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Abstract: β-tricalcium phosphate has good biodegradability and biocompatibility; it is widely
perceived as a good material for treating bone deficiency. In this research, different contents of
strontium (Sr) and silver (Ag) ion-doped β-tricalcium phosphate powders were prepared using the
sol–gel method. After obtaining the best ratio of pore-forming agent and binder, the as-synthesized
powders were sintered in a muffle for 5 h at 1000 ◦C to obtain the samples. Then, these samples were
degraded in vitro in simulated body fluids. The samples were tested using a series of characterization
methods before and after degradation. Results showed that the amount of Sr and/or Ag doping had
an effect on the crystallinity and structural parameters of the samples. After degradation, though the
compressive strength of these samples decreased overall, the compressive strength of the undoped
samples was higher than that of the doped samples. Notably, apatite-like materials were observed on
the surface of the samples. All the results indicate that Sr and/or Ag β-TCP has good osteogenesis
and proper mechanical properties; it will be applied as a prospective biomaterial in the area of
bone repair.

Keywords: β-tricalcium phosphate; sol–gel synthesis; bionic bone; compressive strength;
in vitro degradation

1. Introduction

With an aging population, changes in eating habits, diabetes and other health problems
on the rise worldwide have caused great damage to our bones, leading to an increased
incidence of bone damage or amputation [1–3]. As a result, many methods, including
allografts, tissue engineering (TE) methods, and bioinert and bioactive implant materials,
have been implemented to help patients regain limb use. However, the supply of allografts
is limited and there is also the possibility of spreading disease and inflammation with
their use. Meanwhile, remineralizing bone using TE methods is very time consuming.
Bioinert implants made of cement, ceramic or metal are widely used in clinical practice as
excellent alternatives. However, due to the mismatch between mechanical properties and
stress, these implants easily fail after 10–15 years [4]. Bioactive implants, by contrast, can
stimulate appropriate biological responses in the body. In particular, calcium phosphate
implant materials are ideal bone conduction materials, but their mechanical properties are
generally undesired [5]. Among them, calcium phosphate (CaP) compounds have high
biocompatibility in the body and are very similar to the minerals that exist in bone and
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teeth; they are widely used in the field of health. For all these reasons, CaP compounds
are generally regarded as the most attractive compounds for bioceramics [6]. The most
prominent materials among the CaPs are hydroxyapatite (HA, Ca10(PO4)6(OH)2) and
tricalcium phosphate (TCP, Ca3(PO4)2) [7–9], which are chemically similar to the minerals
existing in bone. Similarly, the components of these two calcium phosphates are close to
those of natural bones, so cells easily adhere to and proliferate on their surfaces. HA, as a
metal implant medical coating material, has been used for more than 40 years. However, the
clinical application of HA synthesis is limited by poor mechanical properties, poor chemical
stability and poor thermal stability in acidic environments [10]. By contrast, β-tricalcium
phosphate (β-TCP, Ca3(PO4)2) has high bioactivity and excellent osteoconductivity, and
is a promising candidate for bone repair [10–13]. Numerous evaluations have shown that
β-TCP imposes a positive effect on cell attachment, differentiation and proliferation [14–17].
However, shortcomings such as low compressive strength [18] and technological difficulties
of preparation hinder its further application in loadbearing bone reconstruction [19].

It is very crucial to add trace elements to bioceramics. Magnesium (Mg), zinc (Zn),
aluminum (Al), iron (Fe) and strontium (Sr) exist in the form of trace elements in the human
body and contribute to accelerating the rate of bone formation. By this means, the structural
characteristics of bioceramics can be improved or controlled by adding these elements to
stimulate bone repair [20–29]. For example, doping bioceramics with specific metal ions
could enhance the strength and degradation of β-TCP [30–36].

As an essential trace element, 99% of the Sr in the human body exists in bone, which is
beneficial for balancing bone formation and bone resorption in bone metabolism [37]. Sr can
partially replace Ca2+ sites in the crystal structure of β-TCP and thus change its biological,
physical and chemical properties [38]. Meanwhile, Sr and Ca share the same physiological
pathway, indicating that Sr can be deposited into the mineral structure of bone, especially
in the high-metabolic-turnover region [39]. Furthermore, Sr is capable of promoting the
apoptosis of osteoclasts, proliferation of osteoblasts and collagen synthesis [40]. Therefore,
bioactive implants doped with strontium hydroxyapatite have been investigated for their
use in bone repair [41–43]. Guo et al. [44] reported that the mechanical strength of tricalcium
phosphate doped with Sr was significantly improved. Hu et al. [39] found that Sr-containing
HA scaffolds had good biological activity, which can improve the proliferation rate of
MG-63 osteoblast cells. Moreover, it can promote the differentiation of rat bone marrow
mesenchymal stem cells (BMSCs9).

Although silver (Ag) ions and compounds have been shown to be toxic to certain
bacteria, viruses, algae and fungi, silver, another essential trace element, is almost com-
pletely harmless to humans. Silver-substituted tricalcium phosphate (Ag-TCP) has been
researched for a long time [45,46]. Song et al. [47] reported that all the Ag-TCP films in their
study exhibited good antibacterial activity independently of Ag and no cytotoxicity was
detected at the lowest concentration of the Ag-TCP coating. Roy et al. [48] found that the
highest Ag concentration (0.5 M) had the best bacteriostatic effect but was cytotoxic. How-
ever, the silver concentration of 0.1 M had good antibacterial properties. Turkoz et al. [49]
reported that Ag+ and F− ion co-doped HA had the highest microhardness (0.5Ag1F). The
HA contained a large number of Ag+ ions and showed antibacterial properties against
Escherichia coli (E. coli).

However, most of the studies on Sr- and/or Ag-doped calcium phosphate materials
focus on Sr- and/or Ag-doped hydrogenation, and there are few studies on Sr- and/or
Ag-doped TCP. In addition, the degradation characteristics of Sr and/or Ag are neglected.
In this paper, Sr-Ag-TCP with different contents was prepared using the sol–gel synthesis
method. The changes in the mechanical properties and in vitro degradation of synthetic
materials after Sr and/or Ag substitution were also studied and the related mechanical
properties were discussed. Herein, the suitable strontium and silver carriers had an
important influence on the biodegradability and generalization ability of β-TCP bone
cement, which provides a reference for improving the biodegradability of β-TCP.
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2. Materials and Methods
2.1. Powder Synthesis

In this research, calcium nitrate tetrahydrate (Ca(NO3)2·4H2O, Sinopharm,
Shanghai, China), 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC, C7H11O9P, Sinopharm,
Shanghai, China), strontium nitrate (Sr(NO3)2, Sinopharm, Shanghai, China) and silver
nitrate (AgNO3, Sinopharm, Shanghai, China) were used as sources of Ca, P, Sr and Ag,
respectively. For each sample, the molar ratio of (Ca+Sr+Ag)/P was adjusted to 1.50. The
synthesized sample was named xSr-yAg-TCP, where x and y represented the molar ratios of
Sr and Ag, respectively. The synthetic samples were referred to as: TCP, 1Sr-TCP, 1Sr-0.8Ag-
TCP and 1Sr-3Ag-TCP. Firstly, calcium nitrate solution, strontium nitrate and silver nitrate
powder were slowly added into PBTC solution. Anhydrous ethanol (C2H5OH, Sinopharm,
Shanghai, China) was used as the solvent for each solution. The as-prepared mixture was
vigorously stirred in a magnetic stirrer for 3 h. The temperature of the magnetic stirrer was
controlled at 90 degrees Celsius. To produce precursor powders, the synthesized gel precur-
sor was dried in a vacuum oven for 12 h. Finally, the obtained dry powders were sintered
in a muffle furnace (NHK-170, Nittokagaku, Japan) at 1000 ◦C for 5 h. Elemental analysis of
the synthesized products was performed by means of inductively coupled plasma optical
emission spectrometry (ICP-OES) using an ICP-OES spectrometer (ICP-OES5110, Agilent,
Santa Clara, CA, USA).

2.2. Synthesis of Bone-like Porous Ceramics

The as-obtained powders were mixed with carbon powders (C, Sinopharm, Shanghai,
China) and polyvinyl alcohol (PVA, [C2H4O]n, Sinopharm, Shanghai, China) in different
quantities. The mixture was placed into a homemade mold and vibrated gently to compact
it. After that, the powders were uniaxially compressed into a cylinder with a diameter
of 10 mm. Then, the as-obtained samples were sintered in a muffle furnace to form the
Sr- and/or Ag-doped β-TCP bone-like porous materials. The heating rates within the
ranges 0 ◦C~200 ◦C, 200 ◦C~250 ◦C, 250 ◦C~400 ◦C and 400 ◦C~1000 ◦C were 3 ◦C/min,
2 ◦C/min, 3.5 ◦C/min and 3 ◦C/min. Their corresponding maintenance times were 40 min,
25 min, 40 min and 300 min, respectively. Finally, the samples were naturally cooled to
room temperature.

2.3. Specimen Characterization

An X-ray diffractometer (XRD-6100, Shimadzu, Japan) was used for phase analysis of
the sintered samples at 30 kV and 20 mA. Data were collected for 2θ ranging between 10◦

and 70◦ under CuKα radiation (λ = 1.5418 Å). The step size was 0.01◦ and the speed was
set as 1 ◦/min. The crystallinity of the sintered powders was calculated according to the
description elsewhere [50]. The FT-IR spectrum of the powders (FTIR-8400S, Shimadzu,
Japan) was recorded in the 400–4000 cm−1 region. The resolution of the laser for collecting
FT-IR spectra was 0.1~0.5 cm−1. A laser particle size distribution analyzer (BT-9300ST,
Bettersize, Dandong, China) was used to determine the particle size of the synthetic
powders. The micromorphology of the samples was determined using scanning electron
microscopy (EVO18, Carl Zeiss, Jena, Germany). The test standard of the compressive
strength of the ceramic samples was GB/T 4740-1999, China. The samples were cut into
cylinders with a diameter of 5 mm and a height of 10 mm and their mechanical strengths
were obtained using a mechanical testing machine (E43.104, RTEC, San José, CA, USA).
The test was conducted at room temperature and the loading speed of the beam was set at
1 mm/min until the sample was broken. Each sample was subjected to 10 repeated tests,
and the average value was taken as the test result.

2.4. In Vitro Degradation

The sample was formed into a disk with a diameter of 10 mm and a height of
2 mm for the in vitro degradation test. In this study, the degradation performance of
the Sr-Ag-TCP porous material was tested in 1.5 times simulated body fluid (SBF) solution
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according to Kokubo and Takadama [51]. Specifically, the SBF solution was a supersatu-
rated solution of apatite containing NaCl, NaHCO3, KCl, K2HPO4·3H2O, MgCl2·6H2O,
CaCl2 and Na2SO4. First, the sample was placed in a deionized water environment and
impacted with ultrasonication. Then, the sample was soaked in 75% alcohol to ensure
that there were no impurities in the pores. After that, the obtained sample was dried in a
vacuum oven. Then, the sample was weighed on a balance (AL-204, METTLER TOLEDO,
Shanghai, China) and put into a polypropylene plastic bottle. Subsequently, the 1.5SBF
solution was added according to the ratio of the mass of porous biomimetic bone material
1 g to 100 mL solution. After sealing, the mixture was placed into a temperature incubator
for the 28 d degradation test. To ensure the stability of the concentration of various ions
in the 1.5SBF solution during the degradation test, the 1.5SBF solution in the bottle was
replaced every 7 days throughout the test. During the degradation process, a balance
was used to measure the quality of the sample. The pH of the degradation solution was
measured using a pH meter (PHS-3C, INESA, Shanghai, China).

3. Results and Discussion
3.1. Specimen Characterization

Figure 1 shows the XRD patterns of pristine β-TCP powders and the Sr2+- and/or
Ag+-modified β-TCP powders prepared in this experiment. For all samples, we were able
to observe the characteristic peaks of β-TCP (JCPDS PDF No: 09–0169) at 26.8◦, 32◦and
34◦ [41]. The major phase of β-TCP and the minor one of HA (JCPDS PDF No: 09–0432)
were detected for all samples [52]. The phase composition was affected by the addition and
amounts of both dopants. With the introduction of these metal ions, the characteristic peaks
of the β-TCP powders shifted slightly to low angles, and the degrees of crystallization were
good. This indicated that β-TCP powders with good crystallinity and Sr2+- and/or Ag+-
modified β-TCP powders can be successfully prepared using the method adopted in this
study. With the increase in the introduced amount of Ag+, the characteristic peak gradually
shifted to a lower angle, and the intensity exhibited a minor change as well. The diameters
of Sr2+, Ag+ and Ca2+ were 0.118 nm, 0.115 nm and 0.099 nm, respectively [42,53,54]. In the
process of introducing Sr2+ and Ag+ into β-TCP, Sr2+ and Ag+ replaced the Ca2+ of β-TCP,
leading to the linear expansion of the β-TCP lattice constant. Therefore, the characteristic
peaks gradually shifted to a lower angle and the spacing between crystal faces increased.
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Figure 1. XRD patterns of the as-prepared β-TCP powders with different contents. (a) TCP,
(b) 1Sr-TCP, (c) 1Sr-0.8Ag-TCP, (d) 1Sr-3Ag-TCP.

Figure 2 displays the infrared spectra of Sr-doped and/or Ag-doped β-TCP powders.
The resolution of the laser for collecting FT-IR spectra was 0.1~0.5 cm−1. The assignments
of the observed bands on the FT-IR spectra were as follows: The bands at 496, 558, 613,
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726 cm−1 and other ones within the spectral range of 900–1300 cm−1 were related to
the vibrational modes of the phosphate groups [55]. The bands observed at 1634 and
3451 cm−1 were associated with the adsorbed water [56]. The band that stemmed from
the carbonate group was detected at 1385 cm−1 [57]. The O-P-O bond bending vibration
band was located at 500~650 cm−1 and the stretching vibration band of the P-O bond was
situated at 940~1120 cm−1, which was consistent with β-TCP. It was verified that the β-TCP
powders prepared via Sr2+ and/or Ag+ modification were mainly composed of β-TCP. For
doped samples, the bands at 634 and 3571 cm−1, belonging to the characteristic vibrational
modes of the hydroxyl groups for the HA phase, were detected. This was consistent with
the detection of the HA phase formation in the XRD results [58]. The atomic radii of Sr2+

and Ag+ were larger than that of Ca2+. As Sr2+ and Ag+ entered the β-TCP lattice, the
symmetry of the original lattice structure was affected, which contributed to a reduction in
the absorption band intensity and vibration frequency of functional groups.
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It can be seen in Figure 3 that the pure β-TCP powder with a particle size below 40 µm
accounted for 91.34% of the total content. The 1Sr-β-TCP powder composed of particles
less than 40 µm in size accounted for 94.77% and the 1Sr-0.8Ag-TCP powder with a particle
size below 40 µm accounted for 92.35% of the total content. The 1Sr-3Ag-TCP powder
composed of particle sizes less than 40 µm accounted for 91.76% of the total content. In
brief, most of the as-prepared powders had a particle size of less than 40 µm, which met
the preparation requirements for bioceramics.

In order to confirm the chemical composition of the synthesized compounds, elemental
analysis was performed by means of ICP-OES. The results of the analysis are summarized
in Table 1.

Table 1. Results of the elemental analysis of the samples performed using ICP-OES.

Sample Sr/(Sr + Ag + Ca), % Ag/(Sr + Ag + Ca), % (Sr + Ag + Ca)/P

TCP - - 1.51
1Sr-TCP 1.03 - 1.53

1Sr-0.8Ag-TCP 1.06 0.83 1.51
1Sr-3Ag-TCP 1.04 3.07 1.49
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3.2. Compressive Strength

Figure 4a exhibits the distribution of the compressive strength of 1Sr-TCP ceramic
materials with different contents of pore-forming agent when the binder concentration
was 6 wt%. With the increase in the pore-forming agent, the compressive strength of the
porous ceramics decreased sharply. When the amount of carbon powder was 10 wt%, the
compressive strength reached the highest value (18.87 MPa). The compressive strength
decreased sharply to 11.34 MPa when the amount of carbon powder was 30 wt%. As the
amount of pore-forming agent increased, the size and number of mesopores increased,
which affected the mechanical properties and mechanical strength of the ceramic materials.

Figure 4b reveals the distribution of the compressive strength of 1Sr-TCP ceramic
materials with different binder concentrations (2 wt%, 4 wt%, 6 wt%) when the amount of
pore-forming agent was 20 wt%. The compressive strength of the ceramics was enhanced
with the increasing PVA concentration. When the concentration of PVA increased from
2 wt% to 6 wt%, the compressive strength increased from 15.34 MPa to 18.91 MPa. Generally,
the PVA solution with a low concentration led to uniform contact between the PVA and the
as-prepared powders and thus a weak bonding strength, which eventually reduced the
compressive strength of the ceramic materials. On the contrary, the PVA solution with a
high concentration increased the interaction force between the powders, which ultimately
endowed the ceramic materials with a high compressive strength. The optimum ratio of
pore-forming agent to binder was determined using the single-factor test, with the content
of pore-forming agent being 20 wt% and the concentration of PVA being 6 wt%.

Figure 5 shows the variation in the compressive strength of the four specimens dur-
ing the degradation process. Before degradation, 1Sr-3Ag-TCP had the highest com-
pressive strength (19.34 MPa), while pure TCP had the lowest compressive strength
(17.32 MPa). All samples showed a slow and steady degradation of compressive strength
during degradation. After degradation, the compressive strength of 1Sr-3Ag-TCP was
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the highest (6.90 MPa), while that of pure TCP was the lowest (4.88 MPa). All the com-
pressive strengths of the ceramic materials slightly decreased; the compressive strength of
the 1Sr-3Ag-TCP ceramic material was always the highest during this process, while the
compressive strength of the TCP was always the lowest. Overall, with the addition of Sr2+

and Ag+, the compressive strength of the material was always higher than that of undoped
samples in the degradation process. And the higher the doping amount was, the higher the
compressive strength became. This was because the addition of strontium ions and silver
ions changed the structure of the original lattice, resulting in lattice distortion and thereby
increasing the compressive strength of the ceramic material.
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3.3. Specimen Characterization after Degradation

Figure 6 exhibits the XRD testing results of Sr- and/or Ag-doped β-TCP samples
after degradation in 1.5× SBF solution for 28 d. The crystal structure of the surface
materials showed no obvious change after degradation in comparison with the materials
without degradation. The XRD patterns of the degraded materials contained obvious
β-TCP characteristic peaks, and the diffraction peaks were enhanced at 26.8◦, 31–32.5◦,
32◦ and 34◦, which were similar to the apatite diffraction peaks. This indicated that
apatite-like materials were formed on the materials during the degradation reaction. In
addition, the XRD results demonstrated that the crystallinity of such materials increased
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with the increasing amounts of Sr and Ag. The doping of Sr and Ag played a vital role in
the deposition ability of β-TCP-induced apatite-like materials. The formation of apatite-
like materials indicated that Sr- and/or Ag-doped β-TCP ceramic materials had good
osteoconduction and biocompatibility.
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Figure 7 displays the FTIR spectra of the samples after degradation. It can be seen that
H2O vibration bands appeared at 3740 cm−1 and 1635 cm−1, and phosphate ion (PO4

3−)
vibration bands appeared at 550 cm−1, 598 cm−1 and 1030 cm−1. A carbonate (CO3

2−)
vibration band appeared at 1633 cm−1. Compared with the samples before degradation, the
intensity of the bands increased obviously, which confirmed that apatite-like materials were
formed on Sr- and/or Ag-doped β-TCP ceramic materials. This also confirmed the conclusion
from the XRD analysis that the bioactivity of the material was strongly enhanced.

3.4. Material Quality Increases after Degradation

The quality changes in the as-prepared samples in 1.5 times SBF solution for 1, 2, 3 and
4 weeks are shown in Figure 8. During the degradation process of 4 weeks, all the samples
were in the state of weight gain, indicating that apatite-like materials were formed on their
surfaces. This was mainly because of the synergistic effect between the mineral deposition
process and the degradation process. During the degradation process, Ca2+ and PO4

3− were
released from the β-TCP ceramic and re-engaged in the mineralization process. After 4 weeks,
the weight gain rate of the 1Sr-0.8Ag-TCP ceramic was the highest at 5.93% ± 21% and the
weight gain rate of the β-TCP ceramic was the lowest at 4.18% ± 0.11%. The weight gain rate
of the 1Sr-3Ag-TCP ceramic was 5.25% ± 0.03%., and the weight gain rate of the 1Sr-TCP
ceramic was 4.55% ± 0.17%. Due to the introduction of Sr2+ and Ag+, the sample weight
gain rate increased. It was confirmed that the introduction of Sr2+ and Ag+ was beneficial
for the growth of the mineralization and deposition of the apatite layer onto the β-TCP
ceramic surface. Moreover, a small amount of silver contributed to a faster mineralization
deposition process.
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The quality changes in 1Sr-3Ag-TCP ceramic materials with different amounts of pore-
forming agent immersed in 1.5 times SBF solution for 4 weeks are illustrated in Figure 9. It
can be seen that the quality of all samples increased during the degradation process, and
that, as the porosity increased, the rate of mass increase after degradation was significantly
accelerated. The porosity of the samples affected the weight gain rate of the samples. The
higher the porosity of the porous ceramic samples became, the more that the SBF solution
permeated into the samples, meaning that the degradation occurred simultaneously on the
surface and inside of the samples and that more ions were released. Then, they was rapidly
deposited onto the surface to form apatite-like materials, which showed a higher rate of
weight gain.
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Figure 9. The quality change in 1Sr-3Ag-TCP with different pore-forming agent contents during
degradation. (a) 10% pore-forming agent; (b) 20% pore-forming agent; (c) 30% pore-forming agent.

3.5. pH Changes during Degradation

The pH change curve of the SBF solution in the degradation process is shown in
Figure 10. The pH values of the SBF solution with different immersed ceramic materials
(TCP, 1Sr-TCP, 1Sr-0.8Agβ-TCP, 1Sr-3Ag-TCP) were similar during the degradation test for
28 days. It was confirmed that the excellent mineralization properties of β-TCP ceramic
materials were not affected by the introduction of Sr2+ and Ag+. In the first 7 days, the pH
value was between 7.3 and 7.5, and there was no significant change. In the second 7 days
of this process, the pH value decreased to 7.0~7.1. This might be due to the degradation
of ceramic materials under the action of SBF immersion and the generation of acidic
degradables, measures which reduce pH value. In the third 7 days of this period, the
pH value increased gradually, the ceramic material not only degraded under the action
of SBF immersion but also formed an apatite-like material layer on the surface, and the
deposition rate was faster than the degradation rate. Until the final week of this process,
the pH value increased to 7.8~7.9, which was beneficial for accelerating the deposition rate
of apatite-like materials in alkaline environments with higher pH values. The dissolution
of Ca2+ and P5+ in the SBF solution resulted in ion exchange [59]. The process of pH change
was strongly correlated with the concentration of Ca2+ and P5+ in the SBF solution and the
rate of mineralization and deposition of Ca2+ and P5+ [60]. As the concentration of Ca2+

and P5+ increased during this process, the degradation products were alkaline and the pH
of the degradation solution increased [61].
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3.6. SEM Observations after Degradation

Figure 11 displays the SEM images of TCP, 1Sr-TCP, 1Sr-0.8Ag-TCP and 1Sr-3Ag-
TCP after degradation. Cracks occurred in all samples, and these were caused by the
degradation of the material. A certain amount of mineralization appeared on each sample
and formed apatite-like materials, which had a smaller size and close packing, similar
to hydroxyapatite. With the increase in Sr2+ and Ag+, the cracks on the surface of the
sample increased and more apatite-like material on the surface could be observed. The
apatite-like materials were partially agglomerated. Considering the XRD and FTIR results,
the introduction of Sr2+ and Ag+ was conducive to the deposition of such materials onto
the β-TCP ceramic surface.

Materials 2023, 16, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 11. SEM images of four samples after degradation. (a) TCP, (b) 1Sr-TCP, (c) 1Sr-0.8Ag-TCP, 
(d) 1Sr-3Ag-TCP. 

4. Conclusions 
In conclusion, Sr- and/or Ag-doped β-TCP powders without impurities were pre-

pared via the sol–gel method. By conducting compressive strength tests, the optimum 
dosages of pore-forming and binder agents were ascertained. With increasing Sr and Ag 
contents, the compressive strength of the sample also increased. In vitro degradation ex-
periments demonstrated that increasing the Sr and/or Ag doping contents was beneficial 
for the deposition of apatite-like materials. The quality of the deposited materials was ob-
viously enhanced as the porosity increased when the content of Sr and/or Ag was constant. 
Therefore, the suitable strontium and silver carriers had an important influence on the 
biodegradability and mineralization ability of β-TCP bone cement. This study provides a 
reference for improving the biodegradability of β-TCP. 

Author Contributions: J.C. and T.S. contributed equally to this work. Conceptualization, J.C. and 
T.S.; Data curation, J.C.; Formal analysis, J.C., T.S. and Y.M.; Funding acquisition, Y.M.; Investiga-
tion, X.L.; Methodology, G.L.; Software, L.L. and S.Y.; Supervision, Y.M.; Visualization, X.F.; Writ-
ing—original draft, J.C. and T.S.; Writing—review and editing, Y.M. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (No. 
51875242), the National Key Research and Development Project of China (No. 2016YFD0701601), 
the Jilin Province Science and Technology Development Plan Item (No. 20190302129GX), the Re-
search on the method of bionic vibration subsoiling for differentiated agronomic needs (No. 
52275288), and the High-quality tillage layer structure construction technology and equipment with 
high efficiency and low consumption (No. 21ZGN15). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: We apologize for not being able to provide data due to privacy. 

Conflicts of Interest: The authors declare no conflict of interest. 
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4. Conclusions

In conclusion, Sr- and/or Ag-doped β-TCP powders without impurities were pre-
pared via the sol–gel method. By conducting compressive strength tests, the optimum
dosages of pore-forming and binder agents were ascertained. With increasing Sr and
Ag contents, the compressive strength of the sample also increased. In vitro degradation
experiments demonstrated that increasing the Sr and/or Ag doping contents was beneficial
for the deposition of apatite-like materials. The quality of the deposited materials was
obviously enhanced as the porosity increased when the content of Sr and/or Ag was con-
stant. Therefore, the suitable strontium and silver carriers had an important influence on
the biodegradability and mineralization ability of β-TCP bone cement. This study provides
a reference for improving the biodegradability of β-TCP.
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