The Influence of Poultry Manure-Derived Biochar and Compost on Soil Properties and Plant Biomass Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates
2.1.1. Fresh Poultry Manure
2.1.2. Bulking Agent
2.1.3. Soil
2.2. Composting Mixtures
2.3. Growing Media
2.4. Methods
2.4.1. Physicochemical Analysis
2.4.2. Production of Soil Enhancers
Composting
Pyrolysis
2.4.3. Preparation of the Growing Media and Plant Growing Experiment
2.5. Experimental Setups
2.5.1. Composting Setup
2.5.2. Biochar Production System
2.5.3. Laboratory Plant Growing System
3. Results and Discussion
3.1. Properties and Fertilizing Potential of the Obtained Soil Enhancers
3.1.1. Poultry Manure-Derived Compost
Temperature Evolution during Composting
Microbiological Analysis of the Obtained Compost
Heavy Metal Content in the Obtained Compost
3.1.2. Poultry Manure-Derived Biochar
Comparison of Selected Properties of the Obtained Biochar with the EBC Guidelines
3.2. Effects of the Obtained Soil Enhancers on Soil Properties
3.3. Effects of the Obtained Soil Enhancers on the Growth of Cherry Tomatoes
3.3.1. Effects of Soil Enhancers on Plant Growth
3.3.2. Changes in the Growing Media after the Completion of the Plant Growth Experiment
3.4. Characteristics of the Collected Cherry Tomato Plant Biomass after the Completion of the Plant Growing Experiment
4. Conclusions
- Poultry manure-derived biochar and compost are microbiologically and environmentally safe in terms of heavy metals and have no significant emissions, especially ammonia and carbon dioxide;
- Biochar obtained at 475 °C has the most beneficial parameters in terms of fertilizing potential compared to biochar obtained at temperatures of 575–775 °C, according to the recommendations of the EBC;
- The effect of soil additives, i.e., compost and biochar from poultry manure, had a beneficial effect on the growth of cherry tomatoes;
- Adding biochar to growing media D, E, and F resulted in an increase in pH (7.55–8.00) compared to growing medium A (6.99) used as the control. Adding the obtained compost to growing media B, C, E, and F resulted in an increase of 43–65% in organic matter, 42–60% in N, 40–60% in C, and 37–66% in P compared to growing medium A.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AVEC. 2021. Available online: https://avec-poultry.eu/wp-content/uploads/2021/09/6226-AVEC-annual-report-2021_64.pdf (accessed on 1 June 2021).
- Dróżdż, D.; Wystalska, K.; Malińska, K.; Grosser, A.; Grobelak, A.; Kacprzak, M. Management of poultry manure in Poland—Current state and future perspectives. J. Environ. Manag. 2020, 264, 110327. [Google Scholar] [CrossRef]
- Tańczuk, M.; Junga, R.; Kolasa-Więcek, A.; Niemiec, P. Assessment of the energy potential of chicken manure in Poland. Energies 2019, 12, 1244. [Google Scholar] [CrossRef]
- BloomSoil. What Is a Soil Conditioner? Available online: https://bloomsoil.com/what-is-soil-conditioner-and-what-benefits-does-it-have/ (accessed on 1 April 2020).
- Fertilizing Product Directive. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilizing Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003, Update on 16.07.2022 (Text with EEA Relevance). Available online: https://eur-https://eurlex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32019R1009 (accessed on 17 July 2022).
- Janczak, D.; Malińska, K.; Czekała, W.; Cáceres, R.; Lewicki, A.; Dach, J. Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. Waste Manag. 2017, 66, 36–45. [Google Scholar] [CrossRef]
- Choi, W.J.; Jin, S.A.; Lee, S.M.; Ro, H.-M.; Yoo, S.-H. Corn uptake and microbial immobilization of 15N-labeled urea-N in soil as affected by composted pig manure. Plant Soil 2001, 235, 1–9. [Google Scholar] [CrossRef]
- Singh, G.; Shamsuddin, M.R.A.; Lim, S.W. Characterization of Chicken Manure from Manjung Region. IOP Conf. Ser. Mater. Sci. Eng. 2018, 458, 012084. [Google Scholar] [CrossRef]
- Williams, C.M. Poultry Manure Characteristics. FAO. Available online: https://www.fao.org/3/i3531e/i3531e.pdf#page=56 (accessed on 2 January 2013).
- Ashworth, A.J.; Chastain, J.P.; Moore, P.A., Jr. Nutrient characteristics of poultry manure and litter. Anim. Manure Prod. Charact. Environ. Concerns Manag. 2020, 67, 63–87. [Google Scholar]
- Ravindran, B.; Mupambwa, H.A.; Silwana, S.; Mnkeni, P.N. Assessment of nutrient quality, heavy metals, and phytotoxic properties of chicken manure on selected commercial vegetable crops. Heliyon 2017, 3, e00493. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Yang, M.; Li, W. Content of Heavy Metals in Animal Feeds and Manures from Farms of Different Scales in Northeast China. Int. J. Env. Res. Public Health 2012, 9, 2658–2668. [Google Scholar] [CrossRef]
- Malińska, K.; Czekała, W.; Janczak, D.; Dach, J.; Mazurkiewicz, J.; Dróżdż, D. Spent mushroom substrate as a supplementary material for sewage sludge composting mixtures. Inżynieria Ochr. Sr. 2018, 21, 29–38. [Google Scholar] [CrossRef]
- Rajput, A.A.; Visvanathan, C. Effect of thermal pretreatment on chemical composition, physical structure, and biogas production kinetics of wheat straw. J. Environ. Manag. 2018, 221, 45–52. [Google Scholar] [CrossRef]
- Petric, I.; Šestan, A.; Šestan, I. Influence of wheat straw addition on composting of poultry manure. Process Saf. Environ. Prot. 2009, 87, 206–212. [Google Scholar] [CrossRef]
- SOERW. Main Types of Soils. Available online: http://etat.environnement.wallonie.be/files/Publications/SOERW2017/SOERW%202017_Page19.pdf (accessed on 1 January 2017).
- Dassonville, N.; Vanderhoeven, S.; Vanparys, V.; Hayez, M.; Gruber, W.; Meerts, P. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 2008, 157, 131–140. [Google Scholar] [CrossRef]
- Marino, D.; Moran, J.F. Can ammonium stress be positive for plant performance? Front. Plant Sci. 2019, 10, 1103. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, D.; Malińska, K.; Kacprzak, M.; Mrowiec, M.; Szczypiór, A.; Postawa, P.; Stachowiak, T. Potential of fish pond sediments compost as organic fertilizers. Waste Biomass Valorization 2020, 11, 5151–5163. [Google Scholar] [CrossRef]
- Chen, H.; Awasthi, S.K.; Liu, T.; Duan, Y.; Ren, X.; Zhang, Z.; Pandey, A.; Awasthi, M.K. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. J. Hazard. Mater. 2020, 389, 121908. [Google Scholar] [CrossRef]
- Liu, L.; Chen, H.; Cai, P.; Liang, W.; Huang, Q. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J. Hazard. Mater. 2009, 163, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Meier, S.; Curaqueo, G.; Khan, N.; Bolan, N.; Cea, M.; Eugenia, G.M.; Cornejo, P.; Ok, Y.S.; Borie, F. Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil. J. Soils Sediments 2017, 17, 741–750. [Google Scholar]
- Masud, M.M.; Abdulaha-Al Baquy, M.; Akhter, S.; Sen, R.; Barman, A.; Khatun, M.R. Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicol. Environ. Saf. 2020, 202, 110865. [Google Scholar] [CrossRef]
- PN-75/C-04616.01; Woda do Celów Budowlanych—Wymagania i Badania. Polish Version. Polish Committee for Standardization: Warsaw, Poland, 1975.
- Malińska, K.; Richard, T. The effect of moisture content, bulking agent ratio and compaction on permeability and air-filled porosity in composting matrices. In Proceedings of the 5th International Conference, ORBIT 2006: Biological Waste Management—From Local to Global, Weimar, Germany, 13–15 September 2006; ORBIT: Weimar, Germany, 2006. [Google Scholar]
- PN-Z-15011-3; Kompost z Odpadów Komunalnych—Oznaczanie: pH, Zawartości Substancji Organicznej, Węgla Organicznego, Azotu, Fosforu i Potasu. Polish Committee for Standardization: Warsaw, Poland, 2001.
- PN-EN 15933:2013-02E; Osady Ściekowe, Uzdatnione Bioodpady oraz Gleba—Oznaczanie pH. Polish Committee for Standardization: Warsaw, Poland, 2019.
- PN-EN 27888:1999; Jakość Wody—Oznaczanie Przewodności Elektrycznej Właściwej. Polish Committee for Standardization: Warsaw, Poland, 1999.
- PN-76/C-04576/01; Woda i Ścieki—Badania Zawartości Związków Azotu—Oznaczanie Azotu Amonowego Metodą Kolorymetryczną z Odczynnikiem Nesslera. Polish Committee for Standardization: Warsaw, Poland, 1973.
- PN-EN 15936:2013-02E; Osady Ściekowe, Uzdatnione Bioodpady, Gleba Oraz Odpady—Oznaczanie Całkowitej Zawartości Węgla Organicznego (TOC) po Suchym Spalaniu. Polish Committee for Standardization: Warsaw, Poland, 2019.
- Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the Implementation of Certain Provisions of the Act on Fertilizers and Fertilization from 2007. Available online: https://sip.lex.pl/akty-prawne/dzu-dziennik-ustaw/wykonanie-niektorych-przepisow-ustawy-o-nawozach-i-nawozeniu-17452384 (accessed on 18 June 2008).
- PN-Z-19000-2; Soil Quality—Assessment of Soil Sanitation—Detection and Quantification of Coliform Bacteria. Polish Committee for Standardization: Warsaw, Poland, 2001.
- PN-Z-19000-1; Jakość Gleby—Ocena Stanu Sanitarnego Gleby—Wykrywanie Bakterii z Rodzaju Salmonella. Committee for Standardization: Warsaw, Poland, 2001.
- Czekała, W.; Malińska, K.; Cáceres, R.; Janczak, D.; Dach, J.; Lewicki, A. Cocomposting of poultry manure mixtures amended with biochar–The effect of biochar on temperature and C-CO2 emission. Bioresour. Technol. 2016, 200, 921–927. [Google Scholar] [CrossRef]
- Sobik-Szołtysek, J.; Wystalska, K.; Malińska, K.; Meers, E. Influence of Pyrolysis Temperature on the Heavy Metal Sorption Capacity of Biochar from Poultry Manure. Materials 2021, 14, 6566. [Google Scholar] [CrossRef]
- BioGreenhouse. Handbook for Composting and Compost Use in Organic Horticulture. Available online: https://pub.epsilon.slu.se/14131/11/termorshuizen_a_j_alsanius_b_170313.pdf (accessed on 11 April 2016).
- Shi, Y.; Ke, X.; Yang, X.; Liu, Y.; Hou, X. Plants response to light stress. J. Genet. Genom. 2022, 49, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Haug, R. Practical Handbook of Composting Engineering; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Alsanius, B.W.; Blok, C.; Cuijpers, W.J.; França, S.C.; Fuchs, J.G.; Janmaat, L.; Raviv, M.; Streminska, M.A.; Termorshuizen, A.J.; van der Wurff, A.W. Handbook for Composting and Compost Use in Organic Horticulture; Bio Greenhouse COST Action FA: Rotterdam, The Netherlands, 2016; p. 1105. [Google Scholar]
- Bavariani, M.; Ronaghi, A.; Ghasemi, R. Influence of pyrolysis temperatures on FTIR analysis, nutrient bioavailability, and agricultural use of poultry manure biochars. Commun. Soil Sci. Plant Anal. 2019, 50, 402–411. [Google Scholar] [CrossRef]
- Malińska, K.; Mełgieś, K. Aktualne wymagania jakościowe i prawne dla biowęgla jako nawozu i polepszacza gleby. Pr. Inst. Ceram. I Mater. Bud. 2016, 9, 82–95. [Google Scholar]
- REFERTIL. Recommended Biochar Quality. 2018. Available online: https://www.refertil.info/biochar-policy-strubias-2018 (accessed on 24 May 2017).
- Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef]
- Subedi, R.; Taupe, N.; Ikoyi, I.; Bertora, C.; Zavattaro, L.; Schmalenberger, A.; Leahy, J.; Grignani, C. Chemically and biologically-mediated fertilizing value of manure-derived biochar. Sci. Total Environ. 2016, 550, 924–933. [Google Scholar] [CrossRef]
- Jin, J.; Wang, M.; Cao, Y.; Wu, S.; Liang, P.; Li, Y.; Zhang, J.; Zhang, J.; Wong, M.; Shan, S. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals. Bioresour. Technol. 2017, 228, 218–226. [Google Scholar] [CrossRef]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; Melo, I.C.N.D.; Melo, L.C.; Magriotis, Z.M.; Sanchez-Monedero, M.A. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef]
- Li, S.; Chen, G. Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Waste Manag. 2018, 78, 198–207. [Google Scholar] [CrossRef]
- Ronix, A.; Cazetta, A.L.; Ximenez, G.R.; Spessato, L.; Silva, M.C.; Fonseca, J.M.; Almeida, V.C. Biochar from the mixture of poultry litter and charcoal fines as soil conditioner: Optimization of preparation conditions via response surface methodology. Bioresour. Technol. Rep. 2021, 15, 100800. [Google Scholar] [CrossRef]
- European Biochar Foundation. European Biochar Certificate—Guidelines for a Sustainable Production of Biochar. 2022. Available online: https://www.europeanbiochar.org/media/doc/2/version_en_10_1.pdf (accessed on 2 July 2022).
- Qi, F.; Yan, Y.; Lamb, D.; Naidu, R.; Bolan, N.S.; Liu, Y.; Ok, Y.; Donne, S.; Semple, K.T. Thermal stability of biochar and its effects on cadmium sorption capacity. Bioresour. Technol. 2017, 246, 48–56. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Simeon, V.T. Biochar and poultry manure effects on soil properties and radish (Raphanus sativus L.) yield. Biol. Agric. Hortic. 2019, 35, 33–45. [Google Scholar] [CrossRef]
- Agbede, T.M.; Oyewumi, A. Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resour. Environ. Sustain. 2022, 7, 100051. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Wade, P.; Bolan, N. Assessment of the fertilizer potential of biochars produced from slow pyrolysis of biosolid and animal manures. J. Anal. Appl. Pyrolysis 2021, 155, 105043. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Jing, Y.; Li, Q.; Zhang, J.; Huang, Q. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena 2014, 123, 45–51. [Google Scholar] [CrossRef]
- Ansari, R.A.; Sumbul, A.; Rizvi, R.; Mahmood, I. Organic soil amendments: Potential tool for soil and plant health management. In Plant Health under Biotic Stress; Springer: Singapore, 2019; pp. 1–35. [Google Scholar] [CrossRef]
- Dail, H.W.; He, Z.; Susan Erich, M.; Wayne Honeycutt, C. Effect of drying on phosphorus distribution in poultry manure. Commun. Soil Sci. Plant Anal. 2007, 38, 1879–1895. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Ghaly, A.E.; MacDonald, K.N. Drying of poultry manure for use as animal feed. Am. J. Agric. Biol. Sci. 2012, 7, 239–254. [Google Scholar] [CrossRef]
- Ghaly, A.E.; MacDonald, K.N. Kinetics of thin layer drying of poultry manure. Am. J. Biochem. Biotechnol. 2012, 8, 128–142. [Google Scholar]
- Crane-Droesch, A.; Abiven, S.; Jeffery, S.; Torn, M.S. Heterogeneous global crop yield response to biochar: A meta-regression analysis. Environ. Res. Lett. 2013, 8, 044049. [Google Scholar] [CrossRef]
- Purnomo, C.W.; Indarti, S.; Wulandari, C.; Hinode, H.; Nakasaki, K. Slow-release fertiliser production from poultry manure. Chem. Eng. Trans. 2017, 56, 1531–1536. [Google Scholar] [CrossRef]
- Jindo, K.; Sánchez-Monedero, M.A.; Mastrolonardo, G.; Audette, Y.; Higashikawa, F.S.; Silva, C.A.; Akashi, K.; Mondini, C. Role of biochar in promoting circular economy in the agriculture sector. Part 2: A review of the biochar roles in growing media, composting and as soil amendment. Chem. Biol. Technol. Agric. 2020, 7, 16. [Google Scholar] [CrossRef]
- Lentz, R.D.; Ippolitoicha, J.A. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J. Environ. Qual. 2012, 41, 1033–1043. [Google Scholar] [CrossRef]
- Dyśko, J. Racjonalne Nawożenie Pomidora w Uprawie Bezglebowej; Instytut Ogrodnictwa, Inhort: Skierniewice, Poland, 2019; pp. 1–35. [Google Scholar]
- Abdelhamid, M.T.; Horiuchi, T.; Oba, S. Composting of rice straw with oilseed rape cake and poultry manure and its effects on faba bean (Vicia faba L.) growth and soil properties. Bioresour. Technol. 2004, 93, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Revell, K.T.; Maguire, R.O.; Agblevor, F.A. Influence of poultry litter biochar on soil properties and plant growth. Soil Sci. 2012, 177, 402–408. [Google Scholar] [CrossRef]
- Sikder, S.; Joardar, J.C. Biochar production from poultry litter as management approach and effects on plant growth. Int. J. Recycl. Org. Waste Agric. 2019, 8, 47–58. [Google Scholar] [CrossRef]
- Bhattarai, B.; Neupane, J.; Dhakal, S.P. Effect of biochar from different origin on physio-chemical properties of soil and yield of garden pea (Pisum sativum L.) at Paklihawa, Rupandehi, Nepal. World J. Agric. Res. 2015, 3, 129–138. [Google Scholar]
- Ojeniyi, S.O. Effect of poultry manure on selected soil physical and chemical properties, growth, yield, and nutrient status of tomato. Afr. J. Agric. Res. 2008, 3, 612–616. [Google Scholar]
- Usman, M. Cow dung, goat and poultry manure and their effects on the average yields and growth parameters of tomato crop. J. Biol. Agric. Healthc. 2015, 5, 7–10. [Google Scholar]
- Liberacki, D.; Stachowski, P.; Kozaczyk, P. Ocena nawadniania kroplowego w uprawie pomidora szklarniowego w warunkach produkcyjnych. Infrastrukt. I Ekol. Teren. Wiej. 2017, I/1, 21–31. [Google Scholar]
- Musa, F.B.; Abiodun, F.O.; Falana, A.R.; Ugege, B.H.; Oyewumi, R.V.; Olorode, E.M. Growth and Yield of Tomato (Lycopersicon esculentum Mill.) as Influenced by Poultry Manure and Biochar in Two (2) Soil Depths. J. Exp. Agric. Int. 2020, 42, 55–63. [Google Scholar] [CrossRef]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef]
- Zhan, X.; Peng, J.; Wang, Y.; Liu, Y.F.; Chen, K.; Han, X.R.; Li, X.Y. Influences of application of biochar and biochar-based fertilizer on brown soil physiochemical properties and peanut yields. J. Plant Nutr. Fertil. 2015, 21, 1633–1641. [Google Scholar]
- Borkowski, J.; Gorecki, R. Wpływ Nawożenia Krzemem na Wzrost, Plon i Zdrowotność Pomidorów; Zeszyty Naukowe Instytutu Ogrodnictwa: Skierniewice, Poland, 2014; p. 22. [Google Scholar]
- Mosaic. Nitrogen in Plants. Available online: https://www.cropnutrition.com/nutrient-management/nitrogen (accessed on 12 March 2022).
- Feng, H.; Fan, X.; Miller, A.J.; Xu, G. Plant nitrogen uptake and assimilation: Regulation of cellular pH homeostasis. J. Exp. Bot. 2020, 71, 4380–4392. [Google Scholar] [CrossRef] [PubMed]
Parameters | pH | N | Corg | P2O5 | C/N 1 | MC 1 | OM 1 |
---|---|---|---|---|---|---|---|
Units | - | % | % | mg/kg | - | % | % |
Poultry manure | 7.51 ± 0.19 | 7.91 ± 0.01 | 42.32 ± 0.02 | 74.70 ± 0.17 | 5 | 78.79 ± 0.41 | 74.43 ± 0.27 |
Parameters | pH | N | Corg | P2O5 | C/N | MC | OM |
---|---|---|---|---|---|---|---|
Units | - | % | % | mg/kg | - | % | % |
Wheat straw | 6.97 ± 0.21 | 0.45 ± 0.02 | 36.84 ± 0.03 | 2.50 ± 0.23 | 82 | 7.94 ± 0.45 | 98.47 ± 0.25 |
Parameters | pH | N | Corg | C/N | MC | OM |
---|---|---|---|---|---|---|
Units | - | % | % | - | % | % |
Soil | 6.99 ± 0.24 | 0.45 ± 0.03 | 0.8 ± 0.13 | 10 | 1.54 ± 0.25 | 2.56 ± 0.64 |
Name | Type of Growing Media | Ratio (Dry Matter) | Composition of Growing Media |
---|---|---|---|
A | S (control) | 1 | 100% soil |
B | S + C1 | 1:0.03 | 3% compost from composting reactor No. 1 was added to the soil |
C | S + C2 | 1:0.03 | 3% compost from composting reactor No. 2 was added to the soil |
D | S + B | 1:0.005 | 0.5% of biochar was added to the soil |
E | S + B + C1 | 1:0.005:0.03 | 0.5% biochar and 3% compost from composting reactor No. 1 was added to the soil |
F | S + B + C2 | 1:0.005:0.03 | 0.5% biochar and 3% compost from composting reactor No. 2 was added to the soil |
Parameters | Units | Biochar from 475 °C | Biochar from 575 °C | Biochar from 675 °C | Biochar from 775 °C | EBC Standard |
---|---|---|---|---|---|---|
MC | % | 4.44 ± 2.87 | 4.08 ± 2.92 | 4.41 ± 2.33 | 4.00 ± 2.50 | >60 |
OM | 39.47 ± 2.30 | 33.00 ± 2.88 | 37.39 ± 3.05 | 24.60 ± 3.12 | - * | |
pH | - | 12.04 ± 0.02 | 13.24 ± 0.03 | 12.55 ± 0.14 | 13.40 ± 0.12 | 6–10 |
N | % | 3.73 ± 0.02 | 3.05 ± 0.01 | 3.07 ± 0.02 | 3.69 ± 0.04 | - |
TOC | 30.76 ± 0.02 | 29.89 ± 0.01 | 30.56 ± 0.03 | 30.29 ± 0.02 | 20 | |
C/N | - | 8.18 | 9.81 | 9.95 | 9.87 | - |
Ca | mg/kg | 1469.00 ± 0.02 | 1466.64 ± 0.03 | 1403.38 ± 0.04 | 1487.14 ± 0.02 | - |
K | 324.80 ± 0.04 | 359.00 ± 0.05 | 301.98 ± 0.05 | 266.72 ± 0.06 | - | |
Mg | 100.12 ± 0.03 | 112.44 ± 0.02 | 100.67 ± 0.03 | 93.65 ± 0.07 | - | |
Na | 281.70 ± 0.02 | 341.69 ± 0.01 | 271.07 ± 0.06 | 263.59 ± 0.02 | - | |
P | 1927.61 ± 0.02 | 1902.34 ± 0.09 | 1723.31 ± 0.08 | 1546.66 ± 0.04 | - | |
S | 95.86 ± 0.14 | 255.25 ± 0.12 | 238.74 ± 0.22 | 298.46 ± 0.02 | - | |
Al | 35.76 ± 0.02 | - * | 14.76 ± 0.04 | 25.12 ± 0.03 | - | |
Cd | 0.80 ± 0.03 | 0.3 ± 0.02 | 0.3 ± 0.03 | 0.4 ± 0.03 | 1.5 | |
Co | 0.33 ± 0.02 | - | 1.60 ± 0.02 | 0.36 ± 0.03 | - | |
Cr | 0.12 ± 0.02 | - | - | - | 100 | |
Cu | 0.55 ± 0.04 | 0.12 ± 0.03 | - | 0.46 ± 0.03 | 200 | |
Fe | 3.88 ± 0.03 | 3.19 ± 0.04 | 4.25 ± 0.04 | 2.13 ± 0.03 | - | |
Mn | - | - | - | - | - | |
Ni | 2.43 ± 0.02 | 0.80 ± 0.01 | - | 3.97 ± 0.02 | 50 | |
Pb | - | 3.65 ± 0.02 | - | - | 120 | |
Zn | 2.25 ± 0.03 | 2.36 ± 0.04 | 1.96 ± 0.02 | 1.53 ± 0.04 | 600 |
Growing Media | Units | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|
Parameters | S | S + C1 | S + C2 | S + B | S + C1 + B | S + C2 + B | |
N | % | 0.08 ± 0.02 | 0.14 ± 0.02 | 0.14 ± 0.02 | 0.11 ± 0.04 | 0.17 ± 0.03 | 0.18 ± 0.02 |
C | 0.80 ± 0.02 | 1.63 ± 0.04 | 1.70 ± 0.06 | 1.04 ± 0.03 | 1.88 ± 0.04 | 2.01 ± 0.02 | |
MC | 1.54 ± 2.02 | 5.44 ± 0.12 | 4.46 ± 1.32 | 3.92 ± 2.92 | 3.69 ± 3.02 | 3.38 ± 2.09 | |
OM | 2.56 ± 3.02 | 4.57 ± 2.32 | 7.27 ± 3.08 | 3.91 ± 2.32 | 4.20 ± 2.09 | 4.19 ± 2.52 | |
pH | - | 6.99 ± 0.02 | 7.13 ± 0.02 | 7.16 ± 0.03 | 8.10 ± 0.02 | 7.62 ± 0.06 | 7.53 ± 0.04 |
C/N | 10.00 | 11.64 | 12.14 | 9.45 | 11.06 | 11.17 | |
P | mg/kg | 131.90 ± 0.02 | 247.99 ± 0.02 | 236.47 ± 0.03 | 210.72 ± 0.01 | 292.30 ± 0.07 | 381.88 ± 0.04 |
S | 51.78 ± 0.04 | 98.46 ± 0.02 | 95.16 ± 0.02 | 70.07 ± 0.03 | 121.08 ± 0.04 | 146.93 ± 0.04 | |
Ca | 826.56 ± 0.02 | 1127.26 ± 0.02 | 1341.55 ± 0.01 | 1092.16 ± 0.06 | 1275.51 ± 0.03 | 1769.16 ± 0.03 | |
Mg | 595.93 ± 0.02 | 598.18 ± 0.02 | 678.12 ± 0.08 | 641.36 ± 0.03 | 599.03 ± 0.07 | 698.02 ± 0.04 | |
Na | 3719.8 ± 0.02 | 2440.34 ± 0.04 | 2828.54 ± 0.04 | 3394.5 ± 0.08 | 2359.7 ± 0.07 | 2468.82 ± 0.09 | |
K | 2396.14 ± 0.04 | 2098.92 ± 0.03 | 2329.64 ± 0.02 | 2387.12 ± 0.05 | 1979.20 ± 0.02 | 2281.28 ± 0.05 |
Growing Media | Week 1 | Week 2 | Week 6 |
---|---|---|---|
A | |||
B | |||
C | |||
D | |||
E | |||
F |
Parameters | pH | N | C | MC | OM | C/N | Ca | K | Mg | Na | P |
---|---|---|---|---|---|---|---|---|---|---|---|
Units | - | % | - | mg/kg | |||||||
A | 7.06 ± 0.02 | 0.06 ± 0.02 | 0.87 ± 0.02 | 2.26 ± 2.12 | 2.82 ± 3.15 | 14.55 | 293.8 ± 0.10 | 263.2 ± 0.21 | 183.3 ± 0.10 | 50.0 ± 0.12 | 46.5 ± 0.10 |
B | 7.58 ± 0.02 | 0.13 ± 0.03 | 1.44 ± 0.06 | 2.51 ± 2.02 | 2.00 ± 3.19 | 11.32 | 524.1 ± 0.12 | 282.2 ± 0.22 | 189.3 ± 0.11 | 52.6 ± 0.18 | 72.1 ± 0.21 |
C | 7.55 ± 0.06 | 0.12 ± 0.03 | 1.43 ± 0.07 | 2.62 ± 2.98 | 2.02 ± 2.45 | 12.03 | 405.7 ± 0.19 | 299.9 ± 0.21 | 184.4 ± 0.11 | 56.5 ± 0.15 | 74.1 ± 0.23 |
D | 7.85 ± 0.08 | 0.08 ± 0.04 | 1.01 ± 0.13 | 1.42 ± 2.89 | 5.41 ± 2.19 | 12.27 | 637.6 ± 0.17 | 260.3 ± 0.25 | 184.9 ± 0.19 | 55.9 ± 0.14 | 69.0 ± 0.35 |
E | 7.56 ± 0.08 | 0.11 ± 0.06 | 1.75 ± 0.13 | 1.52 ± 2.78 | 4.67 ± 2.28 | 15.38 | 565.0 ± 0.12 | 300.8 ± 0.28 | 198.1 ± 0.16 | 59.7 ± 0.30 | 86.5 ± 0.34 |
F | 7.74 ± 0.09 | 0.14 ± 0.03 | 1.68 ± 0.12 | 1.02 ± 3.03 | 4.92 ± 2.12 | 12.29 | 619.1 ± 0.14 | 320.3 ± 0.30 | 186.1 ± 0.10 | 55.0 ± 0.24 | 89.7 ± 0.45 |
Parameters | N | C | C/N | Ca | K | Mg | Na | P |
---|---|---|---|---|---|---|---|---|
Units | % | - | mg/kg | |||||
Plant—A | 2.01 ± 0.02 | 36.94 ± 0.01 | 17.83 | 3413.6 ± 0.12 | 2696.6 ± 0.34 | 384.6 ± 0.35 | 397.4 ± 0.12 | 553.1 ± 0.43 |
Plant—B | 2.13 ± 0.02 | 37.15 ± 0.02 | 17.46 | 2172.6 ± 0.22 | 3009.2 ± 0.43 | 364.2 ± 0.36 | 497.2 ± 0.12 | 519.4 ± 0.34 |
Plant—C | 2.18 ± 0.02 | 36.02 ± 0.02 | 16.49 | 2491.6 ± 0.23 | 3369.6 ± 0.42 | 358.8 ± 0.22 | 530.6 ± 0.12 | 595.2 ± 0.45 |
Plant—D | 2.62 ± 0.04 | 38.18 ± 0.02 | 23.51 | 2193.4 ± 0.32 | 2339.6 ± 0.25 | 276.8 ± 0.42 | 226.4 ± 0.46 | 350.8 ± 0.46 |
Plant—E | 2.07 ± 0.03 | 36.86 ± 0.03 | 17.79 | 1879 ± 0.35 | 3683.8 ± 0.23 | 356.1 ± 0.25 | 621.1 ± 0.42 | 421.2 ± 0.32 |
Plant—F | 2.30 ± 0.02 | 36.81 ± 0.01 | 16.03 | 1694 ± 0.23 | 3198.8 ± 0.32 | 327.2 ± 0.43 | 383.4 ± 0.35 | 379.4 ± 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dróżdż, D.; Malińska, K.; Wystalska, K.; Meers, E.; Robles-Aguilar, A. The Influence of Poultry Manure-Derived Biochar and Compost on Soil Properties and Plant Biomass Growth. Materials 2023, 16, 6314. https://doi.org/10.3390/ma16186314
Dróżdż D, Malińska K, Wystalska K, Meers E, Robles-Aguilar A. The Influence of Poultry Manure-Derived Biochar and Compost on Soil Properties and Plant Biomass Growth. Materials. 2023; 16(18):6314. https://doi.org/10.3390/ma16186314
Chicago/Turabian StyleDróżdż, Danuta, Krystyna Malińska, Katarzyna Wystalska, Erik Meers, and Ana Robles-Aguilar. 2023. "The Influence of Poultry Manure-Derived Biochar and Compost on Soil Properties and Plant Biomass Growth" Materials 16, no. 18: 6314. https://doi.org/10.3390/ma16186314
APA StyleDróżdż, D., Malińska, K., Wystalska, K., Meers, E., & Robles-Aguilar, A. (2023). The Influence of Poultry Manure-Derived Biochar and Compost on Soil Properties and Plant Biomass Growth. Materials, 16(18), 6314. https://doi.org/10.3390/ma16186314