrossRef]
- Hamilton, C.A. Josephson voltage standards. Rev. Sci. Instruments 2000, 71, 3611–3623. [Google Scholar] [CrossRef]
- Piedjou Komnang, A.S.; Guarcello, C.; Barone, C.; Pagano, S.; Filatrella, G. Analysis of Josephson Junction Lifetimes for the Detection of Single Photons in a Thermal Noise Background. In Proceedings of the 2021 IEEE 14th Workshop on Low Temperature Electronics (WOLTE), Matera, Italy, 12–16 April 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Filatrella, G.; Barone, C.; Carapella, G.; Gatti, C.; Granata, V.; Guarcello, C.; Mauro, C.; Komnang, A.P.; Pierro, V.; Rettaroli, A.; et al. Theoretical and Numerical Estimate of Signal-to-Noise Ratio in the Analysis of Josephson Junctions Lifetime for Photon Detection. IEEE Trans. Appl. Supercond. 2023, 33, 0600105. [Google Scholar] [CrossRef]
- Kautz, R.L. Quasipotential and the stability of phase lock in nonhysteretic Josephson junctions. J. Appl. Phys. 1994, 76, 5538–5544. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimaudo, R.; Valenti, D.; Spagnolo, B.; Troisi, A.; Filatrella, G.; Guarcello, C. Axion Field Influence on Josephson Junction Quasipotential. Materials 2023, 16, 5972. https://doi.org/10.3390/ma16175972
Grimaudo R, Valenti D, Spagnolo B, Troisi A, Filatrella G, Guarcello C. Axion Field Influence on Josephson Junction Quasipotential. Materials. 2023; 16(17):5972. https://doi.org/10.3390/ma16175972
Chicago/Turabian StyleGrimaudo, Roberto, Davide Valenti, Bernardo Spagnolo, Antonio Troisi, Giovanni Filatrella, and Claudio Guarcello. 2023. "Axion Field Influence on Josephson Junction Quasipotential" Materials 16, no. 17: 5972. https://doi.org/10.3390/ma16175972
APA StyleGrimaudo, R., Valenti, D., Spagnolo, B., Troisi, A., Filatrella, G., & Guarcello, C. (2023). Axion Field Influence on Josephson Junction Quasipotential. Materials, 16(17), 5972. https://doi.org/10.3390/ma16175972