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Abstract: This study investigated the effect of sustained loading on the cumulative damage of a
newly developed smart cement-based self-healing composite material (SMA-ECC). SMA-ECC is
composed of engineered cementitious composite (ECC) and shape memory alloy (SMA) fibers. A
uniaxial compressive test with five predefined loading levels (0%, 30%, 40%, 50%, and 60% of
compressive strength) was conducted on SMA-ECC hollow-cylindrical specimens and ECC control
hollow-cylindrical specimens. The cumulative damage was mainly determined by changes in the
total water absorption of different groups of specimens during three different periods (not loaded, at
a predefined loading level, and after unloading). A normalized water content index was proposed
to couple the effects of self-healing, sustained loading, and cumulative damage. The test results
indicate that the cumulative water absorption of SMA-ECC was 35% lower than that of ECC, which
may indicate less irreparable damage. In addition, the self-healing ability of SMA-ECC specimens
under different compression load levels was evaluated through normalized water content analysis.
SMA-ECC exhibited a 100% repair rate at load levels of 30% and 40%. At a higher load level of
60%, the repair rate of SMA-ECC was 76%. These results collectively emphasize the significant
impermeability and self-healing performance of SMA-ECC after unloading.

Keywords: sustained compressive loading; water absorption; loading level; self-repairing; engineered
cementitious composites

1. Introduction

Throughout the lifespan of reinforced concrete structures, external factors such as
the impact of ship hulls, waves, and intense sunlight can lead to damage [1–3]. These
defects provide easy access for seawater to enter the inner part of the reinforced concrete
structure [4–6]; thus, corrosion of the rebar starts once the chloride content reaches its
upper limit, and after that, corrosion products pile up and harm the interface between
rebar and concrete cover, which causes irreversible damage [7–11]. This sequence of events
significantly impacts the overall durability of reinforced concrete structures. To obtain
better durability of the reinforced concrete structures in marine environments, it is worth
investigating ways to reduce its cumulative damage.

Our simulated experimental setup was mainly based on the marine environment;
thus, cumulative damage was evaluated through a water absorption index based on
related research [12–14]. The water absorption was determined by capillary absorption,
since the damaged reinforced concrete structures in service were mainly under partially
saturated environments, especially wet–dry areas like splash zones and tidal zones [15–17].
Current research has mainly focused on the quantification of capillary absorption; the effect
of loading is not considered. However, there is evidence that loading has a noticeable
influence on capillary absorption [18–20], especially when the loading level is 70~90% of
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the ultimate compressive strength. Additionally, existing theoretical prediction models of
capillary absorption have merely considered a single factor into account, even though the
practical engineering environment is affected by mechanical and environmental factors.

As aforementioned, loading has a strong effect on capillary water absorption. Re-
searchers have investigated the effect of loading by creating prefabricated cracks on test
specimens and then measuring the water absorption content. It is reported that there is a
negative impact of increasing crack width in terms of capillary water absorption [21–23];
wider cracks result in a higher water absorption content. To simulate the different dam-
age conditions, researchers have applied changing loading levels to the water absorption
specimens. It is proven that a certain relation exists between the loading levels (i.e., dam-
age condition) and water absorption content, and reducing this damage would bring the
benefit of reducing capillary water absorption. Concerning reducing damage, the concept
of self-healing [24–26] has been proposed and developed for a decade, including in the
authors’ previous research [27,28], which proposed a new smart cement-based material
(SMA-ECC). The smart cementitious composite SMA-ECC is composed of engineered
cementitious composite (ECC) and shape memory alloy (SMA) fibers. SMA fibers can
recover plastic deformation, effectively mending millimeter-scale cracks in concrete [29].
Engineered cementitious composite (ECC), as a novel type of fiber-reinforced cementitious
composite, exhibits noteworthy attributes involving generating multiple micro-cracks,
while maintaining controlled crack widths [30], effectively addressing the limitation of
SMA fibers in repairing only small-scale cracks. This new type of smart cement-based
material is capable of closing cracks of less than 150 µm in size, and cracks of less than
50 µm can be fully closed. According to the research, beyond its addition for crack closure,
the internal damage of the SMA-ECC also exhibited noticeable recovery from internal
damage. Thus, utilizing the SMA-ECC in marine environments could be a promising
solution for improving the corrosion resistance of cement-based structures.

In this regard, our research experimentally studied the capillary water absorption
behaviors of SMA-ECC and ECC under sustained compressive loadings through an im-
proved water absorption test. The effect of predefined compressive loading levels (λc = 0,
30%, 40%, 50%, and 60%) on water absorption was investigated through capillary water
absorption tests. Furthermore, to investigate the influence of load-induced damage on
the behavior of water absorption, water absorption tests were conducted at three different
stages (not loaded, at a predefined loading level, and after unloading), and the cumulative
water content and water absorption capacity were measured. The damage-repairing ability
was also evaluated in this paper through the change of water absorption of intact and
cracked SMA-ECC specimens.

2. Experimental Program
2.1. Materials, Mix Proportions, and Mechanical Properties

The mix proportions of SMA-ECC and ECC are listed in Table 1. The raw materials
used in the SMA-ECC mixture were grade 42.5 ordinary Portland cement, I-grade fly ash
with a mesh of 5000, S95 slag power with a mesh of 1000, silica sand, water, polyvinyl
alcohol (PVA), shape memory alloy (SMA) fibers, and a high-range water-reducing ad-
mixture (HRWRA). The particle size of silica sand ranged from 100 mesh to 325 mesh (i.e.,
150~45 µm). The geometrical and mechanical properties of PVA and SMA fibers are listed
in Table 2. In addition, a heat treatment process was used to improve the super-elastic
property of SMA, as described previously by the authors [28].

The mechanical properties of SMA-ECC and ECC at 28 days are given in Table 3.
The compressive strength and elastic modulus were determined from axial compres-
sive tests on 100 mm × 100 mm × 100 mm cubes and 100 mm × 100 mm × 300 mm
prisms, respectively, according to the Chinese standard of GB/T 50081-2019 [31]. The
flexural strengths were acquired with four-point bending tests on a prismatic specimen of
100 mm × 100 mm × 400 mm. Each group included three specimens.
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Table 1. Mix proportions of SMA-ECC and ECC (weight proportion).

Cement Fly Ash Slag Powder Silica Sand Water HRWRA PVA (%Vf) SMA (%Vf)

SMA-ECC 0.3 0.55 0.15 0.4 0.25 0.002 1.7% 0.7%
ECC 0.3 0.55 0.15 0.4 0.25 0.002 1.7% -

Table 2. Geometrical and mechanical properties of PVA and SMA fibers.

Type Diameter
(mm)

Length
(mm)

Tensile Strength
(MPa)

Elongation
(%)

Young’s Modulus
(GPa)

Density
(kg/m3)

PVA 0.04 12 1560 6.5 42.8 1300
SMA 0.6 16 895 38.0 41.0 6450

Table 3. Mechanical properties of SMA-ECC and ECC.

Materials Compressive Strength (MPa) Flexural Strength (MPa) Elastic Modulus (GPa) Poisson’s Ratio

SMA-ECC 62.4 3.06 19.1 0.18
ECC 68.1 2.21 20.3 0.19

2.2. Specimen Design and Preparation

A total of 30 hollow-cylindrical specimens were prepared and divided into two cate-
gories: half SMA-ECC and the other half ECC. ECC specimens served as control specimens
for the SMA-ECC ones. Figure 1a,b shows the design of the hollow-cylindrical speci-
men, which aimed to achieve synchronous coupling of uniaxial compression and water
absorption. Both surfaces of the specimens were smoothed for better contact between the
specimens and the loading setup. All specimens were immersed in lime-saturated water
for 60 days to ensure complete hydration of the cement matrix. Prior to the capillary water
absorption test, the water-saturated specimens were dried in a thermostat. Two annular
rubber pads with a thickness of 10 mm were fixed on the ends of the specimen using glass
glue to prevent water leakage during the test.
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Figure 1. Design and size of the hollow-cylindrical specimen.

Compression tests were conducted on the hollow-cylindrical specimens, as illustrated
in Figure 2. Three specimens were tested for each group, and the average value was
considered as the final result for the ultimate compressive strength. The results showed
that the ultimate compressive strength of SMA-ECC and ECC were measured at 50.3 MPa
and 53.3 MPa, respectively. Each category of specimens consisted of five groups, with each
group containing three identical specimens. The first group of specimens in each category
was used to measure water absorption with an intact matrix. These specimens were then
loaded monotonically until failure to determine the ultimate compressive strength. The
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specimens of the rest groups were loaded to 30%, 40%, 50%, and 60% of fc, where fc is the
ultimate compressive strength of the intact hollow-cylindrical specimens. Details of the
loading specimens are presented in Table 4.
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Figure 2. Compression test of hollow cylinder.

Table 4. Specimen details.

Material Specimen Loading Levels λc (%) Applied Stress σc (MPa) Effective Porosity p (%)

SMA-ECC

SE-1 0 0 5.520
SE-2 30 15.1 5.509
SE-3 40 20.1 5.505
SE-4 50 25.2 5.501
SE-5 60 30.2 5.498

ECC

E-1 0 0 5.640
E-2 30 16.0 5.628
E-3 40 21.3 5.625
E-4 50 26.6 5.621
E-5 60 31.9 5.617

2.3. Test Setup for Coupled Sustained Loading and Water Absorption

The traditional gravimetric water absorption measurement method proposed in ASTM
C1585 [32] has inherent issues as it requires moving the test specimens out of the water
several times to measure weight increments. Therefore, a specially designed test setup
was adopted in this study to achieve the synchronous coupling of sustained loading and
water absorption.

The novel device consists of five parts: a water supply unit, horizontal observation
unit, water absorption unit, loading measurement unit, and reaction force unit. The water
supply unit includes a reservoir, water valve, and water injection hose. A horizontal tube
with a scaled ruler serves as the observation unit to measure the cumulative water content
absorbed by the specimen. Two stainless steel plates with holes are placed on the top and
bottom of the specimen to connect the scaled tube and water injection hose, which have
inner diameters of 6 mm each. The design of this test setup is shown in Figure 3.

The water content loss due to specimen absorption is negligible since water-filling
time was very short (less than 25 s). Thus, it is assumed that the cumulative water content
is measured immediately after the hollow-cylindrical specimen’s cavity is completely filled.
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2.4. Loading and Testing Procedures

Four different predefined loading levels were set in this experiment, i.e., 30%, 40%,
50%, and 60% of the compressive strength of the materials. Three hollow-cylindrical
specimens were employed at each loading level to study capillary water absorption across
three stages (before loading, at a predefined loading level, and after unloading). The
specimens before loading were treated as the control group compared to the specimens
under sustained loading.

The predefined loading level (λc) is defined by Equation (1).

λc =
σc

fc
× 100% (1)

where σc is the applied stress(MPa), fc is the ultimate compressive strength of the SE-1 and
E-1 specimens (MPa). The details of the loading levels are presented in Table 4.

Prior to the water absorption test, all specimens were dried in a thermostat at a
consistent temperature of 80 ◦C until a steady mass was achieved. The relative water
content θ of hollow-cylindrical specimens can be determined by Equation (2).

θ =
mi −md
ms −md

× 100% (2)
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where mi is the actual mass of the specimen at a certain time (g); md is the mass of the
specimen in full dryness; and ms is the mass of the specimen in water saturation. Figure 4
shows the variation of relative water content in specimens. It can be seen that the mass
of specimens decreased to a constant value at a drying time of about 60 h. The dried
specimens were stored in a desiccator at a room temperature of 25 ◦C until the test began.
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The specimen was gradually loaded to the predefined loading level and maintained
under that load. Then, the hollow space of the specimens was filled with water obtained
from an outer water tank. After overflowing through the scaled tube, the water valve
was closed and the initial position of water in the horizontal scaled tube was immediately
recorded. The change in the position of water in the scaled tube was directly recorded at
various time intervals (5, 10, 20, 30, 60, 120, and 180 min) during the 9 h testing period,
which determined the cumulative water content absorbed by the specimen.

Additionally, to investigate the effect of imposed load damage on the capillary water
absorption of SMA-ECC, two-stage water absorption tests (i.e., without loading and after
unloading) were conducted on the undamaged and pre-damage state of the SMA-ECC,
respectively, following the aforementioned testing procedures.

2.5. Estimation of Cumulative Water Absorption

For a porous cement-based material, the cumulative content of water absorption per
unit cross-section caused by capillary action can be determined by Equation (3) [32]:

i =
∆V
Ac

=
∆m

ρw Ac
= S
√

t + b (3)

where i is the cumulative content of absorbed water per unit area (mm); ∆V is the volume
of absorbed water (mm3); Ac is the cross-sectional area of water absorption in the specimen
(mm2); ∆m is the mass of absorbed water (g); ρw is the density of water (g/mm3); t is the
water absorption time (minutes); S is defined as the sorptivity, describing the rate of water
absorption in porous cement-based materials; and b is a correction factor for considering
the rapid water absorption when the specimen is initially in contact with water.

The hollow-cylindrical specimens experience dynamic changes in the front area of
water ingress as water is transported radially. To facilitate the application of Equation (3),
simplification of the varying absorption area of the hollow-cylindrical specimen can be
achieved [33], as shown in Figure 5. Assuming that the total porosity of the specimen is
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filled with water up to the saturated water level, the mass of absorbed water can be written
as follows:

∆m = pVcρw = pπ
(

r2 − d2/4
)

hρw (4)

r =

√
1
4

d2 +
d2

0 · ∆l
4ρw · p · h

(5)

p = p0

[
Eb(1− p0) + 2(1 + νb)(1− νb)qb

Eb(1− p0) +
(
1 + ν2

b
)
(1− 2νb + p0)qb

]2

(6)

where p is the effective porosity of the specimen subjected to loading; r is the average
radius of water penetration depth at a given time ∆t (mm); d is the inner diameter of the
hollow-cylindrical specimen (mm); d0 is the inner diameter of the scaled tube (mm); h is
the height of the specimen (mm); ∆l is the reduced water length in the scaled tube at a
given time ∆t (mm); p0 is the initial porosity of the specimen without loading; Eb and νb are
Young’s modulus and Poisson’s ratio of the porous materials, respectively; and qb is the
external equivalent stress (i.e., the compressive stress on the specimen in this study). Based
on the above assumption, the correction factor β considering the deviation caused by the
simplified absorption area can be defined as follows:

β =
∆m
∆ms

=
r + 0.5d

d
(7)

In summary, the cumulative content of water absorption i can be finally calculated as

i =
∆ms

ρw · πd · h =
∆m

β · ρw · πd · h =
d2

0 · ∆l
4β · d · h (8)

To minimize the effect of uncertain factors, such as unmeasured initial water content
absorbed during the injection process and variations in pore structures among specimens,
the averaged values of three specimens for each target loading level were used as the
test results.
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3. Results and Discussion
3.1. Cumulative Water Content under Sustained Compressive Loading

Figure 6 displays the typical results of cumulative water content i of all specimens
subjected to predefined loading levels (i.e., 0, 0.3, 0.4, 0.5, and 0.6 fc). It can be found
that compressive loading has an apparent impact on capillary water absorption. With an
increase in the loading level, the cumulative water content initially decreases and then
increases beyond the critical loading level at a given absorption time. It is reported that this
critical loading level is often associated with the effect of micro-cracks induced by loads on
the permeability of cement-based materials [19]. In general, the crack propagation process
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of concrete subjected to sustained compressive loads contains three stages, the deformation
of pore structure, the development of original micro-cracks, and the effect of micro-cracks
bridging [29]. Compressive loads below the critical loading level have a ‘compacting effect’
on concrete, resulting in the partial closure of capillary pores and original micro-cracks,
which further hinder the process of water transportation. As compressive loads exceed the
critical loading level, the ‘micro-cracking effect’ plays a dominant role in facilitating the
propagation of original micro-cracks and the development of new micro-cracks, inversely
accelerating the rate of water transportation. Loo [34] reported that the micro-cracks effect,
which determined the rate of water penetration into concrete, usually occurred at loading
levels between 15% and 45%.
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From Figure 6, it can be observed that both SMA-ECC and ECC specimens exhibit
a ‘compaction effect’. As discussed previously, the compacting effect decelerates the
water transportation process, while the cracking effect enhances it. Therefore, when
the deterioration of the ‘cracking effect’ cannot be balanced by the enhancement of the
‘compacting effect’ on the impermeability of cement-based materials, the cumulative water
content in the i-t1/2 curve will change from decreasing to increasing. The changing behavior
of water absorption under compressive loading is similar to the behavior of chloride-
invading concrete studied by Wang et al. [35]. In the loading range from 0% to 50% fc,
the cumulative water content of both SMA-ECC and ECC specimens gradually decreases
with an increase in the loading level. When the compressive stress reached a critical
loading level (i.e., 0.5 fc), the cumulative water content of SMA-ECC and ECC specimens
exhibited an increasing trend as the loading level further increased. However, despite
having similar critical stress levels, SMA-ECC consistently demonstrates lower cumulative
water absorption compared to ECC across the five stress levels. This indicates that SMA-
ECC materials exhibit an excellent ability to maintain good impermeability at higher
compressive loading levels.

The cumulative water absorption content of ECC and SMA-ECC hollow-cylindrical
specimens within a given water absorption time of 520 min is shown in Figure 7. It is
evident that ECC specimens exhibit significantly higher water absorption compared to
SMA-ECC specimens across all loading levels of 0~60%. Notably, at a load level of 60%,
the cumulative water absorption of SMA-ECC is 35% lower than that of ECC. The water
absorption behavior is closely associated with the composition, pore structure, and porosity
of cement-based materials. However, as indicated by Table 2, there is little difference
in the initial porosity between ECC and SMA-ECC. This suggests that the presence of
SMA fibers contributes to a supplementary closure of existing cracks. It is noteworthy
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that ECC specimens exclusively incorporate PVA fibers, characterized by their relatively
diminutive dimensions and limited length, rendering them susceptible to extraction from
cracks. Compared with ECC, SMA-ECC has two types of fibers and lower initial porosity.
Moreover, PVA and SMA fibers have a greater ‘bridging effect’ on cracks, inhibiting their
development and propagation. This is demonstrated in the scanning electron microscopy
(SEM) image of Figure 8, where bridging of the SE-1 with SMA fibers after the water
absorption test was observed.
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3.2. Sorptivity under Sustained Compressive Loading

Sorptivity, a vital parameter for assessing the fluid transportation capability of un-
saturated porous cement-based materials through capillary forces, is well recognized [36].
The cumulative water content (i-t1/2) curve features two linear segments corresponding
to the initial and secondary sorption stages. These stages can be attributed to distinct
water transportation mechanisms: the initial stage is governed by the swift saturation of
capillary pores, while the secondary stage arises from the gradual filling of air voids or
micro-cracks [37]. Notably, the i-t1/2 curves (Figure 6) distinctly demonstrate a pivotal
turning point approximately 120 min into the process. According to Equation (1) and
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ASTM C1585 [32], the initial sorptivity S1 and secondary sorptivity S2 are defined as the
first and second slopes of the two linear portions in this curve, respectively. The initial and
secondary sorptivity for all specimens at various compressive loading levels are listed in
Table 4.

Figure 9 depicts the correlation between compressive loading levels and sorptivity
for both concrete and SMA-ECC specimens. As evident from the graph, the initial water
absorption rate surpasses that of the secondary stage, attributed to the swifter absorption
through capillary pores compared to air voids in the materials. Additionally, as compressive
stress levels increase, the initial sorptivity S1 diminishes until reaching a critical point, fol-
lowed by a slight increase. Conversely, the secondary sorptivity S2 of SMA-ECC specimens
remains relatively stable. Throughout continuous compressive loading, the relationship
between initial and secondary sorptivity and loading levels displays nonlinearity. Bao
and Wang [29] indicated that fitting test data with Equation (9) can yield an approximate
relationship between sorptivity and loading level for concrete.

S = S0 + αλc + βλ2
c (9)

where α and β are the experimental fitting parameters, and S0 is the sorptivity of the
hollow-cylindrical specimens without loading for ECC and SMA-ECC.
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It can be observed that at the loading levels, the sorptivity of SMA-ECC specimens
is significantly lower than that of ECC specimens. For example, the initial sorptivity
of Specimen SE-5 is about 13.8% lower than that of ECC at 60% loading level. This
phenomenon can be attributed to the superior crack self-control ability of SMA-ECC
materials, which maintain a maximum crack width of below 100 µm under loading [28].
This characteristic facilitates the more efficient filling of fine cracks with particles generated
by subsequent hydration reactions.

The average value of S1 and S2 is considered as the average sorptivity. In order
to highlight the superior impermeability of SMA-ECC compared to ECC, the average
sorptivity of ECC is considered as the relative condition, and the relative average sorptivity
η is defined. The calculation equation is as follows:

η =
SSE
SE
× 100% (10)

where, SSE represents the average sorptivity of SMA-ECC (mm·mm−1/2), and SE represents
the average sorptivity of ECC (mm·mm−1/2).
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The comparative analysis of the relative average sorptivity of SMA-ECC is illustrated
in Figure 10. Both SMA-ECC and ECC exhibit similar water absorption rate responses to
varying stress levels. Specifically, as the stress levels increase from 0 to 30%, from 30% to
50%, and further from 50% to 60%, the relative average absorption rates follow a pattern
of initial increase, subsequent decrease, and then another increase. In their undamaged
states, SMA-ECC and ECC show similar average sorptivity. However, under damage
conditions, the relative average sorptivity of SMA-ECC consistently remains lower than
their undamaged counterparts. It is noteworthy that the trend of SMA-ECC’s sorptivity
consistently remains lower than that of ECC. This can be attributed to the incorporation
of SMA fibers, which potentially mitigate the early-stage shrinkage of the cementitious
matrix, thereby reducing the formation of internal shrinkage cracks and pore networks.
Consequently, this mechanism constrains the internal moisture transfer within the material.
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3.3. Cumulative Water Absorption before and after Damage

This section aims to investigate the effect of damage induced by sustained compres-
sive loads on the capillary water absorption behavior of ECC and SMA-ECC specimens.
Typical results of cumulative water absorption for ECC and SMA-ECC hollow-cylindrical
specimens before and after damage induced by various target loads (0.3, 0.4, 0.5, and 0.6 fc)
are shown in Figure 11, in which the state of before and after damage corresponds to two
loading patterns (without loading and unloading after loading to target loading level).
From Figure 11, within a certain water absorption test period, the cumulative water content
of ECC specimens with imposed loading damage has an apparent increase compared to
that of the same batch of specimens without damage, especially at a high loading level of
0.5 fc. And the cumulative water content of damaged specimens significantly increases with
an increase in compressive loading level. This can be attributed to the proliferation and
development of micro-cracks with increasing applied loading, which provides easy access
for water transportation in the cement matrix. Across the predetermined compressive
loading range of 30% to 50%, the cumulative water content of compromised SMA-ECC
specimens is inferior to that of intact SMA-ECC. This outcome can be attributed to the
activation of the ‘super-elastic effect’ inherent in SMA fibers, leading to the self-healing
of cracks subsequent to unloading [37]. Specimen E-5 failed under a sustained loading of
0.6 fc, thus the water absorption properties at this loading level are not analyzed.
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3.4. Self-Repairing Ability of SMA-ECC

The capillary water absorption test has been acknowledged as an effective method to
assess the self-healing capacity of cement-based materials [30]. The self-repairing ability
of SMA-ECC was evaluated by comparing the cumulative water content of ECC and
SMA-ECC before and after damage induced by sustained compressive loading.

Based on the cumulative water content of intact specimens, the normalized water
content ϕ(t) shown in Equation (11) is defined as the ratio of the cumulative water content
of the specimens before and after suffering damage. The damage-repairing rate R of
SMA-ECC is determined by Equation (12).

ϕ(t) =
iu(t)
i0(t)

× 100% (11)

R =
ϕE − ϕSE

ϕE − 1.0
× 100% (12)

where i0(t) and iu(t) are the cumulative water content before damage (i.e., not loaded) and
after damage (i.e., after unloading), respectively; ϕE and ϕSE are the normalized water
content of ECC and SMA-ECC at the end of water absorption test, respectively. If the value
of R is greater than 1.0, it is considered as 100%.

Figure 12a,b displays the normalized water content of ECC and SMA-ECC specimens
at different compressive loading levels. The relative water absorption of ECC is greater than
1 in the range of 30~60% stress level, while the relative water absorption of SMA-ECC is less
than 1 in the range of 30~40% stress level, and the relative water absorption of ϕ is about
1 in the range of 50~60% stress level. This indicates that after ECC is subjected to a certain
load, part of the internal damage cannot self-heal, resulting in higher water absorption after
unloading compared to the initial water absorption. SMA-ECC has excellent self-healing
performance under flexural and tensile loads, and it can also reflect a certain self-healing
ability under low loading levels, with better recovery of internal damage. Especially at
60% stress levels, the relative water absorption ϕ of SMA-ECC is much lower than that of
ECC. This observation correlate well with the fracture self-healing properties discussed in
Section 3.3.

Figure 12c displays the damage-repairing rate of SMA-ECC at target loading levels.
The cumulative water content of the self-repaired specimens SE-2 and SE-3 with target
loading of 0.3 fc and 0.4 fc, respectively, closely matches that of the intact specimens. The
repairing rate of SMA-ECC reaches 100% at a loading level of 30% and 40%, and then
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decreases with an increase in loading levels. At a higher loading level of 60%, the repairing
rate of SMA-ECC reaches only 76%. The results indicated that SMA-ECC has excellent
self-repairing properties after unloading, which can be credited to the super-elasticity
effect of the added SMA fibers. The stress-induced martensitic transformation mechanism
provides a restoring force that partially self-closes micro-cracks when external loading is
removed [27]. This self-closure process is influenced by the loading level, wherein the
closure of cracks restricts the transport of external media such as water into the cement
matrix, resulting in a decrease in water absorption content. As aforementioned, the optimal
practical working loading level can be around 30% to 40% of the ultimate compressive
strength of the specimens, with an upper limit of approximately 60% fc.
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4. Conclusions

This paper presents an experimental study that examines the impact of sustained
compressive loads and load-induced damage on the capillary water absorption of SMA-
ECC, using an enhanced self-designed water absorption test setup. The evaluation of
the self-repairing capability is performed by measuring the cumulative water content of
SMA-ECC both with and without the influence of imposed load damage. The following
conclusions are drawn based on the analysis of the experimental findings:
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(1) With an increase in the studied compressive stress levels, the cumulative water
content and initial sorptivity firstly decrease and then increase beyond the critical loading
level at a given exposure time. The cumulative water absorption of SMA-ECC is consistently
lower than that of ECC. In particular, at 60% stress levels, the cumulative water absorption
of SMA-ECC is 35% lower than that of ECC.

(2) SMA-ECC exhibits better resistance behavior of water absorption under sustained
compressive loading compared with ECC. The relative average sorptivity (ratio of ECC to
SMA-ECC) was used to compare the impermeability of SMA-ECC and ECC. The relative
average sorptivity can be maintained at about 75% under higher stresses such as 50% or 60%.
This result can be attributed to the initiation of the inherent ‘super-elastic effect’ present in
SMA fibers, which subsequently facilitates the self-repair of cracks upon unloading.

(3) In terms of the cumulative water content before and after damage, the normalized
water content is proposed in this study. Based on the results of normalized water content,
SMA-ECC exhibited an excellent damage-repairing ability below the loading level of 0.4 fc;
however, the repairing rate is only 76% at a higher loading level of 0.6 fc.

These findings indicate that SMA-ECC has remarkable self-healing performance under
damage. However, it is important to note that factors such as higher loading levels, duration
of loading, and environmental conditions (including temperature and humidity) may also
influence the water resistance properties of SMA-ECC. Moreover, the application of SMA-
ECC in practical engineering components, such as marine structures like piles or bridge
piers, merits investigation regarding its impact on structural mechanics and durability.
Therefore, exploring the resistance to water penetration and self-healing capabilities of
SMA-ECC in various environmental conditions, under different loading scenarios, and
within actual structural elements presents a promising direction for further research.
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