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Abstract: Further improving the corrosion resistance of the ASTM Grade 13 (Gr13) titanium alloy was
achieved by manipulating the cathodic modification effect. The cathodic modification of Gr13 was
mainly related to the Ti2Ni precipitate, where minor Ru was contained and controlled the precipitate
in terms of size and distribution, which could manipulate the cathodic modification effect. Parameters
such as temperature and cooling rate during the recrystallization process were designed to control
precipitation behavior, where the temperature at 850 ◦C was selected to allow the full dissolution of
the Ti2Ni precipitate. The cooling rate, as high as 160.9 ◦C/min, was still enough for precipitation to
occur during the cooling stage, leading to the formation of the Ti2Ni precipitate along with a grain
boundary. The cooling rate of water quenching was too fast to cause the diffusion process, resulting
in a large amount of the β-Ti phase without the precipitate, which was pre-formed while heated at
850 ◦C. Aging at 600 ◦C caused the re-precipitation of Ti2Ni, and, at that moment, the precipitate
was refined and separated, as a good aspect of the catalyst for HER. Therefore, the aged sample after
water quenching showed the lowest onset potential for HER with the highest corrosion potential,
indicating that its passivation ability was improved by the strengthened cathodic modification effect.
This improvement was confirmed by the OCP results, where passivation survival was observed for
the aged sample due to the highest cathodic modification effect. Therefore, the aged sample, which
had refined and separate precipitates, showed the lowest corrosion rate.

Keywords: corrosion-resistant titanium alloys; tantalum; tantalum oxide; precipitate; corrosion

1. Introduction

Corrosion is a type of phenomenon of metal deterioration as a result of physico-
chemical interactions between metals and the environment. In particular, electrochemical
corrosion consists of two partial electrochemical reactions, including an anodic reaction
(corrosion) and a cathodic reaction, which requires three components, namely anode,
cathode and electrolyte. These components should co-exist and contact each other for
corrosion occurrence; therefore, if one of them is eliminated or separated, corrosion can be
prevented [1–3]. Titanium and titanium alloys usually exhibit superior corrosion resistance,
even under severe corrosion conditions, such as oxidizing acids (NHO3, H2CrO4), mild
reducing acids (most organic acids) and seawater, due to the presence of an ultrathin TiO2
film [4–7]. The inert and self-regenerated characteristics of the TiO2 film formed on the tita-
nium surface provide resistance in their reaction with the contacted environment, placing
titanium and titanium alloys under separate conditions from the environment. Thus, the
performance of the TiO2 film in terms of its formation, stability and regeneration ability is
crucial when determining the corrosion properties of titanium and titanium alloys.

An approach to improve corrosion resistance by adding elements, there are four pos-
sible ways: an increase in thermodynamic stability, the retardation of cathodic reaction
kinetics, the formation of a stable passivation layer and the retardation of anodic reaction
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kinetics [8]. The latest one is usually realized by adding platinum group metals (PGMs)
into passivation materials, such as stainless steels and titanium, and is called cathodic mod-
ification, where an introduced active site reduces the overpotential of a cathodic reaction,
elevating the cathodic reaction in a passivation region [9–13]. The ASTM Grade 13 (Gr13)
titanium alloy (Ti-0.5Ni-0.05Ru) is a PGMs-containing titanium alloy, and it also shows the
cathodic modification effect due to the presence of the Ti2Ni(1−x)Rux precipitate [14–17].
Ruthenium is known to act as a catalyst with a secondary phase, like a precipitate. Therefore,
as a catalyst for hydrogen evolution reaction (HER) on titanium’s surface, the controlled
precipitate in terms of size and distribution can alter the corrosion properties of titanium
alloys via manipulating cathodic modification [18]. This catalytic effect on HER has often
been observed in other works [19–21].

The Gr13 titanium alloy is mainly composed of the α-Ti phase, in which the β-Ti phase
and Ti2Ni precipitate co-exist along with the grain boundary. Because alloying elements,
such as Ni and Ru, are β stabilizing elements, a limited amount of the β-Ti phase also
remains at room temperature [22,23]. With thermomechanical processes, such as hot rolling
and heat treatments, recrystallization heat treatment is also conducted, usually below
the β transus temperature ranging from 600 ◦C to 750 ◦C, as a final process. Previous
results have shown that the Ti2Ni precipitate in Gr13 is dissolved at 760 ◦C, which is
a similar temperature to recrystallization, indicating that the Ti2Ni precipitate could be
dissolved in the α-Ti phase if the recrystallization temperature is higher than 760 ◦C [24,25].
However, there are few works that consider the morphologies of the Ti2Ni precipitate,
especially from the viewpoint of cathodic modification. As the final Ti2Ni precipitate
is the result of reprecipitation when the temperature is high enough to cause the Ti2Ni
precipitate to dissolve during the recrystallization process, the morphology of the Ti2Ni
precipitate in terms of size and distribution can be manipulated during the cooling stage,
here, precipitation behavior from the solid solution state is controlled by the cooling rate.
That is, the final morphology of the precipitate is kinetically determined by a competition
between nucleation and growth, and thus, the cooling rate plays a great role in determining
the size and distribution of the precipitate. As a catalyst, the refined precipitate exerts a
significant impact on HER, thus strengthening the cathodic modification effect.

In this study, different cooling rates were applied to change the morphology of the
Ti2Ni precipitate in terms of size and distribution. As a catalyst for HER, the Ti2Ni(1−x)Rux
precipitate plays a critical role in obtaining the cathodic modification effect, and thus,
the degree of the cathodic modification effect is enhanced by controlling the size and
distribution of the precipitate. Therefore, it is expected that the further enhanced corrosion
resistance of Gr13 can be achieved simply by adjusting the processing parameters.

2. Materials and Methods
2.1. Specimens Preparation

The ASTM Grade 13 titanium alloy was used in this study (Ti-0.5Ni-0.05Ru) and
fabricated by vacuum arc melting. The alloy ingot was homogenized with a solid solution
heat treatment at 1000 ◦C for 10 h under vacuum conditions. Hot rolling was conducted to
break the solidified microstructure, where a total of eight passes (20% reduction per pass)
were applied to achieve an 80% reduction in thickness, leading to a final 4 mm thickness.
The recrystallization process was conducted at 850 ◦C under vacuum conditions for the
full dissolution of the precipitate (Ti2Ni), and then different cooling rates, such as furnace
cooling, gas quenching (Argon, 9 bar) and water quenching, were applied to control precipi-
tation behavior. Due to the fact that no precipitate was formed, aging at 600 ◦C was applied
to the water-quenched sample to perform reprecipitation. The phase diagram calculated by
the Thermo-Calc program was used to determine the recrystallization temperature, which
was higher than the dissolution temperature of the Ti2Ni precipitate (760 ◦C), allowing
the full dissolution of the Ti2Ni precipitate and temperature profile, especially for the
cooling rate during the recrystallization process; this is schematically drawn, as shown in
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Figure 1. The shadow area in Figure 1, indicating the recrystallization temperature region,
was determined by considering the dissolution temperature of the Ti2Ni precipitate.
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Figure 1. (a) Calculated phase diagram of Gr13 and (b) Temperature profile for recrystallization
process, where the cooling rate was controlled to manipulate precipitation behavior.

2.2. Characterizations

Microstructural observations, depending on the cooling rate, were focused on precipi-
tates in terms of their size, morphology and composition. Scanning electron microscopy
(SEM, FEI company, Quanta 250, Hillsboro, OR, USA) and a transmission electron mi-
croscope (TEM, JEOL, JEM-2200FS, Tokyo, Japan) were used for microstructural analysis,
especially for grain boundaries where the β-Ti phase, as well as Ti2Ni precipitates, were
formed. The etchant used to reveal the microstructure was deionized water containing
3 wt% HNO3, 2 wt% HCl and 2 wt% HF acids. Electrochemical tests (Autolab PGSTAT302N,
Metrohm autolab, Utrecht, The Netherlands) such as linear sweep voltammetry, potentio-
dynamic polarization and open circuit potential (OCP) tests were conducted to characterize
the corrosion properties, where the three-electrode configuration with the Pt plate counter
electrode and Ag/AgCl reference electrode were used, respectively. Samples for electro-
chemical tests were prepared by grinding with silicon carbide papers (#800, #1200 and
#2400), followed by polishing with 3 µm and 1 µm of diamond paste. The polished surface
was then cleaned ultrasonically in an ethanol bath and dried with pressurized air before
the electrochemical tests. In total, 10 wt% and 30 wt% of the sulfuric acid (H2SO4) solution
was used as the electrolyte, and nitrogen purge for 30 min was applied to remove dissolved
oxygen from the electrolyte before the electrochemical tests. Linear sweep voltammetry was
conducted with a scan rate of 0.05 mV/s in a range from 0 to −0.5 V, and potentiodynamic
polarization tests (ASTM G5, G61) were performed with a scan rate of 0.05 mV/s in a range
from −1.5 V to 1.5 V. Immersion tests were conducted with 30 wt% of the sulfuric acid
solution to obtain a corrosion rate based on weight loss. The corrosion rate was calculated
according to the ASTM G 31 standard, where weight loss during 24 h was measured to
obtain the corrosion rates as follows: [26–29].

Corrosion rate (mm/y) = K·W/A·T·D (1)

where K is the constant (8.76 × 104), W is the weight loss during 24 h, A is the surface area
of a sample, T is time (h) and D is the density of a sample.

3. Results and Discussion
3.1. Microstructural Characterization with Cooling Rate

Due to the addition of alloying elements, such as Ru and Ni, which were β stabilizing
elements, the ASTM Grade 13 titanium alloy contained the β-Ti phase as well as the Ti2Ni
precipitate in the majority of the α-Ti phase, as shown in Figure 2. As reported in previous
results, the β-Ti phase and Ti2Ni precipitate co-exist along with and/or around the grain
boundary, making them appear as one precipitate in the SEM image [24].
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Figure 2. SEM images showing microstructural changes with different cooling conditions: (a) Furnace
cooling, (b) Gas quenching, (c) Water quenching and (d) Aging at 600 ◦C after water quenching. The
insets in each image highlight the second phases such as Ti2Ni precipitate and β-Ti phase.

The slow cooling rate seemed to cause the growth of the precipitate. Furnace cooling
showed a broader precipitate compared to gas quenching, indicating that a slow cooling rate
could have a greater chance of growing the precipitate. However, a difference in precipitate
size was not obvious between these two cases in spite of a significant difference in the
cooling rates (3.7 ◦C/min vs. 160.9 ◦C/min). The precipitate became slightly narrower with
gas quenching. On the other hand, the fastest cooling rate changed the situation. There
was no precipitate formation and transformation (β-Ti→ α-Ti) during water quenching,
maintaining a large fraction of the unstable β-Ti phase, which pre-formed when heated
up to 850 ◦C for the recrystallization process. A closer look at the β-Ti phase revealed that
there was no Ti2Ni precipitate. The aging at 600 ◦C allowed the reprecipitation of the Ti2Ni
to occur, which was only observed in the β-Ti phase, accompanied by the shrinkage of
the β-Ti phase. Thermal energy can trigger the transformation of the unstable β-Ti phase
into the stable α-Ti phase and Ti2Ni precipitate by expelling β stabilizing elements. The
reprecipitated Ti2Ni in the β-Ti phase became separated and refined and was controlled by
adjusting the aging temperature, which needed to be high for nucleation but not too high
so as to suppress the growth of the precipitate.

A TEM analysis was conducted to further investigate the second phase area. Figure 3
shows the microstructure of the second phase area, including the selected area diffraction
(SAD) patterns corresponding to each phase and the compositional results of each phase,
which are listed in Table 1.

Except for size, the furnace cooling and gas quenching cases showed a similar mi-
crostructure, including the composition of each phase. The Ti2Ni precipitate contained
about 65 wt% Ti and 35 wt% Ni, including a minor amount of Ru, as low as 0.2 wt%. Most
Ru existed in the β-Ti phase adjacent to the Ti2Ni precipitate. The α-Ti phase was revealed
to be pure Ti, indicating that the alloying elements were consumed only for the β-Ti phase
and Ti2Ni formation. The cooling rate of water quenching seemed to be too fast to cause
phase transformation; therefore, the pre-formed β-Ti phase at recrystallization temperature,
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which contained all added Ru and Ni, was maintained after water quenching. As all β
stabilizing elements were used for the β-Ti phase at this moment, its quantity could be
maximized, as shown in Figure 2. Once phase transformation, such as precipitation and β

to α transformation, occurred during the aging process at 600 ◦C, Ni and Ru elements were
expelled from the β-Ti phase and redistributed, leading to the formation of Ti2Ni as well
as the partial transformation of the β-Ti phase into the α-Ti phase. These microstructural
changes had an impact on the composition of each phase. The Ti2Ni precipitate formed
after aging at 600 ◦C with a lower Ni content than the others. Ni in the β-Ti phase after
water quenching was fully used to the Ti2Ni precipitate during aging, while Ru in the β-Ti
phase was consumed partially during aging, resulting in 4.4 wt% Ru in the β-Ti phase.
However, this Ru content seemed to be fairly low compared with those of furnace cooling
and gas quenching (~18 wt%), which was ascribed to the larger quantity of the β-Ti phase
after aging.
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Table 1. Compositional analysis on each phase of the sample.

Furnace
Cooling Gas Quenching Water

Quenching Water Quenching + Aging

Ti2Ni
Ti 65.6 wt%
Ni 34.2 wt%
Ru 0.2 wt%

Ti 64.7 wt%
Ni 35.3 wt% - Ti 70.1 wt%

Ni 29.9 wt%

β-Ti
Ti 78.5 wt%
Ni 3.0 wt%

Ru 18.5 wt%

Ti 82.8 wt%
Ru 17.2 wt%

Ti 86.0 wt%
Ni 8.6 wt%
Ru 5.4 wt%

Ti 95.6 wt%
Ru 4.4 wt%

α-Ti Ti 100 wt% Ti 100 wt% Ti 100 wt% Ti 100 wt%

3.2. Corrosion Properties

As a main mechanism for improving corrosion resistance, the cathodic modification
effect could be greatly influenced by the Ti2Ni precipitate in the Gr13 titanium alloy. A
noble shift in the cathodic reaction could be strengthened by microstructural changes, such
as precipitate refinement. Figure 4 shows the onset potential for HER. An improvement in
the cathodic modification effect was related to reduced overpotential for HER [29–31].
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Figure 4. Linear sweep voltammetry results showing onset potentials for the hydrogen evolution
reaction of the samples treated with different cooling rates.

As shown in Figure 2, the water-quenched sample combined with the aging process
made the precipitate refined and separated, which is a favorable aspect for HER due to
the increased surface area of the Ti2Ni precipitate. As a catalyst, the larger surface area of
the precipitate provided more activity for HER. Therefore, the gradual refinement of the
precipitate while increasing the cooling rate made the onset potential reduce sequentially
from 0.32 V, 0.29 V and finally to 0.27 V.

Figure 5 shows the polarization curves of three samples. Similar to the results of onset
potential, the corrosion potential (Ecorr) was also cathodically shifted by increasing the
cooling rate as a result of the cathodic modification effect. The inset in Figure 5 clarifies
the evolutions of the cathodic modification effect with the cooling rate. The cathodic
reaction increased with the heightened cooling rate due to reduced overpotential and, thus,
led to an increase in corrosion potential [32–34]. This signifies that a higher cooling rate
could provide more chances for passivation, which is ascribed to the catalytic effect of the
precipitate. Also, the higher tendency for passivation results in a decrease in the passive
current density (Ipassive). As mentioned in the introduction, cathodic modification was used



Materials 2023, 16, 6217 7 of 10

for passivation materials, as the resultant effect increased its tendency to be passivated.
The added elements, such as Ru and Ni, formed the Ti2Ni(1−x)Rux precipitate, and its
contribution to HER induced a noble shift in the cathodic reaction, which could improve
passivation stability and, thus, result in a decrease in Ipassive. The improved passivation
stability was confirmed by an open circuit potential (OCP) test, as shown in Figure 6.
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Figure 6. OCP variations in the samples immersed in (a) 10 wt% sulfuric acid solution and (b) 30 wt%
sulfuric acid solution.

For the immersion in 10 wt% H2O4 solution, the OCP of the three samples were all
maintained in the passivation region with immersion time. Only a slight difference in
OCP among the samples was observed, which could result from the different cathodic
modification effects. However, when the samples were placed in a 30 wt% H2SO4 solution,
OCP behavior changed. The furnace-cooled sample showed an abrupt decrease in OCP
because of a loss in passivation and was finally placed in the corroded state. The gas-
quenched sample showed a gradual decrease in OCP instead of an abrupt decrease in OCP,
meaning that passivation deteriorated [35–41]. While the OCP of the aged sample after
water quenching remained almost constant with immersion time, it indicated that only by
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manipulating the cathodic modification effect could the passivation ability be improved,
even in the case of the highly concentrated sulfuric acid solution.

Improved corrosion resistance with the cathodic modification effect was evaluated in
terms of the corrosion rate based on weight loss. The calculated corrosion rate from weight
loss is listed in Table 2.

Table 2. Calculated corrosion rate based on weight loss.

Sample Corrosion Rate
[mm/yr]

Average
Corrosion Rate

[mm/yr]

Standard
Deviation

Furnace cooling

1 3.83

4.42 0.542 5.14

3 4.29

Gas quenching

1 2.04

1.82 0.242 1.93

3 1.49

Water quenching
+ aging

1 0.41

0.41 0.132 0.25

3 0.57

The furnace-cooled sample displayed the highest corrosion rate, followed by the gas-
quenched sample and, finally, the aged sample, whose corrosion rate was 10 times lower
than that of the furnace-cooled sample. This remarkable increase in the corrosion rate of
the aged sample could be related to the preservation of passivity during the immersion
in 30 wt% sulfuric acid solution. Thus, it can be said that an improved passivation ability
through the manipulation of the cathodic modification could be an effective method for
further enhancing the corrosion resistance.

4. Conclusions

The cathodic modification effect could be further strengthened by only controlling
the microstructure of the Ti2Ni precipitate without any compositional changes. Gr13
consisted mainly of the α-Ti phase, where the Ti2Ni precipitate acted as a catalyst for
HER, forming wither with or in the β-Ti phase and around the grain boundary. Due to
the slow cooling rate as low as 3.7 ◦C/min, a coarse Ti2Ni precipitate was formed, along
with the grain boundary for the furnace-cooled sample. Even gas quenching increased the
cooling rate as high as 160.9 ◦C/min, which also resulted in a coarse precipitate but made
the precipitate slightly narrower than that of the furnace-cooled sample. However, there
was no precipitation formation in water quenching due to the fast-cooling rate. Only the
β-Ti phase was observed as a second phase, which was pre-formed when heated up to
850 ◦C for the recrystallization process. Aging at 600 ◦C resulted in the reprecipitation of
Ti2Ni, though, during this moment, its microstructure differed: it became more refined and
separate. In terms of the reactivity for HER, the characteristics of the precipitate encouraged
HER, resulting in a reduction in the onset potential of HER and, thus, strengthened the
cathodic modification effect. This improvement, in turn, reduced the corrosion rate, and
the aged samples showed a 10 times lower corrosion rate than that of the furnace-cooled
sample because of passivation survival. As a result, the enhancement of the passivation
ability enabled the passivation state to be maintained for 24 h of immersion in 30 wt%
sulfuric acid solution, resulting in the lowest corrosion rate.
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