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Abstract: Biodegradable magnesium (Mg) and its alloys show tremendous potential as orthopedic
materials. Nevertheless, the fast degradation and insufficient osteogenic properties hinder their
applications. In this study, mesoporous bioglass (MBG) with an ordered branch-like structure was
synthesized via a modified sol–gel method and showed a high specific surface area of 656.45 m2/g.
A Mg-based composite was prepared by introducing the MBG into a Mg matrix via powder metallurgy.
Degradation tests showed that the introduction of MBG increased the adsorption sites for Ca and P
ions, thus promoting the formation of a Ca-P protective layer on the Mg matrix. The Ca-P protective
layer became thick and dense with an increase in the immersion time, improving the protection ability
of the Mg matrix, as proven by electrochemical impedance spectroscopy measurements. Meanwhile,
the Mg-based composite also exhibited excellent biocompatibility and osteogenic properties. This
study demonstrated the advantages of MBG in the preparation of Mg-based bone implants and
validated the feasibility of improving Mg matrix corrosion resistance and enhancing osteogenesis by
introducing MBG.

Keywords: biodegradable magnesium alloy; corrosion resistance; in situ deposition; Mg-based
composite; mesoporous bioglass; osteogenesis

1. Introduction

Biodegradable magnesium (Mg) alloys as a revolutionary medical metal exhibit great
potential for clinical application, in which they typically serve as screws, cardiovascular
stents or implants [1–3]. For example, Shanghai Jiao Tong University has designed a new
Mg-Nd-Zn-based alloy (JDBM), which has been prepared into bone plates, screws and even
three-dimensional porous structures for bone tissue repair [4]. Mg alloys can gradually
degrade in the human body until they are fully absorbed, cleverly meeting the clinical
needs as a temporary substitute. The Mg ions generated by degradation take part in
various enzyme syntheses, and can even promote bone healing. In addition, their Young’s
modulus is close to that of human bone, which can effectively reduce the stress shielding
effect [5–10]. However, their degradation is too fast in the bodily fluid environment, which
leads to premature loss of mechanical structural integrity during service. Moreover, they
will release a large amount of hydrogen gas, leading to subcutaneous swelling and local
alkaline elevation [11–13].

Three main methods, including alloying, surface medication and Mg-based mate-
rials, have been proposed to tailor the corrosion rate of biomedical Mg alloys [14–16].
In particular, Mg-based composites use bioactive ceramics as calcium phosphate nucle-
ation sites to induce surface mineralization and form a protective layer to delay corrosion.
For instance, Wang X et al. [17] used a casting method to prepare a β-tricalcium phos-
phate (β- TCP)/Mg-Zn-Mn composite material, and its degradation performance was
studied through immersion experiments. It was found that the calcium phosphate product
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layer deposited on the surface of the magnesium matrix delayed the degradation rate.
Wan Y et al. [18] prepared bioglass/Mg composite materials using a microwave sintering
method, and the results showed that the corrosion resistance, mechanical properties and
biocompatibility were all improved to some extent.

In recent years, mesoporous bioglass (MBG) has attracted a lot of attention in the
biomedicine field. MBG not only has the above excellent biological properties, but also has
a uniform mesoporous structure (pore size of 2–50 nm) on the surface and a high specific
surface area (500–800) [19–21]. Furthermore, MBG can hydrolyze in body fluids to form
rich silanols and then polymerize into a negatively charged silica gel layer. The silica layer
sequentially adsorbs Ca2+ and HPO4

2−, thus promoting rapid surface mineralization and
forming a dense calcium phosphorus layer. This structure serves as a protective layer
to slow down the degradation of Mg alloys, as well as to improve their bioactivity and
osteogenic capacity [22–24]. Due to its high specific surface area, MBG provides more
adsorption sites than conventional bio-ceramic materials (e.g., β- TCP and BG) and thus
is more favorable for the deposition of calcium phosphorus layers [25,26]. Notably, if
nano-sized MBG is introduced into Mg alloys, it is usually uniformly distributed, stably
embedded and cannot migrate easily in the matrix. Therefore, the in situ deposition of
a calcium phosphorus layer occurs continuously to ensure space maintenance provision,
thus also ensuring continuity of corrosion protection and osteogenesis [27].

In this study, MBG was synthesized via a modified sol–gel method and then introduced
into pure Mg to form Mg-based composites via powder metallurgy technology to improve
its corrosion resistance and biological properties. Therefore, the distribution state of MBG
in the matrix was studied. The corrosion behavior was assessed using in vitro immersion
and electrochemical tests. In addition, the biocompatibility and osteogenic activity were
evaluated through cell experiments.

2. Materials and Methods
2.1. Preparation of MBG

MBG was prepared by a modified sol–gel method, as shown in Figure 1. In detail,
cetyltrimethylammonium bromide (3.6 g) and trimethylamine (0.12 mL) were added into
100 mL of distilled water and stirred for 1 h at 50 ◦C. Subsequently, tetrahydrate calcium
nitrate (3.39 g) was added to the above solution to obtain an aqueous solution. After mixing
5 mL of tetraethyl orthosilicate and 20 mL of cyclohexane by sonication, the mixture was
slowly added to the obtained aqueous solution for 12 h under stirring. After centrifugation
at 3000 rpm, a white precipitate was collected. Subsequently, the MBG was obtained by
cleaning the white precipitate with distilled water, drying at 80 ◦C for 20 h and calcining at
650 ◦C for 3 h. All reagents were provided by Shanghai Aladdin Biochemical Technology
Co., Ltd. (Shanghai, China).

The morphology and microstructure of the synthesized MBG were studied utilizing
transmission electron microscopy (TEM, Tecnai G-20, FEI, Hillsboro, OR, USA) equipped
with an energy dispersive spectrometer (EDS, Oxford Inca Energy 350, Oxford Instruments,
Abingdon, UK) at 200 kV. The phase structure analysis of MBG was conducted using an
X-ray diffractometer (XRD, Bruker, D8 Advance, Berlin, Germany) with Cu Kα radiation
and at a step size of 5◦/min. The surface area and pore size distribution were evaluated
using the nitrogen adsorption–desorption technique at 77 K.
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Figure 1. The synthesis process of MBG nanoparticles. (a) The preparation of the MBG (b) The
preparation process of the sample.

2.2. Samples Preparation and Microstructure Characterization

Spherical Mg powder (purity: 99.9%, particle size: 10–15 µm) was obtained from
Tangshan Weihao Magnesium Powder Co., Ltd. (Qian’an, China). The preparation process
of the sample is shown in Figure 1b. The Mg and MBG powders were mixed by a planetary
ball mill at 200 rpm for 2 h. The mixed powders were pressed in cold press equipment at
the compaction pressure of 45 MPa. After maintaining this pressure for 10 min, a green
compact material with a diameter of 20 mm and a height of 2 mm was obtained. The
green compact material was sintered using a solid-state sintering tube furnace (OTF-1200X-
5L, Hefei Kejing Material Technology Co. Ltd., Hefei, China) at 590 ◦C for 2 h under an
argon atmosphere.

The sintered part was mechanically polished using metallographic 800, 1000, 1500 and
2000 grit sandpaper. Then, it was washed with deionized water and dried. The microstruc-
ture of pure Mg and Mg/MBG samples was observed using a scanning electron microscope
(SEM, EVO 18, ZEISS, Oberkochen, Germany) and optical microscopy (OM, DM4700, Leica,
Wetzlar, Germany). Before observation, the polished surface was etched by nitric–alcohol
solution for 10 s. In addition, the texture was investigated via an electron backscattering
diffractometer (EBSD, Symmetry, Oxford Instruments, Oxford, UK). In detail, the samples
were first electrolytically polished with acidic solution. Then, the EBSD image was captured
at a step size of 1 µm. Channel 5 software was adopted to further achieve the inverse pole
figure (IPF), where the principle is to project the measured diffraction intensity onto the
equatorial projection plane using the polar beam red plane projection method.

2.3. Immersion Experiments

The as-sintered sample was immersed in simulated body fluid (SBF) solution (pH 7.4)
for 1, 4 and 7 days at 37 ◦C. The SBF solution volume was 100 mL per square centimeter on
the exposed surface of the sample. The generated hydrogen was collected continuously
using a self-built hydrogen collection device and the corresponding volume value was
recorded. The pH variation was monitored using a pH meter (FE28-Standard, Mettler
Toledo Instruments Co. Ltd., Greifensee, Switzerland) every 12 h. During immersion,
the concentrations of Ca and P ions were measured using an inductively coupled plasma
atomic emission spectrometry technique (ICP-AES). After immersion for 1, 4 and 7 days,
the sample was taken out of the SBF solution and washed using absolute alcohol. The
corroded surface was observed using SEM, and the composition of corrosion products
accumulated on the sample was analyzed using XRD. The corrosion product was removed
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by Cr2O3 and AgNO3 solution (200 g/L Cr2O3 and 10 g/L AgNO3), then the corrosion
surface was observed via SEM.

2.4. Electrochemical Measurements

The electrochemical corrosion behavior was investigated in SBF by potentiodynamic
polarization and electrochemical impedance spectroscopy (EIS). An electrochemical work-
station (PARSTAT 4000 A, Princeton Applied Research, Oak Ridge, TN, USA) was used for
the measurements, in which the sample, a platinum sheet and AgCl acted as the working
electrode, counter electrode and reference electrode, respectively. Before the measurements,
the sample was wrapped in epoxy resin, leaving an exposed surface of 1 cm2, then tested
for 1500 s to achieve a steady state. Subsequently, a potentiodynamic polarization test
was carried out at a sweep rate of 1 mV/s. The EIS test sample was pre-immersed in SBF
solution for 72, 120 and 168 h to deposit a Ca-P layer. An EIS test was conducted with a
range of 10–2 to 105 Hz and the result was fitted using ZSimpDemo 3.2 software.

2.5. Cell Cultivation

The extracts were collected though immersing the sample in complete Dulbecco
modified Eagle medium (DMEM) at 37 ◦C for 3 days, in which the ratio of medium volume
to exposure sample area was 0.8 mL/cm2. The bone marrow mesenchymal stem cells
(BMSCs) were cultured in 96-well plates for 1 day. Then, the cells were cultured in extracts
with culture medium which was refreshed daily. After culture for 1, 4 and 7 days, the cell
morphology was captured using a fluorescence microscope after staining using calcium-
AM for 1 h. In addition, a cell viability assessment was conducted using a CCK-8 assay. In
detail, on day 1, 4 and 7, 10 µL of CCK-8 reagent was added to each well for 1 h of culture.
The optical density was measured using a microplate reader (Rayto, Shenzhen, China) at
450 nm.

The alkaline phosphatase (ALP) activity of BMSCs was evaluated after rinsing using
PBS solution. In detail, 4% paraformaldehyde was used to fix BMSCs for 15 min. The cells
were stained using an ALP staining kit for 12 h and observed using a microscope. The
quantitative ALP activities of BMSCs cultured in Mg and Mg/MBG extracts were evaluated
using an ALP assay kit. The BMSCs were fixed using paraformaldehyde for 30 min after
culturing for 14 and 21 days, respectively. Then, a PBS solution was used to rinse the cells
and an alizarin red S staining solution was used to stain the cells for 20 min. The stained
cells were visualized using a microscope.

2.6. Statistical Analysis

In the present study, three samples were prepared for each test, and they were repeated
at least three times. GraphPad Prism 9.3 software was used to handle the experimental
data, and the results are presented as means ± standard deviation, in which the significant
difference was set at p < 0.05.

3. Results
3.1. Structural Characteristic of MBG

The morphology of self-synthesized MBG captured by TEM is shown in Figure 2a.
The MBG nanoparticles exhibited a branch-like structure with an average particle size
of ~40 nm. The lines of the branch-like structure within MBG were clear and ordered
at high magnification, indicating a successful synthesis. The EDS analysis showed the
distribution of O, Si, P and Ca elements. The XRD result of self-synthesized MBG was
obtained and is shown in Figure 2b, exhibiting a broad diffraction peak at 20–30◦. The peak
is uniquely characteristic of amorphous SiO2 materials, and is consistent with previous
studies [24]. The pore structure characteristics and surface area of the MBG were analyzed
using the nitrogen adsorption–desorption method (Figure 2c). The MBG exhibited a typical
IV isotherm pattern and hysteresis loops of type H1. The determined specific surface area
for MBG was 656.45 m2/g. The pore distribution in the MBG was determined by analyzing



Materials 2023, 16, 6248 5 of 15

N2 desorption branches using the BJH model in Figure 2d. The average pore diameter of
the MBG was 18.09 nm.
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3.2. Microstructure of Sintered Mg/MBG

The microstructure of pure Mg and Mg/MBG samples was examined using SEM
and OM. In the case of the pure Mg sample, no visible precipitates were observed, as
shown in Figure 3a. Moreover, the grains had an equiaxed shape with an average grain
size of ~8.7 µm, as illustrated in Figure 3b. More importantly, the texture exhibited a
preferred orientation with an inclination angle of approximately 45◦ from the surface
normal. Regarding the Mg/MBG sample, the surface was studded with numerous fine nano
particles that were uniformly distributed throughout the matrix, as shown in Figure 3c. EDS
analysis (Figure 3d) confirmed that they were MBG nanoparticles. The boundary between
the grains was well defined and clean, indicating a homogeneous microstructure (Figure 3e).
The grains were uniformly distributed throughout the sample, with no discernible preferred
orientation. Notably, the grain size in Mg/MBG was significantly smaller compared to that
of the pure Mg part (Figure 3f). It is believed that introducing MBG particles into the Mg
alloy inhibited the grain growth, thus resulting in fine grains [25].
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3.3. Degradation Behavior

The degradation behavior was studied through immersion experiments for up to
7 days. The cumulative hydrogen evolution per 12 h is depicted in Figure 4a. During the
first 24 h of immersion, the hydrogen volume increase rates of both pure Mg and Mg/MBG
groups were similar. However, the increase rate of the Mg/MBG group decreased after
24 h. It was inferred that a substance with protective properties against the Mg matrix
was formed during the degradation process, which protected the Mg matrix from further
corrosion. The same degradation pattern was also presented after pH variation, as shown
in Figure 4b. The pH for pure Mg groups increased continuously compared to that for
Mg/MBG groups after about 12 h, whereas the increase rate of the latter significantly
decreased. After immersion for 7 days, the pH of Mg/MBG groups was ~9.1, which was
lower than that of the pure Mg group (~10.24). Therefore, the addition of MBG could
improve the corrosion resistance of pure Mg.

The effects of variation in Ca and P ion concentrations in the SBF solution with various
immersion periods are shown in Figure 4c,d. As for the Mg/MBG group, the Ca ion con-
centrations increased sharply in the first 24 hours, and then gradually decreased. A similar
trend was also presented in P ion concentration variation, as shown in Figure 4d. In fact,
the Ca and P ion concentrations increased in the initial stage due to the rapid hydrolysis
of MBG in the Mg/MBG group. Subsequently, the concentrations gradually decreased,
as the exposed MBG nanoparticles served as effective nucleation sites to consume them.
With the ongoing deposition, a hydroxyapatite layer gradually formed on the matrix,
which was able to protect the matrix from further corrosion. As for pure Mg samples, Ca
and P ion concentrations reduced continuously during the immersion period, since the
corrosion-produced layer could also induce the faint deposition of a Ca-P layer.
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Figure 4. The degradation behavior of pure Mg and Mg/MBG in SBF for 7 days: (a) H2, (b) pH,
(c) Ca ion and (d) P ion concentration variation.

The corrosion morphologies after immersion in SBF solution for 1, 4 and 7 days were
captured by SEM, as shown in Figure 5. It could be seen that the surfaces of both Mg and
Mg/MBG were covered by corresponding corrosion products. Obviously, some dense
white particles/clusters were coated on the matrix and they gathered tightly together as the
immersion time increased. According to previous studies, the white agglomerations were
considered to be apatite layers. As for the pure Mg sample, heavy corrosion products with
noticeable cracks could be observed on the corrosion surface. It is known that the corrosion
products formed on the pure Mg matrix are Mg(OH)2 with a loose porous structure. As
the degradation progressed, Mg(OH)2 gradually peeled off, resulting in the corrosion
morphology shown in Figure 5. The red dotted box was magnified, as shown in Figure 5.
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An XRD analysis of the corrosion products was carried out, with the obtained results
shown in Figure 6. As was expected, the corrosion products for Mg/MBG samples con-
tained Mg(OH)2 and Ca10(PO4)6(OH)2. The peaks corresponding to Ca10(PO4)6(OH)2 were
more dense than those corresponding to Mg(OH)2. In comparison, the corrosion products
on the pure Mg part were mainly Mg(OH)2. It should be noted that strong diffraction peaks
corresponding to the Mg phase at the diffraction angles of 34.34◦ and 36.69◦ were present in
the XRD pattern of pure Mg corrosion products, while the relative intensities of the peaks in
corrosion products from the Mg/MBG part were weaker. In fact, the corrosion product film
on the surface of the Mg/MBG part was thicker and denser, which was hard to penetrate
by X-ray. Thereby, relatively weak peaks of α-Mg were detected for the Mg/MBG part.
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The surface morphologies of Mg and Mg/MBG after removing the corrosion products
are shown in Figure 7. The matrixes of both Mg and Mg/MBG were subjected to continuous
corrosion as the immersion time extended. After immersion for 7 days, a large number of
cavities and deep pits formed on the matrix of pure Mg due to the continuous corrosion
of the matrix by Cl- and the detachment of corrosion products. However, the matrix of
the Mg/MBG part was subjected to relatively weak corrosion than the pure Mg part. This
was because the MBG-induced Ca-P deposit on the matrix formed a protective film and
effectively prevented the further corrosion by the invasive solution.
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3.4. Electrochemical Behavior

A potentiodynamic polarization experiment was carried out, and the obtained po-
larization curves are depicted in Figure 8a. The corrosion potential (Ecorr) and current
densities (Icorr) were calculated via Tafel region extrapolation, as displayed in Table 1. The
Ecorr of Mg/MBG was −1.36 ± 0.01 V, which was more positive than that of the pure Mg
part (−1.47 ± 0.02 V). The Icorr of the Mg/MBG sample was 12.48 ± 0.20 µA/cm2, and was
lower than that of pure Mg (74.81 ± 0.70 µA/cm2). Both Ecorr and Icorr confirmed that the
corrosion resistance of Mg/MBG was higher than that of Mg. In the polarization curve,
the anode branching of Mg/MBG was lower than that of pure Mg, whereas the cathode
branching was similar. The results indicated that the dissolution of the Mg matrix was
slowed down due to the formation of a Ca-P layer on the Mg/MBG matrix.

Table 1. Corrosion potential and current densities of Mg and Mg/MBG calculated via Tafel region
extrapolation.

Samples Ecorr (V) Icorr (µA/cm2)

Mg −1.47 ± 0.02 74.81 ± 0.70
Mg/MBG −1.36 ± 0.01 12.48 ± 0.20
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EIS tests were performed, and the impedance spectra evolution after 0, 72, 120 and
168 h of immersion in SBF solution is presented in Figure 8b. It was found that the EIS
curve for Mg/MBG exhibited a capacitive loop and an inductive loop after immersion
for 0 h, but exhibited only a capacitive loop after immersion for 72, 120 and 168 h. The
inductance loop was related to pitting corrosion of the Mg matrix, which is not conducive
to the corrosion resistance of Mg alloys [28,29]. It was noted that the size of the impedance
loops significantly increased for Mg/MBG as the pre-soaking time was prolonged, which
was related to the thickness evolution of the Ca-P protective layer. The evolution also could
be verified through the phase angle θ dependence on frequency, as shown in Figure 8c. This
indicated the growth of a Ca-P protective layer, evidenced by an increase in the impedance
modulus in the frequency range of 10−2 to 105.

The equivalent circuit fitted from the Nyquist plots is presented in Figure 8d. Typically,
the circuit consisted of a resistor (Rs) that represented the solution resistance, a capacitor
(Qt) that represented the double-layer capacitance at the electrode–solution interface, and a
charge transfer resistance (Rt) that represented the rate-limiting step of the electrochemical
reaction. Additionally, a corrosion product film impedance (Rf) was also included to
account for the protective effect of the corrosion film on the Mg/MBG sample. The detailed
parameters of the equivalent circuit are listed in Table 2. Clearly, Qf, which is closely related
to the thickness of the corrosion product film, tended to decrease. Generally, a decrease
in the Qf value indicated an increase in corrosion film thickness. In addition, Rt and Rf
progressively increased with the increase in pre-soaking time. This consistent tendency
could result from an improved protective product film deposited on Mg/MBG, which
proved that in situ deposition of apatite products enhanced the protective effect of the Mg
alloy corrosion product layer [30–32].



Materials 2023, 16, 6248 11 of 15

Table 2. Fitted parameters of equivalent circuit for the Mg/MBG part after immersion.

Immersion
Time (Hour) Rs (Ω·cm2)

Qt
(S·sn·cm−2) Rt (Ω·cm2) Rf (Ω·cm2)

Qf
(S·sn·cm−2)

0 9.76 6.36 × 10−8 184.3 58.47 1.24 × 10−4

72 9.21 6.95 × 10−8 248.52 169.72 9.37 × 10−5

120 10.03 7.26 × 10−8 373.86 259.64 8.24 × 10−5

168 9.83 7.38 × 10−8 418.36 374.22 5.63 × 10−5

3.5. Cell Behavior

An indirect method of live/dead cell staining was adopted to analysis the biocompat-
ibility, and the live/dead cell staining images of BMSCs cultured for 1, 3 and 5 days are
shown in Figure 9a. Overall, no obvious dead BMSCs (stained red) were observed in all
the groups during the culture period. The number of BMSCs increased with the culture
time, while the cell morphology changed from a round shape on day 1 to a fusiform shape
on day 5. The BMSCs changed in number and morphology, reflecting the suitability of the
culture medium containing the extract. On the same cultivation days, cell growth in the
Mg/MBG groups was healthier than that of Mg groups.
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A CCK-8 assay was used to determine the cell viability, and the results are presented in
Figure 9b. A poor cellular activity was presented in 100% extracts due to high concentrations
of ions. The cellular activity increased in 50% extract groups. In detail, the Mg/MBG group
showed a cell viability of 69.8% after 1 day, 81.6% after 3 days and 90.1% after 5 days with
100% extracts, while those of the Mg group were 58.8%, 62.2% and 65.4%, respectively. As
for 50% extracts, the cell viability increased to 94.5% for the Mg/MBG group and 69% for
the Mg group, proving no cytotoxicity according to ISO standard 10,993–5 [33,34].

In addition to the CCK-8 assay, we also measured the alkaline phosphate (ALP) activity
from the Mg/MBG and Mg (as a control) extracts, since ALP is a marker of early osteogenic
differentiation and commonly used to assess the differentiation of BMSCs [35]. After
7 and 14 days of culture, more purple areas (ALP) were visible in the Mg/MBG group, as
shown in Figure 10a, indicating that the Mg/MBG group exhibited a higher level of ALP
activity as compared to pure Mg (p < 0.05 in all cases). The enhanced ALP activity was
attributed to the doping of BMG that accelerated the dissolution of Ca and Si ions from the
bioglass lattice structure, thus promoting the mineralization process and enhancing ALP
expression. A quantitative analysis of ALP also further validated the above conclusion; the
ALP expressions in the Mg/MBG group were ~2.3 and 2.4 times higher than those in the
Mg group on days 7 and 14, respectively, as depicted in Figure 10b.
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Calcium nodule deposition in the Mg/MBG and Mg groups was determined using
the alizarin red staining (ARS) method, as displayed in Figure 10c. After 14 and 21 days
of culture, calcium nodule (red) generation for the Mg/MBG group was higher than
the Mg group, indicating that the addition of MBG nanoparticles enhanced osteogenic
differentiation. Subsequently, the amount of ARS dye was measured and quantified on
days 14 and 21 (Figure 10d); the amount of ARS dye increased with the incubation time,
and higher levels of ARS dye were detected in the Mg-MBG group as compared to pure
Mg, whether on day 14 or 21.

Based on the above results, MBG can provide favorable corrosion resistance and osteo-
genesis. However, the current study was only conducted to evaluate the in vitro corrosion
and biological properties, and corresponding in vivo studies in animals have not yet been
completed. Therefore, animal experiments for the MBG-containing Mg-based composite
will be the focus of future research to further confirm MBG’s advantages and promote its
development as a potential clinical material. According to the findings of Grau et al. [36],
there was a significant increase in vascularization around the critical calvarial bone defects
of mice due to the positive effects of Mg-based implanted scaffolds, although they could
loosen due to rapid degradation. Therefore, an outlook can be presented that compounding
MBG into Mg-based implants may be an effective way to improve the corrosion resistance
to achieve better therapeutic outcomes of critical bone defects [37,38].

4. Conclusions

In this work, MBG with a size of ~40 nm was prepared using an improved sol–
gel method, while Mg/MBG samples as potential bone substitutes were built by PM.
Their corrosion resistance, biocompatibility and osteogenic differentiation ability were
systematically studied. The specific conclusions are described as follows:

(1) The prepared MBG nanoparticles presented as uniform and mesoporous with a
branch-like structure. The specific surface area was extremely high at 656.45 m2/g,
and the average pore diameter was 18.09 nm.

(2) The distribution of MBG in the Mg matrix was uniform, which effectively suppressed
the grain growth, thus resulting in fine grains. In addition, BMG worsened the texture
of pure Mg, resulting in no obvious discernible preferred orientation.

(3) The high specific surface area of MBG provided a large amount of attachment sites
for Ca and P ion deposition, promoting the formation of an apatite protective layer.
The layer was dense and effectively protected the Mg matrix from further corrosion.

(4) Cell activity was enhanced due to the better corrosion resistance of Mg/MBG, as it
provided a suitable environment for cell growth.
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