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Abstract: A convenient and low-cost sol–gel approach for the one-step synthesis of ZnO–P2O5–rGO
nanostructures with tuned bandgap and fluorescence was investigated. The obtained hybrid nanos-
tructures exploit the properties of zinc oxide, graphene oxide and phosphorous oxide as promising
candidates for a wide range of optoelectronic applications. A predominant amorphous structure,
ZnO–P2O5–rGO, containing ZnO nanorods was evidenced by X-ray diffraction analysis (XRD) and
scanning electron microscopy (SEM). The estimated size of the ZnO nanorods in nanostructures with
P2O5 was noticed to decrease when the P2O5/ZnO ratio was increased. The presence of ZnO, P2O5

and rGO was confirmed by Fourier-transform infrared spectroscopy (FTIR) and Raman investigation.
P2O5 was noticed to tune the bandgap and the fluorescence emissions of the nanostructured films, as
estimated by UV–Vis–NIR and fluorescence spectroscopy, respectively. The electrical measurements
performed at room temperature showed that the main influence on the film’s resistivity does not
come from the 1% rGO doping but from the P2O5/ZnO ratio. It was found that a 10/90 molar ratio
of P2O5/ZnO decreases the resistivity almost seven-fold compared with rGO-doped ZnO films.

Keywords: ZnO–P2O5–rGO nanostructures; tuned fluorescence; bandgap engineering; sol–gel

1. Introduction

Nowadays, optical materials, including semiconductors, are widely fabricated into
thin films, which are essential for optoelectronic and microelectronic devices such as
sensors, lighting devices and solar cells. As a consequence of the remarkable progress
in nanotechnologies, the structure of the thin films can be further engineered at different
scales to enhance the optical performance of the materials, which is attributed to the
enhancement of the interaction between the light waves and these nanostructured thin
films. Recently, zinc oxide (ZnO)-based nanostructures have been intensively studied due
to their interesting new properties.

ZnO belongs to the wurtzite family of structures with the three fastest growth direc-
tions, <0001>, <0110> and <2110>, and polar-surface-induced phenomena, with a direct
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wide band gap of 3.37 eV and a large excitation binding energy (60 meV), exhibiting near-
ultraviolet emission and transparent conductivity. As an oxide with noncentral symmetry,
ZnO is piezoelectric, a property that qualifies it for use in building electromechanical-
coupled sensors and transducers. ZnO is also bio-safe and biocompatible, and can be used
for biomedical applications without coating.

The ZnO–graphene heterostructure nanohybrids integrate the physical properties of
graphene and ZnO, providing a unique platform for the exploration of a wide variety
of applications [1] ranging from photodetectors [2,3] and gas sensors [4] to stress/strain
sensors [5,6], lasers [7] and piezoelectric nanogenerators [8], to mention just a few that have
recently been reported.

The preparation of a composite structure of ZnO with graphene or graphene oxide
is an efficient way to control the morphology, band gap and surface-defection states of
ZnO nanostructures [9,10].

Nanostructured ZnO–carbon materials are an emerging class of nanostructures with
unique optical properties, including photoluminescence. ZnO photoluminescence emis-
sions in the UV and visible regions depend on the synthesis routes, shape, size, deep
level and surface defects. Carbon nanomaterials such as graphene oxide (GO) and re-
duced graphene oxide (rGO) can modify the surface defects in ZnO, allowing the tuning
of these photoluminescence properties in order to produce, for example, white light. The
efficient energy transfer from the ZnO to carbon nanostructures makes these nanostruc-
tures suitable candidates not only for energy-harvesting applications but also for use as
biosensors, photodetectors and low-temperature thermal imaging. The literature reported
the preparation of ZnO–graphene oxide using the hydrothermal method [11,12], via the
combination of a simple hydrothermal reaction and spray drying [13], via the radiofre-
quency magnetron sputtering technique [14] and via ultrasonic-assisted spray pyrolysis [15].
Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons
using few layers of graphene prepared by chemical vapor deposition (CVD) [16] and
the fabrication of ZnO–GO composite films by laser technique were also reported [17].
Doped ZnO with carbon-based materials prepared via the sol–gel method with advantages
such as low temperature synthesis, large-scale productivity and cost effectiveness were
reported recently [18–22].

J.Wang reported on the use of surface-modified zinc phosphate (Zn3(PO4)2) nanocrys-
tals widely applied in the coating industry, medicine, electrical fields, particularly for their
anti-corrosion properties due to low solubility in a water/biological environment prepared
via the ultrasonic–template–microwave (UTM)-assisted route [23].

The present research work aimed at investigating sol–gel methods as a convenient
and low-cost approach for the one-step synthesis of ZnO–P2O5–rGO nanostructures with
bandgap engineering, and tuned fluorescence. The investigated materials exploit the
properties of hybrid nanostructures based on zinc oxide, graphene oxide and phosphorous
oxide, exploring their suitability for a wide range of optoelectronic applications.

2. Materials and Methods
2.1. Zinc Phosphate Graphene-Doped Nanostructured Films Preparation

The following chemicals were used for sol–gel synthesis as received without previ-
ous purification: zinc acetylacetonate (Zn(C5H7O2)2·1H2O, 99.98 wt.% Sigma Aldrich),
monoethanolamine (MEA) (C2H7NO, Alfa Aesar), triethyl phosphate (TEP) (C6H15O4P,
99.8 wt.%, Sigma Aldrich), distilled water, and ethanol (C2H5OH, 96 ± 2 wt.%, Alfa Ae-
sar, Haverhill, MA, USA). An 18 mg/mL solution of reduced graphene oxide (rGO) in
ethanol was prepared as previously reported [24]. ISOLAB microscope slides were used as
substrates after cleaning by washing several times with ethanol and deionized water and
drying at room temperature.

A stock solution was prepared by dissolving zinc acetylacetonate in ethanol at room
temperature, followed by the addition of MEA in a ratio of 1 mol MEA: 1 mol zinc acetylace-
tonate (MEA/ZnAc = 1). Appropriate amounts of rGO suspension and TEP were added,
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as presented in Table 1, and the resulting sol was aged at room temperature for 72 h under
continuous magnetic stirring. The molar ratios of ZnO/P2O5 were 90:10, 86:14 and 80:20,
as presented in Table 1.

Table 1. Sample denomination and compositions in precursors’ solutions.

Sample
Denomination

ZnO/P2O5
% Molar Ratio

rGO
wt.% as Respect to ZnO in

Precursor Solution

Number of
Layers

ZnO 100/0 1, 10, 20

ZnOrGO 100/0 1 1, 10, 20

80ZnO20P2O5rGO 80/20 1 1, 10, 20

86ZnO14P2O5rGO 86/14 1 1, 10, 20

90ZnO10P2O5rGO 90/10 1 1, 10, 20

The sols formed were deposited on the glass substrate by spin coating at a rotation
rate of 2000 rpm at room temperature. Films of 1, 10 and 20 layers were deposited. After
each spin-coated layer, the samples were placed on a hot plate at 80 ◦C for two minutes.
After the 1-, 10- and 20-layer deposition, the samples were dried at 200 ◦C (5 ◦C/h) for
30 min, followed by thermal treatment at 400 ◦C for 30 min.

2.2. Investigating Methods

X-ray diffraction analysis was performed using a BRUKER D8 ADVANCE (Billerica,
MA, USA)- type X-ray diffractometer (CuKα, λ = 1.5405 Å). The X-ray data were acquired
at room temperature using a step of 0.020◦ and 5 s integration time. All samples were
scanned between 5◦ and 70◦ (2θ range). The ICDD powder diffraction database was used
for phase identification [25].

Fourier-transform infrared (FTIR) spectra were recorded using a Perkin Elmer
Spectrophotometer-Spectrum 100 provided with the Universal Attenuated Total Reflectance
(UATR) accessory, in the range of 400–4000 cm−1, with 4 cm−1 resolution, 20 total scans
and a measurement error of ±0.1%.

Optical properties were measured with a Spectrophotometer Lambda 1050. (PerkinElmer,
Waltham, MA, USA) in the UV–Vis–NIR domain in the range of 320–2500 nm, with a mea-
surement error of ±0.03%.

The morphology and elemental compositions of the samples were studied with the
aid of a scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) analysis
using a FEI Inspect F50 system (FEI Europe B.V. Eindhoven, The Netherlands).

The luminescence spectra were collected with a spectrofluorometer FluoroLog-3,
HORIBA Jobin Yvone S.A.S. (Paris, France) in the range of 850–1600 nm, using an 850 nm
excitation wavelength from a Xe lamp of 450 W, with a measurement error of ±0.5 nm.

Raman spectra were collected by means of a LabRam HR Evolution HORIBA (Palaiseau,
France), acquisition time 2 s, accumulation 20, laser 514 nm, hole diameter 100 micro, objec-
tive 50×, grating 600 gr/mm, ND filter 100%, range 100–16,000 cm−1, with a measurement
error of ±0.5 cm−1.

Electrical measurements were performed at room temperature (RT) using a Keithley
2450 Source Meter. Two-point geometry was considered using pairs of linear electrodes
placed at different distances between 0.5 and 3 mm. Rectangular pieces of samples (between
2.6 and 3.5 mm wide) were used with the linear contacts crossing the entirety of the sample
width. Next, 10 nA currents were applied under potential drops of of tens of Volts.
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3. Results and Discussion
3.1. X-ray Diffraction (XRD) Investigations

The XRD patterns of all analyzed samples are presented in Figure 1a–f. It was noticed
that three samples (Figure 1a,b,f) out of the six analyzed have an amorphous character,
similar to that of the glass substrate (Figure 1a). In these samples, the amount of crystal-
lized ZnO is greatly reduced (negligible narrow diffraction peaks specific to a crystalline
phase), almost below the detection limit of the device. For the samples with P2O5 content,
a hexagonal phase of ZnO (space group P63mc) was identified according to PDF card
01-080-6503. The crystallite size was estimated for the samples (c) 80ZnO20P2O5rGO
20 layers, (d) 86ZnO14P2O5rGO-20 layers and (e) 90ZnO10P2O5rGO 20 layers using the
Scherrer formula [26] applied to the (100) reflections corresponding to the three samples.
The estimated sizes were around 10.34 nm for sample (c), 8.5 nm for sample (d) and 18 nm
for sample (e), respectively. These values are very close to those of the nanorods’ diameters
obtained via the SEM investigations of these samples.
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Figure 1. XRD patterns of analyzed samples: (a) glass substrate; (b) ZnO 20 layers;
(c) 80ZnO20P2O5rGO 20 layers; (d) 86ZnO14P2O5rGO 20 layers; (e) 90ZnO10P2O5rGO 20 layers;
(f) ZnOrGO 20 layers.

3.2. Fourier-Transform Infrared Spectroscopy (FTIR) Investigations

The FTIR absorption spectra of all samples are presented in Figure 2, and the vibration
bands after deconvolution, together with their assessments, are shown in Table 2. The
vibrational band noticed at 546 cm−1 in all samples was assigned to the Zn–O stretching
mode and confirms the formation of ZnO [27]. The vibration modes of the silica-based glass
substrate with broad bands centered at around 760 and 910 cm−1 and assigned to the Si-O-
(stretching mode) in the range 750–760 cm−1 and 890–975 cm−1 were present in all the sam-
ples. The information from the 1 mm thickness of the glass substrate overlapped with the
information received from the films with a thickness of only hundreds of nanometers [28].
However, in some samples, new shoulders were noticed, and after deconvolution, these
new bands, identified in all samples, containing rGO and P2O5 at 988–1010 cm−1, were
ascribed to the overlapping of the Si-O vibrational modes with C-O-C stretching (epoxy
group) [29] and with υs Si-O-P in samples containing phosphorous [30,31].
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Table 2. FTIR absorption band assignments.

Band Assignments
Glass ZnO ZnOrGO 90ZnO10P2O5

rGO
86ZnO14P2O5

rGO
80ZnO20P2O5

rGO

FTIR Peaks (cm−1)

Zn–O stretching mode [26] - 546 546 546 546 546

υs (Si–O–Si) [27] 766 755 754 752 752 752

υs (Si-O-) [27] 906 901
988 896 898 898 895

(980–1050 cm−1) υs Si-O-P [29,30]
(1050 cm−1) C-O-C stretching

(epoxy group) [28]
- - 1010 1008 1009 1011

3.3. UV–VIS–NIR Spectroscopy Investigations

The UV–VIS–NIR transmission and absorption spectra (insert) of ZnO, ZnO–graphene
hybrid and ZnO–P2O5–graphene hybrids were recorded, and the results are presented in
Figure 3. For the pure ZnO-layered structure, the characteristic absorption band attributed
to the excitonic absorptions centered at 356 nm was noticed. The reduced graphene oxide
in ZnO/rGO nanocomposites slightly shifted the absorption band edge to 358 nm, together
with a decreased transmission from 89% to 85% in the visible region compared with the
ZnO nanolayer, suggesting an increase in the surface electric charge of ZnO due to the
graphene that may modify the exciton formation [32–34]. P2O5 red-shifted the excitonic
absorption edges to 360–365 nm, together with a decreased transmission from 85–89%
to 74–77% for the visible domain, as compared with the samples without phosphorous
content, indicating a chemical interaction of P2O5 with the ZnO–rGO matrix and also an
effective integration of the materials. However, the transmittance in the visible domain was
greater than 75% for all samples.

Materials 2023, 16, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. UV–VIS–NIR spectra of ZnO, ZnOrGO and ZnOrGOP2O5 films (the absorbance spectra in 
insertion). 

 
Figure 4. Bandgap estimation of 90ZnO10P2O5rGO film by Tauc plot method. 

The band gaps decreased as a function of rGO and phosphorous oxide contents with 
a minimum of 3.77 eV for the film 90ZnO10P2O5rGO.The optical band gap (Eg) was found 
to be dependent on the number of layers, as expected [36,37]. A decrease in the band gap 
energy of the structures with an increase in the number of layers was noticed for the ZnO, 
ZnOrGO and 80ZnO20P2O5rGO samples because of the higher carrier concentration in the 
conduction and valence bands, which led to enhanced carrier–carrier interaction. For the 
samples 86ZnO14P2O5rGO and 90ZnO10P2O5rGO, apart from the dependence of the ab-
sorption band edge on the size of the constituent nanocrystals, P2O5 also contributes to the 

Figure 3. UV–VIS–NIR spectra of ZnO, ZnOrGO and ZnOrGOP2O5 films (the absorbance spectra
in insertion).

The direct bandgaps of nanocomposites structures were estimated from the graph
of hν versus (αhν)2, for the absorption coefficient α that is related to the bandgap Eg as
(αhν)2 = k (hν − Eg), where hν is the incident light energy and k is a constant [35]. An
example of the graphical estimation of the bandgap for 90ZnO10P2O5rGO is presented
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in Figure 4. Figure 5 presents the variation in the optical bandgap of the zinc-based
nanostructures as a function of P2O5 content and the number of deposited layers.
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The band gaps decreased as a function of rGO and phosphorous oxide contents with a
minimum of 3.77 eV for the film 90ZnO10P2O5rGO.The optical band gap (Eg) was found
to be dependent on the number of layers, as expected [36,37]. A decrease in the band gap
energy of the structures with an increase in the number of layers was noticed for the ZnO,
ZnOrGO and 80ZnO20P2O5rGO samples because of the higher carrier concentration in
the conduction and valence bands, which led to enhanced carrier–carrier interaction. For
the samples 86ZnO14P2O5rGO and 90ZnO10P2O5rGO, apart from the dependence of the
absorption band edge on the size of the constituent nanocrystals, P2O5 also contributes to
the distortion of some of the crystal lattice and consequently affects the crystal size and
lattice. Since the optical properties strongly depend on the micro-structure of the materials,
we found that P2O5 can tune the bandgap of ZnO-based films and, consequently, can tune
the optical properties.

3.4. SEM Spectroscopy Investigations

SEM images of the typical 20-layered films are presented in Figure 6a–e.
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Figure 6a–e presents the typical SEM images of the deposited sol–gel films with
20 layers. ZnO crystallites as nanorods were noticed in all samples. The distribution of the
diameter of the crystallites in the samples varies in the interval of 5–10 nm for samples ZnO,
ZnOrGO and 80ZnO20P2O5rGO. Samples with molar ratios of 86/14 and 90/10 ZnO/P2O5
displayed an increase in the diameter of the nanorods up to 20 and 26 nm, respectively,
and an increased distribution of the nanorods with diameters of around 10 nm. These
observations are in agreement with the estimated sizes from XRD investigations.

The 200 nm typical thickness of a film containing ZnO, P2O5 and rGO with 20 consec-
utively deposited layers is presented in Figure 6f.

3.5. Photoluminescence Spectroscopy

The PL spectra of the prepared ZnO-based nanostructured composite films, recorded
at room temperature with a 330 nm excitation wavelength, are presented in Figure 7.
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Three spectrally distinct PL bands were noticed, namely the high sharp intensity
band (UV emission) with maximum levels centered at 374 nm (recorded for sample
90ZnOrGO10P2O5) and the broad band centered at 393 nm (recorded for samples ZnO,
ZnOrGO, 86ZnOrGO14P2O5 and 80ZnOrGO20P2O5), the medium-intensity broad band
(blue emission) centered at 448 nm for all samples and the lowest-intensity and sharp band
(green emission) at 542 nm displayed for all samples except for ZnO.

The near-band-edge (NBE) UV emission was associated with the radiative recom-
bination of free excitons in ZnO. The visible emission bands were attributed to surface
defects, such as oxygen vacancies (VO) (or zinc dangling bonds) and zinc vacancies (VZn)
(or oxygen dangling bonds) [12,38].

The presence of defects on the surfaces of ZnO films may result in significant charge
recombination rates. Especially the solution processing of ZnO films often leads to a high
density of surface defects that can act as recombination centers for photogenerated charge
carriers, decreasing the photocurrent and power conversion efficiency [38].

Our prepared 10% molar of P2O5 and 1% rGO in 90ZnOrGO10P2O5 sample tuned
the fluorescence properties. The enhanced NBE intensity, together with a quenching of
the visible emissions by passivating the surface defects with simultaneous enhancement
of the conductivity of ZnO, was achieved within one sol–gel stage of synthesis. Other
reported fluorescence tuning methods, such as ZnO thin-film treatment via surface covering
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with a thin ZnS coating [39] or by fluorine plasma treatment [40], consist of at least two
stages apart from the temperature treatment. Polydorou et al. [38] reported an increase
in the near-band edge (NBE) intensity and a reduction in the broadband intensity in the
visible range upon ZnO thin film treatment in pure and mixed SF6 plasma with subsequent
improvements in device efficiency and lifetime of inverted polymer solar cells.

For all prepared sol–gel samples containing graphene (Figure 7), as shown by the PL
spectra, the luminescence was substantially quenched after the addition of rGO due to the
interfacial charge transfer between ZnO nanorods and rGO layers.

The blue emission at 448 nm was attributed to the electron transition from a shallow
donor level of zinc interstitials (Zni) to the top of the valence band (VB) [41]. The green
emission peak observed around 540 nm is due to the transitions from the oxygen vacancy
(VO) level of ZnO NRs [42]. The presence of intrinsic defects in the ZnO lattice structure
causes photoemissions in the green or yellow/orange/red spectral regime. Green emis-
sions are often attributed to singly ionized oxygen vacancies, or oxygen vacancies and
zinc interstitials.

Blue and green emissions of the sol–gel prepared ZnO films, as presented in PL spectra,
were not noticed, probably due to the predominant amorphous phase of the film.

3.6. Raman Analysis

We have collected the Raman spectra for all samples, attempting to estimate the crys-
tallite symmetry and prove the existence of graphene oxide in the sol–gel films. Figure 8a,b
shows the Raman spectra of the thin films in a wide range (450–3000 cm−1) and on a
reduced interval (1250–1750 cm−1), respectively. The ZnO Raman characteristic peaks from
~437, 570, 790 and 1100 cm−1 [43] could not be noticed in any of the samples due to the
overlapping with the strong contribution of the glass substrate.
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Figure 8. Raman spectra of the sol–gel 20 layered films: 90ZnO10P2O5rGO, 86ZnO14P2O5rGO,
80ZnO20P2O5rGO, ZnOrGO, ZnO; wide range (a) and detail (b).

The wide band of the ZnO film (Figure 8b) in the interval 1250–1750 cm−1 could be
due to the light scattering in amorphous structures, which was predominant in our films,
in accordance with the XRD patterns. However, according to the reported literature, the
carbon defects in the structures of these films should not be excluded since C is always
present as an unintentional dopant introduced during the growth of ZnO by the sol–gel
method, which is based on organic precursor compounds [43,44].

Different features were noticed for the Raman spectra of the samples containing rGO.
It is well known that GO exhibits two main characteristic peaks: a D band located at
~1350 cm−1, and a G band located at ~1590 cm−1. The D band refers to some disorders and
defects in the graphitic structure, while the G band refers to the in-plane vibration of sp2
carbon-type structures [45,46].
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The D band appears in samples ZnOrGO and 90ZnOrGO10P2O5, while the G band
was noticed in all samples, which suggests the presence of the reduced graphene oxide
material in the ZnO–rGO nanostructures.

The intensity ratio of the D band (ID) to the G band (IG) correlated with the disorder
evaluation in carbonaceous materials could not be estimated due to the complexity of the
system and the presence of ZnO. However, the Raman investigations proved the existence
of rGO in the nanostructured thin films.

3.7. Electrical Measurements

The average resistance value obtained from different contact pairs on each film, in the
case of the analyzed 20-layered films, is presented in Table 3.

Table 3. Geometrical parameters and average resistance and resistivity values of the investigated films.

Sample Average Resistance
(GΩ) w (mm) Average

l (mm)
Resistivity

(Ωm)

ZnO 2.1 (1) 2.6 (1) 1.3 (1) 820 (10)

ZnOrGO 0.78 (5) 3.2 (1) 0.7 (1) 700 (10)

90ZnO10P2O5rGO 0.11 (2) 3.2 (1) 0.6 (1) 110 (10)

80ZnO20P2O5rGO 0.12 (2) 3.5 (1) 0.8 (1) 120 (10)

The resistivity of each film was computed according to the formula: ρ = R·t·w/l, where
R is the resistance, t is the film thickness, w is the film width (equating the wideness of
the rectangular sample) and l is the distance between the pair of electrodes. The thickness
of all films was approximated at 200 nm; the sample/film widths are mentioned in Ta-
ble 3. A relatively low dispersion (i.e., below 10%) of the resistivity values was obtained,
with resistances collected from different contact pairs, with a slightly decreasing trend at
increasing distances between contacts. This observation gives support for a reasonable
homogeneous resistivity of the films over the mm range. As a direct consequence, an
average resistivity can be calculated by using the average value of the resistance and
the corresponding average distance between the considered contact pairs, as mentioned
in Table 3.

It can be observed that the main influence on the resistivity does not come from the
1 wt. % of doping with rGO (e.g., it decreases the resistivity by some 15%), but rather from
the content of P2O5. A ratio of 10/90 of P2O5/ZnO decreases the resistivity from about
700 Ωm in sample ZnOrGO down to about 110 Ωm (e.g., almost seven-fold) in sample
90ZnO10 P2O5rGO. A further increase in the P2O5 content does not further decrease
the resistivity.

4. Conclusions

Nanostructured films based on ZnO, P2O5, and rGO were successfully synthesized via
the one-step sol–gel method. XRD patterns of analyzed samples showed that in films con-
taining P2O5, a hexagonal phase of ZnO was identified, with the crystallite size decreasing
with increasing P2O5/ZnO molar ratios from 10/90 (18 nm) to 20/80 (10 nm), respectively.
The SEM investigations were in agreement: the distribution of crystallite diameters of
5–10 nm for samples ZnO, ZnOrGO and 80ZnO20P2O5rGO, of 20 nm for 86/14 (molar ra-
tio) ZnO/P2O5 and of 26 nm for 90/10 (molar ratio) ZnO/P2O5. FTIR and Raman-collected
spectra confirmed the presence of ZnO, P2O5 and rGO. The band gaps, as estimated from
the UVVISNIR investigations, decreased as a result of the rGO and phosphorous oxide
contents with a minimum of 3.77 eV for the 20-layered 90ZnO10P2O5rGO film. The optical
band gap (Eg) was found to be dependent on the number of layers and P2O5 content. Our
prepared 10 mol % of P2O5 and 1 wt.% rGO in the 90ZnOrGO10P2O5 sample tuned the
fluorescence properties. The enhanced near-band-edge (NBE) intensity, together with a
quenching of the visible emissions by passivating the surface defects with simultaneous
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enhancement of conductivity of ZnO, was achieved within one sol–gel stage of synthesis.
A doping with 1 wt. % rGO decreased the film’s resistivity by about 15%, while a molar
ratio of 10/90 of P2O5/ZnO decreased the resistivity almost seven-fold, as identified from
the electrical measurements performed at room temperature.
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