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Abstract: Methods for the remote detection of warfare agents and explosives have been in high de-
mand in recent times. Among the several detection methods, fluorescence methods appear to be more
convenient due to their low cost, simple operation, fast response time, and naked-eye-visible sensory
response. For fluorescence methods, a large variety of fluorescent materials, such as small-molecule-
based fluorophores, aggregation-induced emission fluorophores/materials, and supramolecular
systems, have been reported in the literature. Among them, fluorescent (bio)polymers/(bio)polymer-
based materials have gained wide attention due to their excellent mechanical properties and sensory
performance, their ability to recognize explosives via different sensing mechanisms and their combi-
nations, and, finally, the so-called amplification of the sensory response. This review provides the
most up-to-date data on the utilization of polymers and polymer-based materials for the detection of
nitroaromatic compounds (NACs)/nitro-explosives (NEs) in the last decade. The literature data have
been arranged depending on the polymer type and/or sensory mechanism.

Keywords: polymers; nitro-explosives; materials; detection methods; fluorescent materials

1. Introduction

In the last several decades, terroristic threats have become an actual problem world-
wide, and these threats are mainly associated with the use of warfare agents or explosive
devices against civilian transport and/or objects of civilian infrastructure. Therefore, ap-
proaches to the remote detection of warfare agents and explosives are in high demand.
Concerning the latter, the use of detection dogs is widely considered the most effective and
adaptive tool for explosive detection [1]. However, there are several disadvantages to using
dogs for that purpose. First of all, dogs are unable to work by themselves, only functioning
in tandem with a handler, who is fully responsible for correctly judging the dog’s behavior
during the explosives search. Second, dogs cannot be worked as intensely as a piece of
machinery (not more than half an hour). Third, dogs are also vulnerable to distraction by
external factors, such as new surroundings, bright lights and loud noises, fatigue, and even
alluring scents left behind by canine members of the opposite sex. Therefore, studies on
using other mammals/rodents, such as pigs [2] or rats [3], are in progress. And thus, the
olfactory systems of rats and pigs are considered promising objects for studies on explosive
detection [4]. Some other studies are associated with investigating insects/insect-based
biodevices for explosive detection [5–9].
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Other approaches to explosive detection include using physical methods, such as mass
spectrometry [10], differential mobility spectrometry [11], electrochemical methods [12],
microcantilever devices [13], neutron techniques [14], nuclear quadrupole resonance meth-
ods [15], X-ray diffraction methods [16], millimeter-wave [17] or terahertz imaging [18],
and, finally, laser-based detection methods [19]. The main disadvantages of these methods
are the lack of portability, a need for special algorithms for transferring the sensory event
to a readable signal, a noticeable time delay from the sensing event to the physical signal,
the high cost of equipment, and, in most cases, the requirement for operation by highly
trained personnel. In this regard, the use of colorimetric [20,21] or fluorescence meth-
ods [22] seems to be more convenient due to their low cost, simpler operation, fast response
time, and naked-eye-visible sensory response. For fluorescence methods, a large variety
of fluorescent materials, such as small-molecule-based fluorophores, aggregation-induced
emission fluorophores/materials, and supramolecular systems, have already been reported
in the literature [22]. Among them, fluorescent (bio)polymers/(bio)polymer-based mate-
rials [23–25] have gained wide attention due to their excellent mechanical properties and
sensory performance, their ability to recognize explosives via different sensing mechanisms
and their combinations, and, finally, the so-called amplification of the sensory response.

For the evaluation and comparison of the quenching efficiency of sensors and probes,
the Stern–Volmer mathematical model is usually used. If the static quenching mechanism
takes place, the quenching constant (Stern–Volmer constant), KSV, should increase linearly
with the quencher concentration, as described by the Stern–Volmer equation (Equation (1)):

I0

I
= 1 + KSV ·[Q] (1)

where I0 and I are the fluorescence intensity before and after the addition of a nitroaromatic
compound (quencher); [Q] is the concentration of the quencher, mol/L; and KSV is the
value of the quenching constant, M−1.

According to Equation (1), the plot of I0/I vs. [Q], or the so-called Stern–Volmer plot,
should give a straight line with a slope equal to KSV.

During the static quenching mechanism, the lifetime of the luminescence does not
depend on the concentration of the quencher and remains unchanged as the quencher
concentration increases.

Dynamic quenching is usually associated with collisions between molecules of a sensor
and an analyte, and the Stern–Volmer equation is represented as Equation (2):

I0

I
= 1 + kqτ0 × [Q] (2)

where kq and τ0 are the bimolecular quenching constant and the lifetime of the fluorophore
in the absence of a quencher, respectively.

This review provides the most up-to-date data on the utilization of polymers and
polymer-based materials for the detection of nitroaromatic compounds (NACs)/nitro-
explosives (NEs) in the last decade. The literature data are arranged depending on the
polymer type and/or sensory mechanism.

2. Common Approaches to the Detection of NACs by Using Polymer-Based Materials

Conjugated polymers (CPs) are considered attractive materials for the fluorescence
detection of various (bio)analytes since, in most cases, CPs have high fluorescence quantum
yields, large extinction coefficients, and efficient optical signal transduction, and the syn-
thetic versatility of CPs allows the incorporation of a wide selection of functional groups
into the polymer backbone or into the side arms for better performance. Below, several
common approaches to using polymers for explosive detection are highlighted.
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2.1. Linear Conjugated Polymers

Batool and coworkers designed fluorene-based fluorometric and colorimetric conju-
gated polymers (CPs) (Figure 1) for the sensitive detection of PA in an aqueous medium
at the picomolar (pM) level [26]. These polymers possess a high conjugation degree and
electron-donating ability due to the presence of fluorene units. Therefore, these CPs demon-
strated great sensitivity and selectivity toward picric acid (PA) over other NACs, with
Stern–Volmer quenching constant, KSV, values of 4.27 × 106 M−1, 3.71 × 106 M−1, and
2.13 × 106 M−1 in an aqueous solution (H2O/THF (3:2, v/v)) for CP1, CP2, and CP3,
respectively (Figures 2 and 3). The limits of detection (LODs) for PA were calculated to be
3.2, 5.7, and 6.1 pM, respectively. For all of the CPs, the static quenching mechanism could
be inferred from the high linearity of the Stern–Volmer plots (Figure 2d), bathochromic
shifts in UV/Vis absorption spectra upon the addition of PA, and the insignificant overlap
between the absorption of PA and the fluorescence emission of the CPs. The authors con-
firmed the PET mechanism by analyzing the HOMO–LUMO energy levels of CPs and PA.
In this case, CP1, CP2, and CP3 were characterized by higher-lying LUMO levels (−1.63,
1.73, and −1.84 eV, respectively) compared to PA (−4.56 eV), with the smallest ∆ELUMO
calculated for CP1, which agrees with the experimental data. In addition, CPs exhibited a
naked-eye-visible response after the addition of 500 nM PA to H2O/THF (3:2, v/v) solutions
(Figure 4).
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Materials 2023, 16, 6333 5 of 74
Materials 2023, 16, x FOR PEER REVIEW 5 of 76 
 

 

 
Figure 4. Polymers CP1, CP2, and CP3 (10 µM) changing to different colors with the addition of 500 
nM PA in daylight. Reproduced with permission from reference [26]. Copyright © ACS Publications 
2022. 

Giri and Patra reported 1,2,3-triazolyl-functionalized carbazole- (P1), fluorene- (P2), 
and thiophene-based (P3) A-alt-B-type π-conjugated copolymers for the selective and sen-
sitive detection of NACs in aqueous media and the vapor phase [27]. Due to the high con-
jugation degree based on typical donating units, these P1–P3 copolymers demonstrated 
highly intense fluorescence with quantum yields in the range of 18–20%. The P1–P3 poly-
mers exhibited a fluorescence-quenching response to NACs with high quenching effi-
ciency (Figure 5). PA was found to be the most efficient quencher for all of the polymers, 
with the highest KSV = 6.4 × 104 M−1 for P2 (Figure 6b). Based on the high linearity of the 
Stern–Volmer plot (Figure 6a) and the higher-lying LUMO levels of P1–P3 compared to 
those of the NACs, the authors declared that static quenching occurred by the PET mech-
anism. P1–P3-based thin films demonstrated luminescence quenching of 91%, 53%, and 
48%, respectively, after exposure for 200 s (Figure 7a). In addition, the authors demon-
strated the reusability of the films based on the number of cycles of exposure and washing 
with water (Figure 7b), showing the applicability of the prepared probes. 

 
Figure 5. Emission-quenching percentage for polymers P1–P3 toward different NACs and non-ni-
troaromatic compounds in chloroform. Reproduced with permission from reference [27]. Copyright 
© Royal Society of Chemistry 2020. 
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Giri and Patra reported 1,2,3-triazolyl-functionalized carbazole- (P1), fluorene- (P2),
and thiophene-based (P3) A-alt-B-type π-conjugated copolymers for the selective and sen-
sitive detection of NACs in aqueous media and the vapor phase [27]. Due to the high
conjugation degree based on typical donating units, these P1–P3 copolymers demonstrated
highly intense fluorescence with quantum yields in the range of 18–20%. The P1–P3 poly-
mers exhibited a fluorescence-quenching response to NACs with high quenching efficiency
(Figure 5). PA was found to be the most efficient quencher for all of the polymers, with
the highest KSV = 6.4 × 104 M−1 for P2 (Figure 6b). Based on the high linearity of the
Stern–Volmer plot (Figure 6a) and the higher-lying LUMO levels of P1–P3 compared to
those of the NACs, the authors declared that static quenching occurred by the PET mecha-
nism. P1–P3-based thin films demonstrated luminescence quenching of 91%, 53%, and 48%,
respectively, after exposure for 200 s (Figure 7a). In addition, the authors demonstrated the
reusability of the films based on the number of cycles of exposure and washing with water
(Figure 7b), showing the applicability of the prepared probes.
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Figure 7. (a) Graphical representation of the superiority of polymer P2 over polymers P1 and P3,
as indicated by the relative quenching efficiency. (b) Emission-quenching cycles and demonstration
of reusability through recovery after exposing the probe film to PA vapor for 200 s. Reproduced with
permission from reference [27]. Copyright © Royal Society of Chemistry 2020.

Liu and coworkers reported the three-component conjugated polymers P4 and
P5 (Figure 8) and their application as super-rapid-response fluorescent probes to DNT
vapor [28]. P4 and P5 thin films demonstrated selectivity toward DNT vapor over other
common explosives (Figure 9). The authors performed fluorescence-quenching experi-
ments in the vapor phase only. The fluorescence-quenching ratios of P4 and P5 to DNT
reached 93% and 96% in 5 s, respectively. In addition, P4 and P5 thin films have comparable
quenching efficiency toward DNT and TNT, while P4 shows remarkably higher quenching
efficiency toward other analytes compared to P5. The authors attributed such behavior to
the possible stacking of pyrene units, which is easier to achieve compared to anthracene
ones. Therefore, P4 can form looser films to increase the diffusion of analyte molecules,
thus enhancing the sensing performance. The higher selectivity toward DNT and TNT
could be explained by the higher vapor pressure of these analytes in comparison with other
less volatile explosives. P4 and P5 demonstrated a fast response time: that is, after 5 s
of exposure to DNT vapor, 93% and 96% of the fluorescence was quenched, respectively
(Figure 10a,b). The fluorescence-quenching ratios of P4 and P5 films to TNT were found to
be only 46% and 43% in 5 s, respectively. The reusability of P4 and P5 films was also inves-
tigated. They demonstrated almost the same level of fluorescence-quenching performance
(93% and 94% after exposure to DNT vapor for 5 s) after three cycles of quenching/recovery.
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2.2. Conjugated Microporous Polymers

Porous polymers have a large specific surface area, which has unique advantages
in the fluorescence detection of explosives. This allows for an improved mass-transfer
capability so that explosives in solution or in the gaseous state can be pre-concentrated
within the polymer, increasing the concentration of nearby fluorophores. On the other
hand, it can promote the diffusion of explosive molecules into the pores of the polymer and
provide a full-contact interface for the interaction of explosive molecules with fluorophores,
thereby improving the detection sensitivity. In this case, the determination of porosity
properties, such as the Brunauer, Emmett, and Teller surface area (SBET), pore volume and
size, micropore volume ratio (Vmicro/Vtotal), etc., plays an important role in the estimation
of a polymer as a sensor for any analyte, including NACs. Therefore, the control and tuning
of porosity and surface parameters are of great importance and can be achieved by choosing
certain building blocks and types of implemented organic reactions. In addition, porous
polymers can be applied in a field of molecular separation for the selective extraction of
an analyte from a mixture, followed by recyclization by washing, centrifuging, etc., with
subsequent reuse, which is very practical.

Nailwal et al. designed [29] and developed three luminescent truxene-based CMPs
(Tx-CMPs) via the Suzuki–Miyaura cross-coupling reaction (Figure 11). All Tx-CMPs
exhibited a high BET surface area, SBET = 788–915 m2 g−1 (based on nitrogen gas uptake
isotherms, Figure 12a), and good thermal stability. Based on nonlocal density functional
theory (NLDFT), Tx-CMPs mainly possess a pore size of 1.38–1.41 nm (Figure 12b) with
a pore volume of 0.57–0.90 cm3 g−1, accompanied by the formation of aggregates of
small globular particles with an amorphous character (Figure 12c–e). It should be noted
that a negligible presence of the palladium metal residue was detected by SEM−EDS.
Due to the extended aromatic conjugation system based on fluorene units and flexible
aromatic linkers, Tx-CMPs avoid the ACQ effect and demonstrate intense luminescence.
All Tx-CMPs were insoluble in all tested organic solvents, with the most well-dispersed
suspensions of Tx-CMPs obtained in THF, which was chosen as the solvent for further
fluorescence experiments.
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Figure 12. (a) Nitrogen adsorption and desorption isotherms of Tx-CMPs. (b) Pore-size distribution
curves of Tx-CMPs. (c–e) FE-SEM images of Tx-CMP-1, Tx-CMP-2, and Tx-CMP-3, respectively.
Reproduced with permission from reference [29]. Copyright © ACS Publications 2022.

Among various nitroaromatic explosives, Tx-CMPs demonstrated a selective lumines-
cence turn-off sensing response to PA with KSV values in the range of 2.39–7.35 × 104 M−1.
For comparison, KSV values for other nitroaromatics (2,4-DNP, 4-NP, 3-NP, 1,3-DNB, and
2,4-DNT) were in the range of 0.48–4.15 × 103 M−1, which is more than 10 times less,
accompanied by a significantly lower quenching efficiency (Figure 13). The LODs for Tx-
CMP-1, Tx-CMP-2, and Tx-CMP-3 were calculated at 1.86, 4.05, and 2.11 nM, respectively.
According to time-resolved fluorescence quenching experiments, negligible changes in the
average lifetime values were observed (τav = 0.39 ns for Tx-CMP-1), suggesting a static
quenching process in this case. Based on the HOMO–LUMO distribution for Tx-CMPs
and PA, the authors declared that the quenching process occurred by the PET mechanism,
with the largest difference between the LUMO of the sensor and the LUMO of the analyte
calculated for Tx-CMP-2, exhibiting the most efficient quenching of luminescence.
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Mothika et al. reported the electrochemical generation of three CMP thin films
(PTPETCz, PFLCz, and PTPEFLCz) with high porosity and their fluorescence response to
TNT vapor [30]. These three polymers exhibited different luminescence behaviors arising
from the structures of the original monomers. Only the PTPETCz and PTPEFLCz polymers,
which include an aggregation-induced emissive TPE core, demonstrated a sensing response
to TNT vapor, with LODs of 10 ppb (Figure 14a) and 0.2 ppm (Figure 14d), respectively.
PFLCz turned out to be irresponsive even under a higher TNT vapor pressure (0.2 ppm).
The authors ascribed this contrasting behavior to the increased electron-accepting character
of PFLCz due to its fluorenone units. In addition, PTPETCz appeared to be remarkably se-
lective toward TNT compared to other analytes because of either a lower LUMO to initiate
the PET process or the insufficient volatility of the nitroaromatic molecules (Figure 14b).
Meanwhile, such low LOD values for TNT originated from the high microporosity of CMP
films. SBET values were calculated at 930 and 509 m2/g, with average pore diameters of 1.71
and 1.72 nm and total pore volumes of 0.40 and 0.22 cm3 g−1 for PTPETCz and PTPEFLCz,
respectively, resulting in the better diffusion of TNT into the CMP matrix. The SBET values
of the thin films were lower than those of the corresponding bulk CMP powders synthe-
sized via FeCl3-assisted chemical oxidation from the corresponding monomers due to the
impact of the selected preparation method. However, thin films are more applicable to
device and chip fabrication and demonstrate higher sensitivity to TNT vapor (Figure 15b).
In this case, the authors estimated the role of film thickness and reported more efficient
quenching at a lower thickness (15 nm over 61 nm).
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Figure 14. (a) Graphical representation of fluorescence quenching of PTPETCz film in presence of
TNT vapor (10 ppb); (b) emission quenching of PTPETCz films after exposure to various analyte
vapors: TNT (33 ppb, 3 min), TNB (10 ppb), 1,3-DNB (47 ppb), 2,4-DNT (saturated vapor), NT,
chlorobenzene (ClBen), and toluene, exposure time 5 min. (c) Fluorescence intensity change with time
in presence of TNT vapor (33 ppb) for PTPETCz films of ca. 61 nm thickness and (d) fluorescence
intensity change with time in presence of TNT vapor (0.2 ppm) for PTPEFLCz films. Reproduced
with permission from reference [30]. Copyright © ACS Publications 2018.
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Figure 15. (a) PTPETCz emission decreasing during exposure to TNT vapor (33 ppb) over time. Inset:
Illuminated PTPETCz thin films on ITO (i) under UV lamp and (ii), (iii) before and after exposure to
TNT under a laser source, respectively. (b) Fluorescence quenching of PTPETCz films (blue) with
time in presence of TNT vapor (33 ppb) compared to the fluorescence quenching of a drop-casted
monomer film (TPETCz) when exposed to TNT vapor (0.2 ppm). (Inset) Illuminated TPETCz film
(iv) before and (v) after TNT exposure. Reproduced with permission from reference [30]. Copyright
© ACS Publications 2018.

Gou and colleagues presented siloxane-based nanoporous polymers, LPOPs, with
a narrow pore-size distribution prepared by the Friedel–Crafts reaction of octaphenylcy-
clotetrasiloxane with octavinylsilsesquioxanes with different ratios (Scheme 1) [31]. LPOPs
exhibited a narrow pore-size distribution, a monomodal micropore structure, excellent
fluorescence properties, a high surface area, high thermodynamic stability, and sensing
properties. According to the nitrogen adsorption–desorption isotherm and pore-size distri-
bution (Figure 16), LPOP-2 (the ratio of the starting reactants is 1:0.2) demonstrated a higher
porosity degree with an SBET of 967 m2g−1 and a corresponding micropore volume ratio
(Vmicro/Vtotal) of 0.94, with the monomodal nanopores centered at approximately 0.59 nm,
as well as the most intense luminescence both in the solid state and in suspension at ap-
proximately 450 nm. Moreover, this intense luminescence of LPOP-2 could be efficiently
quenched by NACs, with KSV constants of 2.32 × 104, 1.63 × 104, and 2.42 × 104 M−1 for
NT, DNT, and TNT, respectively. The authors revealed the synergetic effect of dynamic
adsorption, electron transfer, and electrostatic interaction between the nanoporous mate-
rials and analytes. In addition, Gou and colleagues demonstrated the quenching of the
luminescence of LPOPs by using paper strips.
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Figure 16. Nitrogen adsorption–desorption isotherm and pore-size distribution curve (inset) of
LPOP-2. Reproduced with permission from reference [31]. Copyright © ACS Publications 2018.

Manna and co-authors developed the adamantane- and polycarbazole-based CMP
ACzMOP for the detection of NACs in aqueous and gaseous phases (Scheme 2) [32].
ACzMOP demonstrated fluorescence sensitivity to NT, NB, TNP, DNP, NP, and NA analytes
with high KSV values, especially toward DNT, with a KSV of approximately 1.6 × 106 M−1

and a quenching efficiency of 70% (Figure 17). Moreover, these KSV constants were obtained
in aqueous media; KSV for DNT was calculated in both normal and seawater media and
indicated no influence of the type of aqueous medium (Figure 17b). The LOD was found
to be 0.32 ppb for DNT, which is well below the maximum permissible limit of 2 ppb in
drinking water. In addition, the authors characterized the quenching mechanism as highly
dynamic in nature because of the reduction in the fluorescence lifetime upon the addition of
different concentrations of DNT. With high values of SBET of 1568 m2g−1, total pore volume
of 1.58 cm3 g−1, and pore diameter around 1.17 nm (for the major fraction), ACzMOP
exhibited high sensitivity to vapors of NACs such as DNT, NT, and NB, with quenching
efficiencies of 95%, 99%, and 99%, respectively, after a 20 s exposure time (Figure 18).
As can be seen, despite differences in vapor pressure, DNT, NT, and NB demonstrated
comparable quenching efficiencies for ACzMOP, which led the authors to speculate about
the negligible role of vapor pressure, making it possible to detect TNT vapor. The structural
similarity between DNT and TNT should facilitate this as well. In addition, the process of
reversible “ON-OFF” switching was also demonstrated for an ACzMOP thin film. After 30
min in a laboratory vacuum oven at 50 ◦C, the same fluorescence intensity was restored,
allowing this process to repeat for many cycles. Moreover, the possibility of detecting NACs
by using paper strips with ACzMOP was shown. In addition, the authors successfully
applied ACzMOP for the aqueous phase separation of nitroaromatics with high efficiency
due to its very high porosity.
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2.3. Branched Polymers

Hyperbranched polymers are composed of three parts: dendritic links, linear links,
and end links. Dendritic units and linear units are randomly distributed over the macro-
molecular backbone, which leads to randomly branched structures and the polydispersity
of the molecular weight. At the same time, hyperbranched polymers have a large number of
modifiable end groups, which can conveniently be further adjusted for the fluorescent and
sensory properties of the polymers through the functionalization of the end groups. How-
ever, in this case, the polymer performance depends strongly on the nature and number of
end groups, as they are not part of the polymer system.

Gupta and Lee [33] reported recyclable polymeric thin films based on a pyrene-derived
polymeric probe, P6 (Figure 19a), for the selective detection and separation of PA with
KSV = 7.75 × 104 M−1 in aqueous media (Figure 19b,c). At lower pH, trialkylamine groups
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could be protonated, turning off the PET process and amplifying the luminescence intensity
(Figure 20). This provides a favorable way to sense PA via quenching of this amplified
luminescence. Because of the nonlinear nature of the KSV plot, the lower-lying LUMO
energy level of PA compared to P6, and the overlap between the fluorescence spectra of
P6 and the absorption spectra of PA, the authors declared a combination of PET and FRET
mechanisms. The LOD for PA was determined to be 56 µM. Based on the P6 polymer, the
corresponding P2 film was fabricated with higher sensitivity to PA. The authors reported
that only 11.4 attograms (10−14 M) was required to initiate fluorescence quenching by
PA. They also attributed this amplified fluorescence quenching of the P6 film to the π–π
stacking of the pyrene units, which enabled an exciton-hopping process via intermolecular
electronic coupling, facilitating long-range exciton diffusion in the well-assembled solid
state. The authors demonstrated the possibility of applying the P6 film to separate PA from
a mixture of different nitroaromatics in a MeCN solution.
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Kumar et al. reported the synthesis and multimodal sensing applications of an
emissive alanine-based dansyl-tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP)
(Figure 21) synthesized by RAFT copolymerization [34]. This polymer demonstrated high
sensitivity and selectivity toward PA, as well as toward other NAC explosives, such as
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DNT and TNT, with lower quenching efficiency in THF solutions (Figure 22a,b). The DCP
polymer demonstrated KSV values of 1.1 × 103 M−1 and 1.3 × 103 M−1 for DNT and TNT
and a large value of 1.6 × 104 M−1 for PA. The authors characterized the mechanism of
quenching as a combination of static and dynamic processes based on fluorescence up-
conversion and time-resolved fluorescence data. In addition, the vapor sensing of NACs
by a 20 nm thin film of DCP was demonstrated, with quenching efficiencies in the order
DNT > TNT > PA associated with the higher vapor pressure of DNT over TNT and PA.
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In addition, they demonstrated the possibility of detecting NACs with a polymer–
small-molecule donor–acceptor FRET pair, using the tryptophan copolymer poly[(N,N-
dimethylacrylamide)-co-(Boc-tryptophan methacryloyloxyethyl ester)] (also known as (P-
[DMA-co-(Boc-Trp-EMA)])) (RP) (Figure 21) as the donor and carbazole (CZ) as the acceptor.
This RP:CZ system demonstrated high sensitivity to NACs, with KSV = 2.9 × 104 M−1,
5.3 × 103 M−1, and 5.7 × 103 M−1, as well as LOD values of 1.4 µM, 6.4 µM, and 5.9 µM
for PA, DNT, and TNT, respectively. This unique and high-sensitive detection works based
on the FRET process, where the FRET mixture is excited at the donor’s (RP) characteristic
wavelength (291 nm). This excitation energy of the donor is resonantly transferred to the
acceptor because of the great overlap between the fluorescence of RP and the excitation of
CZ (Figure 23a), followed by a dramatic increase in the PL emission of CZ at 325–425 nm
(Figure 23b). This emission is further weakened with the increase in the DNT, TNT, and
TNP concentrations (Figure 23c for PA). A time-resolved spectroscopic study confirmed
the occurrence of the FRET process with a considerably good energy transfer efficiency
φE = 35% and a decrease in the average lifetime of PA from 1.6 to 1.0 ns. The authors also
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calculated the Förster critical distance R0 and the distance between donor and acceptor
molecules r at 25.51 Å and 28.28 Å, respectively, which are in the range of 10–100 Å and
applicable to the FRET process.
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from reference [34]. Copyright © Springer Nature 2019.

Moreover, in their subsequent research [35], the authors reported the polymer–polymer
donor–acceptor FRET pair RP:DCP, with the copolymer RP as the donor and the copoly-
mer DCP as the acceptor (Figure 21). The sensitivity of this copolymer toward NACs is
based on the same FRET pair principle as RP:CZ, with the dominance of the PET quenching
mechanism (Figure 24a). Kumar and colleagues demonstrated that changing the excitation
source for DCP from an outer source to the FRET approach is favorable for NAC detection.
The KSV values appeared to be comparable to those of the RP:CZ FRET pair and were
2.2 × 104 M−1, 6.3 × 103 M−1, and 7.6 × 103 M−1 with LODs of 0.4 µM (0.1 ppm), 5.4 µM
(0.98 ppm), and 2.3 µM (0.53 ppm) for PA, DNT, and TNT, respectively. However, this
system demonstrated values approximately 6 orders of magnitude higher than the reported
KSV values for the DCP polymer, indicating the key role of the FRET pair in the quenching
of NACs. In addition, the authors provide deep insight from optical, time-resolved spec-
troscopic, and ultrafast transient absorption studies to establish the mechanistic aspects
of the interactions between PR:DCP and NACs. They demonstrated the selectivity of the
RP:DCP pair toward PA, DNT, and TNT over other analytes (Figure 24b).
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3. Modern Accents/Trends in the Development/Research of Polymers/Polymer-Based
Materials for the Detection of NACs
3.1. Polymer Nanoparticles for Detection in Aqueous Media

One of the main disadvantages of polymer-based materials is their flat surface, which
prevents the deep penetration of NACs into the polymer body, especially on hard surfaces.
When π-conjugated polymers are converted into nanostructures, the properties of the
polymer are enhanced by additional nanoscale characteristics, including the ability to
functionalize the inside or outside of nanostructures and increase solubility in various
solvents, including water [36]. Conjugated nanostructured polymers have high quantum
yields, molar extinction coefficients, brightness, and photostability. Due to these properties,
polymer-based nanoparticles (PNs) have found wide applications in optoelectronics and
biomedicine [37]. Small PNs with high specific surface areas for maximum sensitivity are
considered promising probes for detecting nitro-containing analytes.

Malik et al. fabricated a fast and sensitive platform based on conjugated polymer
nanoparticles (PFMI-NPs) with an average particle size of 30 nm for the selective detection
of PA (Scheme 3) [38]. With the pendant cationic imidazolium groups attached to the side
chains of the PFMI polymer, it became water-soluble and obtained a specific recognition site
for PA in polar solvents. This led PFMI-NPs to demonstrate higher sensitivity for PA over
other NACs, with KSV = 1.12 × 108 M−1 (Figure 25a,b) and a LOD of 30.99 pM/7.07 ppt
in water. The exceptional selectivity and sensitivity toward PA remained unchanged
in the presence of a variety of cations and anions yet were reduced by 50% in a 1 M
NaCl aqueous solution, demonstrating sensitivity to PA at relatively high electrolyte
concentrations in aqueous media. Because of the nonlinear Stern–Volmer plot at higher
concentrations of PA (Figure 25c), the authors described the quenching mechanism as a
combination of the “molecular-wire effect”, electrostatic interactions, and PET and possibly
RET mechanisms. Moreover, the authors fabricated a two-terminal sensor device for PA
vapor detection (Figure 25d) with high sensitivity and selectivity, a high signal response
(6 s), and fast recovery.
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Figure 25. (a) Emission spectra of PFMI-NPs with variable concentrations of PA in aqueous media. In-
set: Stern–Volmer plot at lower PA concentrations. (b) Effect of different nitro-explosives (5 × 10−7 M)
on the emission of PFMI-NPs. (c) Stern–Volmer plots for various nitro-explosives. (d) Two-terminal
sensor device (schematic representation). Reproduced with permission from reference [38]. Copyright
© ACS Publications 2015.

Ouyang and co-authors reported l-PAnTPE and PAnTPE polymer nanoparticles based
on anthracene and tetraphenylethene units (Figure 26) for the detection of nitroaromatics
in aqueous media [39]. Despite the difference in molecular structure, both l-PAnTPE and
PAnTPE polymers demonstrated similar fluorescence emission with maxima at 455 and
448 nm, respectively. However, PAnTPE exhibited higher efficacy for the quenching of PA
in water, with a KSV of 4.0 × 104 M−1, compared to l-PAnTPE, with a KSV of 1.4 × 104 M−1

(Figure 27), as well as higher sensitivity, with a LOD of 439 nM compared to 663 nM.
The better sensing activity of PAnTPE is due to its surface parameters. Both particles
possessed an average size of 73 nm and spherical morphology. However, porosity with a
pore size centered at ca. 3.5 nm and an SBET of 49 m2/g for PAnTPE was observed, thus
facilitating contact and the adsorption/diffusion of the analyte in the polymer. l-PAnTPE
possessed no porosity due to its linear molecular structure. KSV values for other NACs
were much lower, while the presence of different cations and anions had an insignificant
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effect, indicating high selectivity toward PA (Figure 28). The authors revealed a static
mechanism of quenching based on time-resolved fluorescence decay data, a prerequisite
for the PET mechanism due to higher LUMO values of l-PAnTPE and PAnTPE (−2.68 and
−2.53 eV, respectively, vs. −3.90 eV for PA), as well as for the FRET mechanism due to the
overlaps between the absorption spectra of PA and the fluorescence spectra of l-PAnTPE
and PAnTPE. The authors also note the possibility of the appearance of an inner-filter effect
because of overlaps between the excitation spectra of PA and the fluorescence spectra of
l-PAnTPE and PAnTPE.
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Wang and colleagues reported aggregation-enhanced FRET-active conjugated polymer
nanoparticles, P7 (Figure 29a), with an average diameter of 117 nm (Figure 29b) and
orangish-red fluorescence emission with a maximum at 572 nm in 1,4-dioxane-water media
(fw = 92%) and applied them for PA sensing in an aqueous solution [40]. P7 exhibited high
sensitivity and selectivity toward PA (Figure 29c), with KSV = 3.4 × 104 M−1, a LOD of
0.51 µM, and, according to the authors, a conjectural PET mechanism of quenching. Other
NACs demonstrated much lower efficiency (Figure 29d). The presence of different cations
and anions did not influence the quenching performance of P7.
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nitroaromatics. Reproduced with permission from reference [40]. Copyright © Royal Society of
Chemistry 2018.

Wu and co-authors presented water-dispersible hyperbranched conjugated polymer
nanoparticles with sulfonate terminal groups (HCPN-S) for the amplified fluorescence
sensing of TNT traces in an aqueous solution (Scheme 4) [41]. This polymer was pre-
pared by Suzuki coupling polymerization in an oil-in-water miniemulsion followed by
post-functionalization with the attachment of hydrophilic sulfonate terminal groups to the
hydrophobic hyperbranched conjugated polymer core. The resulting NPs had an aver-
age diameter of around 25 nm and demonstrated a high fluorescent response to TNT in



Materials 2023, 16, 6333 21 of 74

aqueous media, with KSV = 1.21 × 106 M−1 and a LOD of 3.7 nM (0.8 ppb) (Figure 30a,b).
HCPN-OH, which is the corresponding precursor of HCPN-S with OH groups, exhibited a
significantly lower KSV = 2.21 × 103 M−1, determining the key role of sulfonated groups in
the detection of TNT. In addition, the authors prepared linear conjugated polymer nanopar-
ticles (LCPNs)—the linear analog of HCPN-S. These LCPNs demonstrated a much lower
KSV = 2.12× 104 M−1 and a LOD of 3.0 µM (Figure 30b), indicating the pivotal contribution
of the nature of the hyperbranched core. The inner cavities of the core of HCPN-S resulted
in an enhanced encapsulation ability, providing a large PET interface and a more efficient
quenching performance (Figure 30c). The authors investigated the quenching performance
of other NACs in water as well and observed high selectivity toward TNT (Figure 31a).
Even PA, which is the most common NAC, exhibited a high KSV value (8.39 × 104 M−1),
but it was more than 14-fold lower than that of TNT (Figure 31b).
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Figure 30. (a) Fluorescence response of HCPN-S dispersion during addition of TNT. (b) Stern–
Volmer plots of HCPN-S at 419 nm and LCPN at 394 nm. (c) Proposed mechanistic pathway for
different sensitivities between HCPN-S and LCPN. Reproduced with permission from reference [41].
Copyright © Royal Society of Chemistry 2017.
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S at 419 nm. Reproduced with permission from reference [41]. Copyright © Royal Society of
Chemistry 2017.

3.2. Aggregates of Polymeric Probes

At high concentrations of both small-molecule-based and polymeric fluorophores,
in most cases, the fluorescence decreases dramatically due to such common phenomena
as aggregation-induced quenching or aggregation quenching (AQ), which significantly
hampers the application of most fluorescent materials for the fluorescence detection of
NACs. In 2001, Tang et al. reported, for the first time, the emission of fluorophores, which
did not appear in solution but appeared during aggregation, and this phenomenon was
named “aggregation-induced emission” (AIE) (opposite of AQ) [42]. AIE-active polymer
probes and materials have been successfully applied to detect explosives, and the number
of published papers in this area has rapidly increased over the last 10 years [24,43]. The
high fluorescence efficiency, synergistic effect, and large contact area in the aggregated state
endow AIE polymers with a “super-amplification effect” and make them ideal candidates
for constructing sensors with high sensitivity [44]. AIE sensors have been developed for
ions, explosives, and biomolecules [45]. In the solid state, non-AIE-based sensors suffer
from partial or complete emission quenching, which makes their practical application diffi-
cult [24,43]. The opposite of ACQ, the aggregation-induced emission (AIE) phenomenon,
has arisen in the molecular engineering of luminescent materials and has generated curios-
ity among various scientific fields [46]. Luminogens with AIE characteristics (AIEgens) are
used as an approach to overcome the problem connected with ACQ, the most popular of
which is the tetraphenylethene (TPE) functional group.

This section provides a wide range of readers with updated information on current
trends in the development and research of optical sensors based on polymer aggregates
with a linear, branched, or porous structure for the detection of nitro-containing pollutants.
This includes several reports comparing the sensitivity of ACQ, AIE, and AEE polymers
as probes for detecting explosives under the same conditions, as well as sensors based on
through-space conjugated polymers.

3.2.1. Linear Conjugated Polymers

To study the relationship between the quenching mechanism of polymer sensors
and the sensitivity/selectivity of the detection of nitro-containing analytes, three linear
polymers were synthesized with tetraphenylethane (TPE), fluorene, and thiophene moieties,
namely, an aggregation-caused quenching (ACQ)-active polymer (PF), an aggregation-
induced emission (AIE)-active polymer (PFTPE), and an aggregation-enhanced emission
(AEE)-active polymer (PTTPE) (Figure 32) [47]. Then, polyurethane foams modified with
three polymers, PU-PF, PU-PFTPE, and PU-PTTPE, were prepared as carriers using the
ultrasonic processing method.
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A comparative study of polymer sensors on polyurethane foam with a three- dimen-
sional mesh structure for the detection of explosives was carried out. It was shown that
significant quenching of fluorescence was observed with the introduction of TNP solu-
tions. All PU-PF, PU-PFTPE, and PU-PTTPE sensors showed excellent sensitivity to TNP
solutions at various concentrations. Typically, the ACQ phenomenon results in reduced
emission in the aggregate or solid form of fluorescent samples, which reduces their po-
tential for practical applications [48]. However, the ACQ PU-PF polymer was shown to
provide better sensory performance than polymers with AIE or AEE characteristics. Thus,
the highest TNP extinguishing efficiency for PU-PF was 96.2%, while it was 93.5% for
PU-PFTPE and 86.7% for PU-PTTPE. The probable explanation for the efficiency lies in the
modification of the fluorene domain and the choice of a suitable carrier.

Although fluorene-containing chemosensors have ACQ properties due to their pla-
narity, the active methylene (C-9) position of the fluorene core results in easy functional
modification, making it suitable for use in fluorescent materials and sensors for detecting
analytes [49]. For example, three conjugated polymers based on C9-functionalized fluo-
rene domains (CP1, CP2, and CP3) were found to be highly sensitive for the fluorescence
detection and colorimetric detection of PA in an aquatic environment [26] (Figures 2–4).

A number of articles present typical linear AIE polymer sensors based on TPE
luminogens for the selective detection of 2,4,6-trinitrotoluene in solution and the gas
phase. For example, Xu et al. obtained and studied four linear polyacrylate polymers,
PAP1a–b and PAP2a–b, containing two AIE luminogens as side units, namely, 3,6-bis(1,2,2-
triphenylvinyl)carbazole (BTPC) and bis(4-(1,2,2-triphenylvinyl)phenyl)-amine (BTPPA),
in high yields via a free radical polymerization reaction in the presence of an azobisisobu-
tyronitrile catalyst. The polymer structures are shown in Figure 33 [50]. The spectrofluo-
rometric analysis of polymer nanoaggregates in THF/water showed that BTPPA-based
polymers gave a more sensitive fluorescent response to nitroaromatic compounds, in-
cluding 2,4,6-trinitrotoluene, with a maximum KSV value of 12870 M−1 for PAP2b, than
BTPC-based polymers.
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Figure 33. Structures of linear polymers PAP1a–b and PAP2a–b.

Tetraphenylethene-based aryleneethynylene-type polymers (TPEPs) were synthesized
through the Sonogashira coupling of diethynyl-TPE and three diiodobenzene struts carry-
ing branched oligoethylene glycol, hexyl, or hexyloxy side chains (Figure 34). The presence
of aggregates in a mixture of THF/water (5:95) was proved using a scanning electron micro-
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scope. The TPEPs were tested as a sensor array for 14 different nitroaromatic analytes and
displayed fingerprint fluorescence-quenching responses. Four polymeric TPEPs detected
and distinguished nitroarenes by quenching their fluorescence in the aqueous phase with a
KSV greater than 104 M−1 and a LOD below the ppm level for TNT [51].
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More recently, two novel linear di(naphthalen-2-yl)-1,2-diphenylethene-based (DNDPE)
conjugated polymers, P7–P8, were developed and studied (Figure 35) [52]. They possessed
AEE activity due to the non-standard DNDPE-luminogen, good solubility, and high photo-
stability. The emission of polymeric nanoparticles P1 in THF/water mixtures (f w = 90 vol%)
and P8 in THF/water mixtures (f w = 80 vol%) was quenched with PA. Moreover, probe P8
demonstrated higher sensitivity than P7, with KSV = 9.8 × 105 M−1.
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Through-bond conjugated polymers have been widely studied and have shown great
potential in various applications due to their conductive or luminescence properties, while
through-space conjugated polymers are less explored [53]. New fluorescent through-space
conjugated polymers P9–13 combining various aromatic moieties were synthesized via
Pd-catalyzed Suzuki/Stille coupling reactions on the basis of the intermediate dibrom-
substituted monomer (Z)-o-DBr-BPTPE derived from folded tetraphenylethene (TPE) [54].
The resulting polymers, P9, P10, and P11, exhibited higher fluorescence quantum yields
in aggregates and films than in solutions, thus exhibiting aggregation-enhanced emis-
sion (AEE) properties. The emission peaks in THF solutions and films of P12 and P13
were red-shifted to 516 and 678 nm, respectively. These differences in P12 and P13 are at-
tributed to the strong π–π interactions and/or dipole–dipole interactions in the aggregated
state (Figure 36).
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The effect of the super-amplification of emission by nanoaggregates of polymers in
an aqueous medium upon the detection of TNP was proved by comparing the quenching
constants in THF/water mixtures and THF. For example, the quenching constant of P1 in
the THF/water mixture (f w = 80 vol%) was up to 552,000 M−1, which is much higher than
that in the THF solution (78,200 M−1).

3.2.2. AIE-Active Porous Conjugated Polymers

The integration of typical AIE luminogens into a porous organic network provides
additional advantages for the detection of analytes of various natures, such as extended π-
delocalization compared to a conjugated network of linear polymer sensors, which leads to
efficient exciton migration. In addition, the porous structure of polymer sensors promotes
the efficient diffusion of analytes, enabling specific molecular interactions within pores and
allowing the design of sensors with highly sensitive and selective detection of analytes [55].

Special attention from scientists is drawn to porous polymer films used as sensors for
volatile organic pollutant compounds, most often obtained in situ by electropolymeriza-
tion (EP). For example, polymeric porous films (EP films) were obtained in situ by elec-
tropolymerization (EP) of a new luminescent AIE-active monomer, PhTPECz, consisting
of terphenylethylene units as the central core and eight electroactive carbazole fragments
(Scheme 5, Figure 37) [56]. Based on the results of transmission electron microscopy, it was
shown that for two possible twist conformations, the micropores of the resulting films were
~1.2 and 2.9 nm. The sensing performance of these EP films was optimized by controlling
the thin-film thickness by adjusting the electrochemical parameters.
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Thus, due to the bright yellow-green fluorescence and crosslinked porous texture, the
films showed excellent sensory properties with the possibility of their repeated use in the
processing of various NACs, namely, TNP, DNP, NP, TNT, NT, and NB. Thus, due to the
bright yellow-green fluorescence and porous texture, the films showed excellent sensory
properties with the possibility of their repeated use in the processing of various NACs,
namely, TNP, DNP, NP, TNT, NT, and NB. For sensing TNP, the LOD of the polyPhTPECz
EP films was 3.8 nM, and the KSV was calculated to be 1.63 × 105 M−1 in an aqueous
solution. Additionally, 73% of the fluorescence emission of the film was quenched within
180 s when exposed to TNP vapor. The fluorescence-quenching mechanism for TNP was a
combination of electron transfer and resonance energy transfer.

Similarly, a porous polymeric EP film with a high specific surface area for analyte diffu-
sion and pore diameters of 1.2 and 2.45 nm in two possible configurations was constructed
and studied based on a new dendrimer characterized by its central tetraphenylethylene
“core” with an aggregation-induced emission effect and its highly electroactive “branches”
(Scheme 6) [57]. Films have been shown to exhibit an on–off fluorescence response to
18 types of volatile organic compounds (VOCs). Significantly, a 2D sensing array was
established through CMP films and their spin-coated monomer films, and 18 types of VOC
vapors were precisely distinguished by linear discriminant analysis.

Currently, conjugated mesoporous polymers/oligomers with pore sizes of 2 to 50 nm
are attracting increasing attention as sensors due to their high surface area and porosity,
low density, high stability, tunable pores and skeletons, and ease of functionalization, which
leads to increased quantum yields and energy transfer efficiency for the ultra-sensitive
detection of explosives [58].

Thus, AIEE-active mesoporous conjugated oligomers CMO1 and CMO2 have been
developed (Figure 38) [59]. The integration of typical AIE building blocks, such as
tetraphenylethene and triphenylamine (TPA), into CMO scaffolds endowed them with
AIEE characteristics. Namely, CMOs emit weakly in solution, while enhanced and strong
emission is observed in the solid state. A 90% aggregated solution formed in a THF/water
mixture showed the highest quantum yield for the oligomers and was used to detect TNP
(Figure 39). The best results were shown by the CMO1 oligomer, with KSV of 2.6 × 106 M−1

for TNP and 2.3 × 103 M−1 for TNT.
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Pesticide detection with fluorescent porous organic polymers is a new technology de-
veloped in 2018 [60]. Thus, two hyper-crosslinked fluorescent porous polymers, PAN-TPE-1
and PAN-TPE-2, were synthesized via the polycondensation reaction of two AIE-active
aromatic tetraaldehydes with pores ranging from micropores (1.4–1.9 nm) to mesopores
(3.8–26.2 nm) (Figure 40) [61]. The obtained porous polymer sensors showed high fluo-
rescence sensitivity to trace amounts of pesticides in the aquatic environment, as well as
excellent discrimination of imidacloprid (IDP) from other pesticides with a value of KSV of
53,745 M−1 and a LOD of 28 ppb for PAN-TPE-1, which is far lower than the WHO-allowed
residue limit in common fruits and vegetables.

Materials 2023, 16, x FOR PEER REVIEW 29 of 76 
 

 

 
Figure 39. (a) Photos of CMO1 in mixtures of THF–water solution under UV light. (b) PL spectra of 
CMO1 in THF–water mixtures; (c) changes in PL intensity of CMO1 with variations in water frac-
tion. Reproduced with permission from reference [59]. Copyright © ACS Publications 2020. 

Pesticide detection with fluorescent porous organic polymers is a new technology 
developed in 2018 [60]. Thus, two hyper-crosslinked fluorescent porous polymers, PAN-
TPE-1 and PAN-TPE-2, were synthesized via the polycondensation reaction of two AIE-
active aromatic tetraaldehydes with pores ranging from micropores (1.4–1.9 nm) to mes-
opores (3.8–26.2 nm) (Figure 40) [61]. The obtained porous polymer sensors showed high 
fluorescence sensitivity to trace amounts of pesticides in the aquatic environment, as well 
as excellent discrimination of imidacloprid (IDP) from other pesticides with a value of KSV 
of 53,745 М−1 and a LOD of 28 ppb for PAN-TPE-1, which is far lower than the WHO-
allowed residue limit in common fruits and vegetables. 

 
Figure 40. Structures of AIE-active fluorescent polymers. 

3.2.3. AIE-Active Hyperbranched Conjugated Polymers  
AIE-active hyperbranched conjugated polymers are mainly used for the high-sensi-

tivity detection of TNP in aqueous media. This is due not only to the fact that polymer 
nanoaggregates in an aqueous system have a high fluorescent quantum efficiency due to 
AIE characteristics but also to the fact that a loose packing of spherical structures forms a 
large number of intermolecular holes that can bind a larger number of TNP molecules, 
which leads to higher detection sensitivity [62]. For example, N. Kalva et al. used aggre-
gation-induced emission (AIE)-active hyperbranched polyglycidols (HPGs) to design a 
solid-state sensor for detecting nitroaromatic explosives. The tetraphenylethylene 

Figure 40. Structures of AIE-active fluorescent polymers.

3.2.3. AIE-Active Hyperbranched Conjugated Polymers

AIE-active hyperbranched conjugated polymers are mainly used for the high-sensitivity
detection of TNP in aqueous media. This is due not only to the fact that polymer nanoag-
gregates in an aqueous system have a high fluorescent quantum efficiency due to AIE
characteristics but also to the fact that a loose packing of spherical structures forms a large
number of intermolecular holes that can bind a larger number of TNP molecules, which
leads to higher detection sensitivity [62]. For example, N. Kalva et al. used aggregation-
induced emission (AIE)-active hyperbranched polyglycidols (HPGs) to design a solid-
state sensor for detecting nitroaromatic explosives. The tetraphenylethylene moieties
were conjugated to the periphery of HPGs in a single step using dynamic boronate es-
ter crosslinkers (Scheme 7) [63]. According to dynamic light scattering and transmission
electron microscopic analyses, the self-assembled nanosized aggregates were stable in a
THF/H2O mixture. The fluorescence of the aggregates was quenched dramatically by
different NACs, including nitromethane, 4-nitrophenol, 4-nitrotoluene, 2,6-dinitrophenol,
and 2,4,6-trinitrophenol. The nanoaggregates showed remarkable sensitivity to TNP, with a
Stern–Volmer constant (Ksv) of 2.27 × 104 M−1 and a LOD of 40 ppb.
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Scheme 7. Synthesis of nanosized AIE-active HPG-TPE aggregates that exhibit high sensitivity for
the detection of nitroaromatic explosives.

F. Nabeel et al. reported a hyperbranched HPS-TPE polymer prepared through
the esterification reaction of poly(3-ethyl-3-oxetanemethanol)-star-poly(ethylene oxide)
(HSP-COOH) with TPE-containing thioethanol (i.e., 2-((4-(1,2,2
triphenylvinyl)phenethyl)thio)ethanol (TPE-OH) with high yields (Scheme 8) [62]. In
an aqueous solution, the copolymer self-assembles to form aggregates. The aggregates
display maximum photoluminescence (PL) in a THF/water (3:7 v/v) mixture. The introduc-
tion of TPE units into the polymer made it a highly sensitive AIE probe for picric acid with
a detection limit as low as 20 ppb and a quenching constant of 2.4 × 104 M−1 (Scheme 9).
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In 2020, four hyperbranched poly(methyltriazolylcarboxylate)s (hb-P1–4) with high
molecular weights (Mw up to 2.4 × 104) and regioregularities (up to 83.9%) were obtained
via a click polymerization reaction of alkyne monomers with tetraphenylethene-containing
diazides (Scheme 10) [64]. The obtained hb-P1–4 were characterized by good solubility,
film-forming ability, and thermal stability. Their nanoaggregates (f W = 90% in a mixture of
THF/water) were studied as chemosensors for the detection of TNF in an aqueous solution.
In particular, the Stern–Volmer plots of hb-P1–4 were almost linearly correlated with the
TNP concentration below 20 µg mL−1, with KSV of 14,290, 14,300, 24,670, and 11,900 M−1,
respectively.
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3.3. Donor–Acceptor Architecture of Conjugated Polymers

For conjugated polymer sensors, the introduction of electron-donor groups is thought
to enhance the interaction between electron-rich polymers and electron-deficient explosives,
resulting in higher sensitivity in both the gas phase and solution, so most of them are based
on donor-only structures [65–67]. Various conjugated polymers have been extensively
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studied as thin-film sensor materials due to their extremely high sensitivity, which can be
explained based on the molecular wire effect [68]. Owing to the PET fluorescence-quenching
process, the main disadvantage of CP-based sensors is the problem of selectivity in a
complex environment containing various electron acceptors. For example, discrimination
between TNT and PA is still a challenge because both of them are extremely strong electron
acceptors. In practical applications, selectivity is critical to successful detection, so a lot of
effort has been put into this area.

Thus, Wang et al. synthesized the donor–acceptor polymer P14 and two donor-only
polymers P15 and P16 to study the dependence of sensitivity and selectivity in the detection
of explosives on the structure of the polymer [69]. It was expected that the donor–acceptor
structure of the polymer would first lead to a significant intrachain charge transfer from
donor groups (diethylamine phenyl) to acceptor groups (2,1,3-benzothiadiazole, BT) and to
the appearance of a dipole moment. Second, the LUMO would also mainly localize on the
BT units, as occurs in the case of many D-A polymers [70].

According to the authors, because PA can easily form a negatively charged anion in
an aqueous solution, an electrostatic repulsion interaction between the BT unit and PA will
block the efficient electron transfer from the LUMO of P14 to PA, as shown in Figure 41,
which will not happen in the case of TNT. Therefore, P14 can selectively detect TNT instead
of PA in an aqueous solution. On the other hand, the reference polymers P15 and P16 with
only donor groups should behave like most CP sensors with higher selectivity toward PA.
Although the emission of polymers in the dissolved state was very weak, centrifuged films,
due to the AIE activity of the polymers, showed bright emission and were investigated
as sensors for detecting a mixture of picric acid and TNT. The P14 sensor film selectively
detected TNT instead of TNP in an aqueous solution with a KSV of 1.2 × 105 M−1. The
P16 sensor film selectively detected TNP with a KSV of 2.8 × 104 M −1 and a LOD of 2 ppb.
In addition, it was also shown that the emission of P14 and P16 films can be effectively
quenched by TNT and DNT vapors. These quenching effects of both TNT and TNP on P14
and P16 films were found to be reversible.

Materials 2023, 16, x FOR PEER REVIEW 32 of 76 
 

 

which can be explained based on the molecular wire effect [68]. Owing to the PET fluores-
cence-quenching process, the main disadvantage of CP-based sensors is the problem of 
selectivity in a complex environment containing various electron acceptors. For example, 
discrimination between TNT and PA is still a challenge because both of them are ex-
tremely strong electron acceptors. In practical applications, selectivity is critical to suc-
cessful detection, so a lot of effort has been put into this area. 

Thus, Wang et al. synthesized the donor–acceptor polymer Р14 and two donor-only 
polymers Р15 and Р16 to study the dependence of sensitivity and selectivity in the detec-
tion of explosives on the structure of the polymer [69]. It was expected that the donor–
acceptor structure of the polymer would first lead to a significant intrachain charge trans-
fer from donor groups (diethylamine phenyl) to acceptor groups (2,1,3-benzothiadiazole, 
BT) and to the appearance of a dipole moment. Second, the LUMO would also mainly 
localize on the BT units, as occurs in the case of many D-A polymers [70].  

According to the authors, because PA can easily form a negatively charged anion in 
an aqueous solution, an electrostatic repulsion interaction between the BT unit and PA 
will block the efficient electron transfer from the LUMO of P14 to PA, as shown in Figure 
41, which will not happen in the case of TNT. Therefore, P14 can selectively detect TNT 
instead of PA in an aqueous solution. On the other hand, the reference polymers P15 and 
P16 with only donor groups should behave like most CP sensors with higher selectivity 
toward PA. Although the emission of polymers in the dissolved state was very weak, cen-
trifuged films, due to the AIE activity of the polymers, showed bright emission and were 
investigated as sensors for detecting a mixture of picric acid and TNT. The P14 sensor film 
selectively detected TNT instead of TNP in an aqueous solution with a KSV of 1.2 × 105 М−1. 
The P16 sensor film selectively detected TNP with a KSV of 2.8 ×104 М −1 and a LOD of 2 
ppb. In addition, it was also shown that the emission of P14 and P16 films can be effec-
tively quenched by TNT and DNT vapors. These quenching effects of both TNT and TNP 
on P14 and P16 films were found to be reversible. 

 
Figure 41. P14–P16 electron transfer fluorescence quenching process and structures. Reproduced 
with permission from reference [69]. Copyright © ACS Publications 2011. 

In another study, four D-A-type conjugated copolymers, P17–20, based on isoindigo 
as an acceptor unit with four different triphenylamine (TPA) donor derivatives were pre-
pared (Figure 42) [71]. Quenching the emission of the P17 sensor upon the addition of 
picric acid gave rise to a new emission peak, whereas this was not observed when quench-
ing with TNT. The appearance of this new emission peak means that P17 not only detects 
TNT and TNP but also selectively detects TNP. The authors suggested that, on the one 

Figure 41. P14–P16 electron transfer fluorescence quenching process and structures. Reproduced
with permission from reference [69]. Copyright © ACS Publications 2011.

In another study, four D-A-type conjugated copolymers, P17–20, based on isoindigo as
an acceptor unit with four different triphenylamine (TPA) donor derivatives were prepared
(Figure 42) [71]. Quenching the emission of the P17 sensor upon the addition of picric acid
gave rise to a new emission peak, whereas this was not observed when quenching with
TNT. The appearance of this new emission peak means that P17 not only detects TNT and
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TNP but also selectively detects TNP. The authors suggested that, on the one hand, the
addition of TNP results in the protonation of the TPA group, which leads to the quenching
of the emission of the sensor; on the other hand, it is likely that a complex with the polymer
is formed, which generates a new emission peak and chemical shifts.
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Similar research was published in 2021. Thus, six donor–acceptor conjugated poly-
mers were developed based on triarylamine derivatives as donor units with an isoindigo
derivative or benzothiadiazole as acceptor units (Figure 43) [72]. These polymers are char-
acterized by good solubility, film-forming properties in common organic solvents, and high
luminescence quantum efficiency (up to 42.9%). In addition to showing electrochromic
and photoelectric sensor properties, the films also proved to be highly sensitive probes for
the detection of 2,4,6-trinitrophenol (KSV = 45,790 M−1) and can meet the requirements of
multifunctional materials.
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3.4. Polymer Sensors Based on Cluster Luminogens

In some cases, polymers are constructed from nonconjugated monomeric structures
by using C-C, C-O, or C-N bonds in polymers to form aggregates or solid forms, which
exhibit strong photoluminescence due to so-called “clusterization-triggered emission” [73].
Based on the theory of through-space conjugation (TSC), arising from n–σ*, n–π*, and
π–π* orbital overlaps, as well as hydrogen bonding and other weak interactions, the effect
of clusterization-triggered emission (CTE effect) can be applied for various applications,
for example, in the areas of process monitoring, structural visualization, sensors, and
probes [74]. In particular, due to the high content of n- or π-electrons, polymers based
on clusteroluminogens are considered promising new candidates for the detection of
nitro-explosives.

For example, very recently, water-soluble fluorescent nonconjugated polymer nanopar-
ticles (NFPNs) containing numerous n-electrons were prepared from branched polyethylen-
imine (PEI) and citric acid through an amide condensation reaction in the aqueous phase
(Scheme 11) [75]. Numerous active amino groups of polyethyleneimine were linked by
citric acid and formed the highly crosslinked NFPNs. The nanoparticles exhibited stable
bright fluorescence, which was quenched dramatically in the presence of trace concen-
trations of PA. Thus, in an aqueous solution, upon excitation at 360 nm, ca. 40% of the
emission of NFPNs at 450 nm was quenched upon the addition of PA, while in the presence
of other interfering species/quenchers, no noticeable fluorescence changes were observed.
The authors ascribed such selectivity to the inner-filter effect (IFE) and the formation of self-
assembled non-fluorescent Meisenheimer complexes between PA and NFPN side groups
on the surface. The calibration plot of log(F0/F) vs. PA concentration shows a linear rela-
tionship (R2 = 0.999) for PA concentrations in the range of 0.5–150 µM. The detection limit
for PA was 0.7 µM. The assay was successfully used to determine PA in spiked lake-water
samples, and the recoveries were 96.6–102.7%.
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In a similar manner, nonconjugated polymer dots (NPDs) were prepared from PEI
and 1,4-phthalaldehyde by means of the formation of Schiff bases in combination with
self-assembly (Scheme 12) [76]. These NPDs have been successfully used as novel, fast,
and sensitive fluorescent probes for PA detection. Thus, NPD fluorescence was effectively
quenched by PA via the inner-filter effect (IFE) because the absorption spectrum of the
analyte and the excitation spectrum of NPDs overlapped. The proposed method gave a
high degree of precision, good accuracy, and good sensitivity when used to quantitatively
analyze PA in water samples. The PA recoveries (101.63–103.15%) and relative standard
deviations (2.07–2.16%) were acceptable.
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Scheme 12. Schematic diagram of the method used to fabricate NPD nanoprobes for determining PA
using an on–off method.

3.5. Iptycene-Based Fluorescent Conjugated Polymer Sensors

Iptycene-based conjugated polymer sensors represent a unique combination of two
concepts: the concept of the amplified fluorescent conjugated polymer, the so-called “molec-
ular wire” [77], and the concept of interstitial space (free volume) around the molecules of
iptycenes, giving them the ability to form supramolecular architectures with high poros-
ity [78].

Common polymers, such as polyethylene and polypropylene, are electrical insu-
lators, as they do not have free charge carriers in their backbones. However, trans-
polyacetylene showed electrical conductivity, which gave rise to conjugated polymers
(CPs) as semiconductive materials with promising properties from an applied point of
view [79]. CPs include a wide range of structural classes: trans-polyacetylenes, poly(p-
phenylene)s, poly(p-phenylene-vinylene)s, poly(phenylene-ethynylene)s (PPE), poly(p-
phenylene-sulfide)s, polypyrroles, polythiophenes, poly(3,4-ethylenedioxythiophene)s,
polyanilines, and polyfluorenes [79], some of which are fluorescent, which determines their
use as sensors as well [80].

Such a possibility was demonstrated for the first time by Zhou and Swager in 1995
using CP PPE cyclophanic receptor systems and paraquat as a fluorescence quencher, and
the “molecular wire” model was proposed [81,82].

In this model, as the authors suggested, receptor units are “wired in series” throughout
the fluorescent conjugated polymer, forming a polyreceptor system, which operates on
the principle of “unus pro omnibus, omnes pro uno” (“one for all, all for one”), making the
whole polymer behave as a single molecule. Upon excitation, facile energy migration across
the polymer backbone occurs, sampling multiple receptor sites and inducing emission.
However, this fluorescence would be significantly quenched if the exciton encounters even
a single receptor site occupied by a quencher (Figure 44A). Such a situation, in which a
few receptor sites occupied by quencher molecules lead to the almost complete quenching
of the whole polymer, is called the amplification of the signal, and such systems were
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named amplifying fluorescent polymers (AFPs). Classical monoreceptor sensors, typical
for isolated small fluorophore molecules, do not have signal amplification like this; thus,
the degree of their fluorescence quenching is proportional to the number of receptor sites
occupied by the quencher (Figure 44B). Therefore, a higher concentration of the quencher
is required for a monoreceptor system to obtain a degree of fluorescence quenching equal
to that of the AFP polyreceptor system.
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Nevertheless, as one might guess, “molecular wire” AFP systems have their own
limitations related to molecular weight (Mn). Indeed, it was shown that the degree of signal
amplification increased at low Mn as the diffusion length of the excitation outnumbers the
length of the molecule, and then it becomes insensitive at Mn above ~65,000–100,000, where
the size of the polymer exceeds the diffusion length of the excitation [80–82]. Given that the
latter is determined by the excited-state lifetime and the excitation’s diffusion rate, to gain
the maximum signal amplification degree, a combination of long-lived excitation states,
excitations with high mobilities, high-efficiency energy transfer, and high molecular weight
is required. For example, it was shown that in molecular structures in which energy transfer
is hindered, like in meta-conjugated substituted PPE, the ability to amplify fluorescence
quenching is decreased [82].

Another similar case is the lowered sensitivity of AFPs in solution due to the isolation
of polymeric chains from each other. It causes excitons to walk in a one-dimensional way,
which is ineffective because excitons revisit the same receptor sites several times as a result.
Also, in the solution state, the competitive solvation of AFPs and quencher molecules and
their rates of diffusion should be taken into account as additional limitations. In addition,
carrying out fluorescence-quenching experiments in the solution state requires meticulous
solution preparation and the usage of toxic solvents [80].

As a one-time solution to the above-mentioned problems, the usage of AFP sensors in
the form of films instead of solutions was proposed. This allows the sample preparation
stage to be eliminated, as the film is a ready-to-use sensor device, which is particularly
convenient for operators in field conditions. Also, there was hope that the limitations
imposed by the diffusion rate, which is linked to the process of sensor and quencher
solvation, would be reduced. But the most important advantage of films over solutions lies
in their two- or three-dimensional structure. It eliminates the one-sided walking behavior
of excitons, which is obligatory in the solution state, and allows hopping from one chain to
nearby ones. Such multidimensionality of potential routes decreases the possibility of the
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exciton revisiting the same receptor sites and increases the likelihood of it meeting a site
occupied by a quencher, which further advances the amplification of the signal [78,83].

For example, in poly(p-phenylene ethynylene) thin films prepared by Langmuir–
Blodgett deposition, an increase in energy transfer efficiency accompanying an increase
in the number of layers up to 16 layers was observed. The phenomenological model used
for the evaluation of energy transfer efficiency revealed a high rate of energy transport
between different layers (>6 × 1011 s−1) and a diffusion length exceeding 100 Å in the
Z-direction [5].

But just as solution-state AFP sensor usage has its own problems and limitations, the
same can be said for the solid-state one: (1) The planar geometry of the above-mentioned
polymers favors π-stacking interactions and results in aggregation. (2) Such interactions,
in turn, create local energy minima on the potential energy surface of the film. With the
addition of intra- and interchain exciton migration, a large amount of the initial excitation
energy is funneled to aggregation sites in AFP thin films. Also, these low-energy trap
sites restrict the extent of exciton migration [80]. (3) Aggregation is accompanied by the
well-known phenomenon called “aggregation-caused quenching” (ACQ) [84], expressed
as a lower fluorescence intensity compared to the same polymer in the non-aggregated
state. (4) Weak emission, in turn, means the low sensitivity of the sensor polymer, as higher
concentrations of the quencher are required to give a reliable response.

Despite the advantages of such systems for enhanced fluorescence-quenching effi-
ciency, the initial CP sensors lacked the visualization of recognition events and selectivity.

To overcome the listed disadvantages and pitfalls of classical CP-AFP sensors, espe-
cially the films, and to increase their selectivity, the introduction of sterically bulky pendants
into the structure was suggested. Triptycene-containing polymers have been known since
1968 [85]; thus, in 1998, Yang and Swager designed new CP-AFP sensors but based on a
pentiptycene moiety (IP1–3) (Figure 45) [65,66].
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Iptycene turned out to be the most attractive candidate, as it has a unique three-
dimensional structure and properties. The dihedral angles between the aromatic rings
of its bicyclo [2.2.2]octatriene bridgehead system are equal to 120 ◦C, resulting in a rigid
three-bladed geometry (Figure 46A), which hampers π-stacking and other intra- and
intermolecular interactions and makes molecules resistant to aggregation [86]. This results
in (1) higher fluorescence intensity and quantum yields, as ACQ does not happen (with
iptycene-based IP1–3 having greater fluorescence quantum yields compared to P27 in the
solid state); (2) improved solubility in organic solvents (as IP1 is ~100-fold more soluble than
P27 in chloroform); (3) higher spectroscopy stability and reproducibility; (4) the enhanced
stability of the polymer films to thermal actions, solvent treatment, photobleaching, and
degradation, since the enthalpic driving force for the reorganization of the polymer chains
is smaller when there is no direct contact [66]; (5) increased energy transfer efficiency
through polymer layers due to the prevention of energy waste upon exciton migration [80].
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Furthermore, such voluminous pendants stack up in the polymer film in such a
way that voids are formed, named “internal free volume” (Figure 46A). Consequently,
it increases the porosity of the film, turning it into a kind of “sponge” (Figure 46B). The
cavities in the polymeric “sponge” serve as molecular-scale channels, which facilitate the
penetration of analytes and their adjustment to receptor sites (Figure 46C).

It is also worth mentioning that the clefts and cavities of iptycenes afford a venue
and direct the course for supramolecular interactions and additionally enable size-based
selectivity in some cases [87].

Also, as for selectivity, iptycenes are electron-rich, and therefore, in the presence of
electron-deficient analytes (e.g., nitroaromatic explosives, their precursors, and their deriva-
tives), the fluorescence quenching of iptycene-based CP-AFPs occurs due to noncovalent
interactions, i.e., photoinduced electron transfer (PET) [66].

Based on the above, first, CP-AFP pentiptycene-based sensors IP1–3 (planar electron-
rich polymer 4 was synthesized as a reference compound) were developed by Yang and
Swager in 1998, as was mentioned earlier, and their sensory response to electron-acceptor
compounds—nitroaromatic ones and quinones—were studied. Structure-activity relation-
ships were investigated to understand what it takes to create effective and sensitive fluores-
cence “turn-off” sensors for the detection of explosives and some other analytes [65,67].

Fluorescence-quenching experiments in the solid state, specifically in films, showed
that quenching depends on the analyte diffusion rate, which, in turn, correlates with sensor–
analyte binding interactions, the vapor pressure of the analyte, and the film thickness.
For nitroaromatic quenchers, the relationship between the film thickness and quenching
efficiency was inversely proportional (Figure 47A); in thin films (25 Å), a greater quenching
efficiency was obtained compared to thick (200 Å) ones (70% and 30% at 60 s for TNT,
respectively). This happens because of the strong binding interactions between the sensor
and nitroaromatic compounds, which slow down the diffusion of the latter through the film.
For quinones (namely, duroquinone (DQ)), the opposite was observed because of weaker
interactions (Figure 47B) [65,66]. And the dependence of the sensory response on the
vapor pressure of the analyte manifests itself in the following: DNT, having a higher vapor
pressure than TNT (18:1), caused more pronounced and faster fluorescence quenching (80%
vs. 30 % after 10 s in thin films, respectively).
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Now, if you think about it, the dependence of the quenching efficiency of CP-AFP
sensors on the analyte diffusion rate runs somewhat counter to the concept of the “molecular
wire”, as the latter should not depend on the analyte diffusion rate so much. If the
“molecular wire” model were completely correct, then the occupation of receptor sites on
the surface by the quencher should be enough for rapid, substantial fluorescence quenching.
Indeed, in one of the later studies, a time-resolved quartz crystal microbalance with in situ
fluorescence measurements confirmed that the fluorescence-quenching efficiency is mainly
related to analyte diffusion, not exciton diffusion, as in real-time sensing, the diffusion
of the vapor of the analyte–quencher into the film is driven by the swelling kinetics of
the latter [88]. Thus, according to these findings, optimizing and improving analyte
penetration should be one of the priorities when designing future sensors operating in the
solid state. However, regardless of the real mechanism behind high quenching efficiency—
the “molecular wire” or diffusion-dependent one—iptycene-based CP-AFP sensors proved
themselves effective and promising for detecting nitro-containing substances, especially
their vapors.

By virtue of the initial studies of iptycene-based polymer sensors carried out by Yang
and Swager, several ways to improve sensitivity can be distinguished: (1) increasing the
electron richness of the sensor, making it more “appealing” to electron-acceptor substances
(for example, the electron-withdrawing character of amide substituents in polymer IP2
leads to its decrease, which results in a reduction in sensor sensitivity to nitroaromat-
ics [66]); (2) tuning the porosity or configuration (size/shape) of 3D cavities; (3) increasing
the excited-state lifetime, which expands the range of through-bond exciton migration;
(4) tuning sensor–analyte binding interactions (not too strong, not too weak); (5) increasing
the fluorescence quantum yield via exciplex formation (due to excited energy delocaliza-
tion) or the aggregation-induced emission (AIE) phenomenon [89], which also elevates the
interchain exciton transport simultaneously.

Since isolated fused polycyclic aromatics have rigid structures and symmetrically
forbidden/weakly allowed transitions, instead of “classic” PPE pentiptycene-containing
polymers IP1–3, the dibenzochrysene-based π-conjugated analog IP5 was created for the
extension of the excited-state lifetime. As was supposed, due to the structural modification
made, improved sensitivity toward TNT was observed [90].

The introduction of chiral alkyloxy side chains into PPEs gave polymer IP6, which
aggregates into a 3D helical grid structure with longer exciton diffusion and conjugation
lengths. Films of IP6 exhibited a rapid and substantial sensory response: exposure to
10 ppb of TNT vapor led to 75% fluorescence quenching in 10 s. Moreover, the quenching
efficiency of the IP6 film depended very little on its thickness. These results indicated a
great improvement in sensitivity and performance compared to IP1–3 films [91].

Similar to IP6, but having pendant hexafluoro-2-propanol (HFIP) groups instead of
alkyloxy side chains, derivatives IP7–8 were synthesized (Figure 48) [92]. It was found
that the introduction of strongly hydrogen-bond-donating pendants such as HFIP is more
effective in terms of the detection of hydrogen-bond-accepting analytes (e.g., pyridine
and 2,4-dichloropyrimidine) compared to weak hydrogen-bonding but strongly electron-
deficient ones such as DNT (only 20–28% fluorescence quenching was observed upon
exposure to DNT). So, it can be concluded that this modification strategy showed itself to
not be successful in the design of sensitive sensory materials for the detection of explosives
and their derivatives.
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As was mentioned earlier, tuning the size/shape of 3D cavities, as well as binding in-
teractions, should also be taken into account while designing new sensory materials. Thus,
novel all-iptycene-based poly(p-phenylenebutadiynylene)s (PPD) IP9–11 were synthesized
(polymer IP12, similar to “classic” PPE polymers IP1–3, was obtained as the model com-
pound) (Figure 49) [67]. A crucial point of such a structural modification lies in the fact that
every p-phenylene unit within the conjugated backbone is built into the iptycene structure
as the core unit in such a way that it lies at the bottom of the three-dimensional rigid
“nest”. Consequently, direct “face-to-face” interactions between nitroaromatic molecules
and these p-phenylene units are restricted, which is fundamentally different from the
above-mentioned open-structure iptycene-based polymers IP1–8.
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To evaluate the sensory properties of the obtained PPD polymers IP9–11, fluorescence-
quenching experiments were carried out in the presence of nitroaromatic substances (DNT,
TNT, p-nitrotoluene, and benzophenone) both in solution (in CHCl3) and in the solid
state. Interestingly, among the four polymers, IP10 exhibited the highest sensitivity: the
Stern–Volmer static quenching constant values varied within 21–185 M−1 (for IP9 and
IP11, they varied within 13–166 M−1 and 1–64 M−1, respectively; for IP12, the quenching
constant for DNT was equal to 26 M−1). For all polymers, the greatest sensory response was
obtained in the presence of TNT, which can probably be attributed to the largest number of
electron-withdrawing nitro-groups in its structure among all involved in the quenching
experiment’s nitroaromatic compounds. Considering that IP10 and IP11 have similar
electronic properties, the difference in their sensitivity can be attributed to the influence of
the stereo-configurations of the iptycene moieties.

However, in the solid state, the opposite behavior was observed: films of PPDs IP9–11
showed a much slower response to the presence of DNT and TNT compared to PPE IP12.
Moreover, the fluorescence recovery rate after the cessation of contact with the vapor of the
quencher was slow for IP9 and took an extremely long time for IP10–11, indicating almost
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irreversible binding between iptycene cores and nitroaromatic molecules, which hinders
the exit of the quencher from the cavity of the sensor.

In summary, two conclusions can be drawn: first, different factors play a role in sensing
electron-deficient compounds by PPD sensor polymers in solution and in the solid state;
second, tuning the quencher’s binding degree should be very fine and weighted, as too
strong a retention of the analyte hampers its diffusion, which, in turn, negatively affects the
sensor sensitivity. It is also especially important if the aim is to design recoverable sensory
materials.

Another interesting design attempt is the creation of sensory polymers 13–14
(Figure 50) with greater photoreduction abilities for the detection of the taggant 2,3-
dimethyl-2,3-dinitrobutane (DMNB), which is quite hard to detect due to its reduction
potential of approximately –1.7 V and three-dimensional structure, eliminating the possibil-
ity of direct π-stacking with the sensor film [93]. The idea was to introduce amines into the
structure, whose π-donation would reduce the ground-state oxidation potential. However,
it turned out that it also lowers the band gap, simultaneously increasing the excited-state
oxidation potential. Only the polymer IP13 film gave a sensory response to DMDN, and it
was very weak—around 4–5%.
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It is worth mentioning that triptycene was also used in CP-AFPs as an aggregation-
preventing unit, as well as an electron donor for electron-deficient compounds, such
as explosives, despite the fact that triptycene is less effective than pentiptycene in the
alleviation of ACQ [94].

The classic PPE polymer IP15 was obtained together with the triptycene-
based poly(phenylenevinylene) (PPV) one, IP16, both of which exhibited multiphoton-
excited fluorescence that was sensitive to the presence of TNT (Figure 50) [95]. To compare
their sensory abilities, two-photon- and three-photon-excited-fluorescence-quenching mea-
surements were carried out by microtitration in solution. The pentiptycene-based polymer
IP15 showed a larger degree of two- and three-photon-excited-fluorescence quenching
than the triptycene-based (IP16) one (quenching factor of ~5 vs. ~1.2 at millimolar con-
centrations, respectively). The results may indirectly indicate that pentiptycene is a more
preferable unit for CP-AFP sensors than the triptycene one.

Another two triptycene-based PPVs—IP17 and its derivative IP18, having O-alkyl-
donating substituents—may serve as examples of the influence of structural modifications
on sensory abilities (Figure 51) [96]. Electron-donor substituents lead to an increase in
the energy of the highest occupied molecular orbital, with a subsequent decrease in the
oxidation potential of polymer IP18. Also, they add bulkiness to the already-voluminous
triptycene moiety, reducing the tendency to aggregate and increasing the overall electron
richness of polymer IP18. Indeed, more pronounced fluorescence quenching in the solid
state in the presence of DNT was observed for polymer IP18 than for its analog IP17—55%
vs. 37% after 60 s, respectively. Another advantage of polymer IP18 is that it can be easily
reactivated. The Stern–Volmer quenching constants, measured in solution, were equal to
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12.8 M−1 and 28.4 M−1 for IP17 and IP18, respectively, which is in accordance with the
previously mentioned constant values for IP9–12.

Materials 2023, 16, x FOR PEER REVIEW 42 of 76 
 

 

state in the presence of DNT was observed for polymer IP18 than for its analog IP17—
55% vs. 37% after 60 s, respectively. Another advantage of polymer IP18 is that it can be 
easily reactivated. The Stern–Volmer quenching constants, measured in solution, were 
equal to 12.8 M−1 and 28.4 M−1 for IP17 and IP18, respectively, which is in accordance with 
the previously mentioned constant values for IP9–12. 

 
Figure 51. Structures of iptycene-based conjugated polymers IP17–IP18. 

Other examples of using triptycene moieties for the creation of sensory materials are 
azobenzene-functionalized polymers IP19–20 for the detection of picric acid (PA) (Figure 
52) [97]. Facile interactions (hydrogen bonding, π−π, or dipole–dipole ones) of polymers 
IP19–20 with PA were suggested due to the electron-rich character of the polymer back-
bones and the presence of nitrogen-rich azo (-N=N-) linkages in the polymer frameworks. 
Indeed, fluorescence quenching amounted to 78% for IP19 and 57% for IP20, and the val-
ues of Stern–Volmer quenching constants varied within (2.4–5.3) × 105 M−1, which are sev-
eral orders of magnitude higher than those obtained for any of the above-mentioned pol-
ymers, indicating the high sensitivity of the obtained polymers to PA. Thus, the applied 
strategy of structural modification proved to be successful. 

 
Figure 52. Structures of iptycene-based conjugated polymers IP19–IP20. 

The peculiar compilation of design strategies for polymers IP5 and IP18, namely, the 
incorporation of fused polycyclic aromatics and O-alkyl-donating substituents, yielded 
polymer IP21, in which the structure’s triphenylene core was integrated (Figure 53) [98]. 
It allowed an increase in bulkiness and electron-donating propensity at the same time. 
This, in turn, increased selectivity, since triphenylene has three-fold symmetric sites, 
which are complementary to the positive charges on TNT and DNT, and sensitivity to 
nitroaromatic explosives. Polymer IP21 exhibited improved sensitivity to TNT vapor. 

Figure 51. Structures of iptycene-based conjugated polymers IP17–IP18.

Other examples of using triptycene moieties for the creation of sensory materials
are azobenzene-functionalized polymers IP19–20 for the detection of picric acid (PA)
(Figure 52) [97]. Facile interactions (hydrogen bonding, π−π, or dipole–dipole ones) of
polymers IP19–20 with PA were suggested due to the electron-rich character of the polymer
backbones and the presence of nitrogen-rich azo (-N=N-) linkages in the polymer frame-
works. Indeed, fluorescence quenching amounted to 78% for IP19 and 57% for IP20, and
the values of Stern–Volmer quenching constants varied within (2.4–5.3) × 105 M−1, which
are several orders of magnitude higher than those obtained for any of the above-mentioned
polymers, indicating the high sensitivity of the obtained polymers to PA. Thus, the applied
strategy of structural modification proved to be successful.
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The peculiar compilation of design strategies for polymers IP5 and IP18, namely, the
incorporation of fused polycyclic aromatics and O-alkyl-donating substituents, yielded
polymer IP21, in which the structure’s triphenylene core was integrated (Figure 53) [98]. It
allowed an increase in bulkiness and electron-donating propensity at the same time. This,
in turn, increased selectivity, since triphenylene has three-fold symmetric sites, which are
complementary to the positive charges on TNT and DNT, and sensitivity to nitroaromatic
explosives. Polymer IP21 exhibited improved sensitivity to TNT vapor.
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ness. Fluorescence quenching of the IP25 polymer film by TNT vapor was equal to 60.4% 
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Figure 53. Structure of iptycene-based conjugated polymer IP21.

An unusual pentiptycene-based PPE sensor polymer, IP22, having cholesteryl ester
substituents, was designed (Figure 54) [99]. Bulky pendant cholesteryl ester groups act as
an additional measure to prevent aggregation and increase the porosity of the polymer film.
In the solid state, fluorescence quenching of 51% after 60 s exposure to DNT vapor was
observed for the thin film (2 nm). Undercoating with 7.5–8.5 nm thick APTES and blending
with a non-fluorescent polymer added 18.5% (with 20 s exposure) and 18.7% (with 5 min
exposure) to the fluorescence intensity decrease, respectively. Thus, polymer IP22 has
shown itself to be relatively efficient for the detection of DNT and capable of improvement.
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The outstanding photophysical properties of pyrene, for example, its high fluorescence
quantum yield combined with long-lived excited states, electron-rich nature, and sensitivity
to microenvironmental changes, are well known, which is why pyrene has a long history
of being used as a basic and classic unit for the creation of sensitive sensory materials
for the detection of explosives [100]. Thus, pentiptycene-based CPs IP23–25, containing
pyrene or a tbutyl-substituted derivative in the main chain, were created (Figure 55) [101].
It can be said that the same design strategies were applied in this case as for polymer IP5,
having dibenzochrysene units, and polymer IP21, containing a triphenylene core with
bulky substituents. Polymer films of IP23–25 were able to detect TNT in both the vapor
and aqueous states, which confirms the effectiveness and feasibility of the chosen design
strategies. It should be said that polymer IP25, having mono tbutyl-substituted pyrene,
showed the best performance, which tells us about the need for balance in bulkiness.
Fluorescence quenching of the IP25 polymer film by TNT vapor was equal to 60.4% and
90% after 10 s and 30 s of exposure, respectively, which is higher than those exhibited
by previously mentioned polymer sensors. Also, fluorescence quenching of 69.8% was
observed for the IP25 polymer film within 60 s of immersion in an aqueous solution of
TNT (50 M). Moreover, sensor films of polymers IP23–25 are recoverable after usage.
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Figure 55. Structures of iptycene-based conjugated polymers IP23–IP25.

Series of poly(aryleneethynylene)s (PAEs) based on electron-rich dialkylated 3,4-
propylenedioxythiophenes (ProDOT) and pentiptycene polymers IP26–28 were synthesized
as sensors for the detection of the explosive TNT (“classic” PPE polymer IP28 was obtained
as a model compound) (Figure 56) [102]. The fluorescence quantum yields of IP26–27 are
higher than those for wholly ProDOT-based PAE polymers due to the pentiptycene unit’s
incorporation but lower than the yields of fully PAE polymers and PPE polymer IP28,
thanks to the presence of sulfur, inducing the heavy-atom effect. However, the sensitivity
of IP26–27 to the presence of TNT in CHCl3 turned out to be on par with that of polymer
IP28 despite the lower quantum yields of the former. It is worth mentioning that a later
organic composite combining poly 3-hexylthiophene, Cu (II) tetraphenylporphyrin, and
IP27 was produced and able to detect vapors of such explosives as 1,3,5-trinitro-1,3,5-
triazacyclohexane (RDX), TNT, and dinitrobenzene by measuring the saturation current
and conductance as the key parameters representing molecular the recognition event [103].
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Figure 56. Structures of iptycene-based conjugated polymers IP26–IP28.

Since tetraphenylethene (TPE)-based polymers are aggregation-induced emission
(AIE)-active, a versatile and sensitive pentiptycene-based TPE-containing sensor polymer,
IP29, capable of detecting explosives (PA and dinitrotoluene) both in solution and in air
was created (Figure 57) [104]. In aqueous organic media (in a H2O–THF mixture (9:1
(vol. %)) to be more precise), it forms highly emissive and sensitive nanoaggregates that
detect nitroaromatic explosives at ppb levels: fluorescence quenching was equal to 24%
with a PA concentration of 4.36 ×10 −8 M and reached over 98% with a PA concentration
of 4.71 × 10−6 M. In the solid state, 70% of the fluorescence of the thin film (4 nm) was
quenched by DNT vapor after 30 s, whereas for the thick film (80 nm), quenching was only
37%; thus, thickness-dependent behavior of quenching was observed, which agrees with
the previous data for model polymers IP1–3.
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3.6. Pyrene-Containing Excimer-Based Polymer Sensors

It was mentioned earlier that pyrene has unique photophysical properties, which is
why it has found widespread use in the design of sensory materials. The excimer emission
of pyrene is of particular interest, as it is very sensitive to microenvironmental conditions
such as temperature, pressure, or pH [105]; thus, sensors in which the formation of pyrene
excimers takes place are highly desirable.

Many pyrene-based sensors have been created, including small-molecule
ones [100,106] and polymer films [105], but the latter have advantages, as they are cheap,
user-friendly, convenient to use on-site, reusable, usually organic-solvent-free (which
is more eco-friendly), and, ideally, easy to prepare. There are several types of pyrene-
containing polymer materials based on the type of pyrene introduction into the polymer
structure: thin film with covalently bonded pyrene pendants [105] and physically encapsu-
lated pyrene molecules in non-porous or porous materials [107,108]. Each type has its own
advantages and disadvantages.

The production of thin polymer films with covalently attached pyrene or its derivative
pendants usually prevents leakage and decreases excimer emission decay; however, it
can result in weak excimer emission. Also, the covalent bonding of pyrene molecules is
time-consuming, tedious, and costly and usually yields low amounts of the target product.
On the other hand, they are preferable for the detection of analytes in solutions. Poor
excimer emission can also be observed in the case of the physical encapsulation of pyrene
molecules in non-porous films. Moreover, the dense polymer matrix hinders the diffusion
of the analyte, reducing the sensitivity of the material. To reduce this effect, very thin films
can be prepared, but they have low fluorescence intensity, which makes results obtained
with their usage unreliable and unrepeatable. To enhance excimer formation and facilitate
analyte diffusion through the polymer, a non-porous type of polymer can be designed,
but the leakage issue must be kept in mind. In addition, it should be mentioned that the
physical entrapment of the polymer in either non-porous or porous materials can lead to
inhomogeneity and reduce the stability of the material, lowering its performance and the
reproducibility of the results.

Despite the above-listed issues, design strategies have been polished over the years to
keep only the positive properties of different materials while eliminating the negative ones,
which allowed the production of effective sensory materials suitable for particular types of
analytes/application fields. Several interesting examples are discussed below.

Beyazkilic et al. prepared sensory mesoporous thin films via a facile template-free sol–
gel method based on organically modified silica (ormosil) with entrapped pyrene molecules
for the detection of nitroaromatic compounds, including explosive ones (Figure 58) [109].
The advantages of this material are its cheapness, its simplicity, and the lack of a need
for any chemical modifications of pyrene. Also, porosity facilitates analyte penetration,
which is especially useful for the detection of analytes in the form of vapor. Moreover,
pyrene excimer emission was observed. Its intensity was higher in a porous film than
in its non-porous counterpart, which is expected, as it is well known that pores promote
excimer formation [110]. Furthermore, in porous films, it was stable for at least 2 months,
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whereas in non-porous films, pyrene excimer emission decayed within 2 h. The solid-
state fluorescence-quenching efficiency of pyrene excimer emission by DNT, TNT, and
nitrobenzene was equal to 39.2, 31.5, and 16.2% after 30 s of exposure, respectively. These
results are lower than those obtained for iptycene-based polymer films; however, this
quenching can be observed by the naked eye under a UV lamp, which is convenient for
no-instrument, fast, on-site analyte detection. Other analytes (toluene, ammonium nitrate,
benzene, benzoic acid, sodium hydroxide, 3,4-dihydroxybenzoic acid, methanol) caused no
sensory response, which testifies in favor of film selectivity. Also, it is worth mentioning
that the obtained sensory films can be recovered and used again at least five times by just
immersing them in water.
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Another intrinsic example of pyrene-based porous sensory material is the self-assembled
3D nanoporous pyrene–polystyrene (Py-PS) film, which was prepared via the simple single
dip coating of PS and Py solutions (Figure 59A) [111]. The authors managed to fine-tune its
sensitivity by fine-tuning the morphology and by optimizing the degree of pyrene doping
into the polymer matrix (via varying the pyrene–styrene molar ratios), which affects the
electronic properties. The best-sensing film quenched the pyrene excimer emission intensity
by 60% and 90% after 6 min and 30 min of exposure to saturated DNT vapor (Figure 59B);
thus, the produced film is pretty sensitive. Also, the selectivity of the film was addition-
ally proven by the absence of fluorescence quenching in the presence of other analytes,
such as 3,5-dinitroaniline, perfume, chloranil, urea, ammonium nitrate, and sodium nitrite
(Figure 59C).

As seen in the above-mentioned examples of iptycene- and pyrene-based porous
films, this type of material is more suitable for the detection of analytes in the vapor state.
However, for detection in an aqueous matrix, it was concluded by Sun et al. that sensors in
the form of nanofibers are preferable, as nanofibers are cost-effective, having high porosity
and a large surface area of approximately 1–2 orders of magnitude higher than those of
continuous thin films, enhancing their sensitivity and response time, and it is also possible
to produce fibers with low polymer concentrations and, in turn, small diameters, which
are favorable for fluorescence sensing [112]. Thus, pyrene–polyethersulfone (Py–PES)
nanofibers were prepared under optimized conditions via the electrospinning technique
using mixed solvents (Figure 60A). Py–PES nanofibers proved themselves to be highly
sensitive, as pronounced excimer emission quenching was observed in the presence of
explosives, such as TNT, DNT, and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), in aqueous
solutions (Figure 60B,C). The Stern–Volmer quenching constants were calculated to be
1.80 × 105 M−1, 7.52 × 104 M−1, and 3.26 × 104 M−1, respectively, with limits of detection
of 23, 160, 400, and 980 nM, respectively. In addition, other analytes, namely, ethanol,



Materials 2023, 16, 6333 46 of 74

acetonitrile, benzonitrile, chlorobenzene, and toluene, caused almost no changes in fluores-
cence intensity. Moreover, the immersion of the Py–PES nanofiber film in water for 48 h
also did not affect the fluorescence intensity, which indicates the absence of leakage. As in
the case of the previously mentioned pyrene-based materials, the Py–PES film is reusable.
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Reproduced with permission from reference [112]. Copyright © ACS Publications 2015.

Another example of sensory pyrene-based nanofiber-like material was reported
by Guo et al. [113]. Novel flexible polyvinylpyrrolidone/pyrene/3-
aminopropyltriethoxysilane/reduced graphene oxide (PVP/pyrene/APTS/rGO) nanonets
(Figure 61A) were produced by using a one-step electrospinning method for the detection
of explosives. Almost every component synergistically plays a role in enhancing the sensi-
tivity of the final product. The need for pyrene usage in designing sensors for the detection
of electron-acceptor substances, such as explosives (e.g., TNT, DNT), is clear. APTS was
chosen, as aromatic electron-deficient compounds can be absorbed by electron-rich amino
groups of organic amines via the formation of charge-transfer complexes between amino
groups and the aromatic rings. rGO serves as a charge transport bridge between pyrene and
TNT to facilitate the fluorescence quenching of the former. Also, rGO can interact with TNT
through co-facial π–π stacking, inducing efficient long-range energy migration (Figure 61C).
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As so many steps were taken to improve the performance of the sensory material, the high
sensitivity of PVP/pyrene/APTS/rGO nanonets was not surprising, since this was expected.
For example, the fluorescence-quenching (via excimer emission quenching) efficiency was
81% and 89% after 540 s of exposure to TNT and DNT vapors, respectively (Figure 61B).
A sensory response to NO2, NaNO3, PA, and para-nitro toluene was also observed: the
quenching efficiency was up to 53%, 18%, 34%, and 18% within 540 s of exposure, which
speaks in favor of nanonets’ sensitivity to TNT and DNT.
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Unusual sensory fluorescent film-forming polymeric ionic liquids (PILs) contain-
ing pyrene or anthracene moieties were made via the solution polycondensation of 3,3′-
diaminobenzidine and 5-tert-butyl isophthalic acid in polyphosphoric acid (Figure 62) [114].
The produced films showed intense excimer emission and moderate solution-state and
high solid-state sensitivity (for ~12 µm thin film) to common nitroaromatic compounds.
In DMSO, the fluorescence intensity was reduced by 70%, 60%, and 46% in the pres-
ence of PA, TNT, and nitrobenzene, respectively, in the case of the pyrene-based material
([DPyDBzPBI-BuI][Br]), and for the anthracene-based one ([DAnDBzPBI-BuI][Br]), fluo-
rescence quenching was a little bit lower—55%, 53%, and 44%, respectively—which can be
attributed to the lower electron richness and the tendency toward excimer formation of
the latter. The Stern–Volmer quenching constants varied within (1.78–4.15) × 104 M−1 for
[DPyDBzPBI-BuI][Br] and (1.59–2.03) × 104 M−1 for [DAnDBzPBI-BuI][Br]. However,
the excimer emission of the [DPyDBzPBI-BuI][Br] film was reduced by 87%, 76.8%, and
71.6% quenching after 500 s exposure to nitrobenzene, TNT, and PA, respectively, and
80.3%, 73.5%, and 67.5% of the fluorescence intensity of the [DAnDBzPBI-BuI][Br] film
was quenched by nitrobenzene, TNT, and PA, respectively. It should be noted that for thick
films (~40 µm), a decrease in sensitivity was observed: fluorescence was quenched only
by 11% and 30% after 50 s and 300 s of exposure to nitrobenzene, respectively, but this
phenomenon is not unusual. Both films possess selectivity, as they showed no sensory
response to benzoquinone, toluene, THF, or NaNO3. An additional benefit is that the films
can be renewed by washing with methanol after usage.
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Though “classic” thin polymeric films with covalently attached fluorophores have
their own disadvantages, as was mentioned above, this type of material can still be useful if
designed correctly and can find its own application field. One such example is Gupta and
Lee’s thin polymeric film with pyrene pendants synthesized via the free radical copolymer-
ization of dimethylacrylamide (DMA), benzophenone acrylamide (BPAM), and glycidyl
methacrylate (GMA) with a feed ratio of 95:1:4 (Figure 63) [33]. The final product—[p(DMA-
co-BPAM-co-GMA)]—was initially designed for the sensitive and selective detection of PA.
Both pyrene units and their attachment to tertiary amine groups provided a fluorescence
“turn-off” sensory response to the presence of PA, and its separation from other analytes
(DNTs, nitrophenols, dimethylnitrobenzene, 4-nitrotoluene, various anions and cations,
etc.) by electrostatic interactions between the positively charged polymer and picrate in
water and crosslinkable benzophenone moieties requires immobilizing the film onto quartz
slides. The proximity of pyrene moieties throughout the polymer backbone resulted in
molecular aggregation and π−π stacking, which amplified fluorescence quenching by PA
via an exciton-hopping process via intermolecular electronic coupling, facilitating long-
range exciton diffusion. The limit of detection for PA was as small as 11.4 atto-grams
(10−14 M), and the Stern–Volmer quenching constant was determined to be 7.75 × 104 in
water. Also, the recovery of fluorescence was possible for the polymer by washing it with
just water, which is pretty convenient.
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3.7. Optical Sensors Based on Porous Fluorescent Polymers: The Molecular Imprinting Technique

Molecularly imprinted polymers (MIPs) have received widespread attention due to the
creation of selective artificial recognition cavities [115]. As probes, molecularly imprinted
polymers are synthesized by the copolymerization of functional monomers and crosslinking
agents in the presence of matrix molecules, which can be either explosives or their non-
explosive structural analogs. By removing such matrices from the polymer substrate,
cavities are created, resulting in the selective and accurate detection of explosives [116].
Despite the variety of different synthesis methods, there are currently no commercially
available MIP sensors. Due to the change in the conformation of the binding sites during
the drying of the polymer, MIP sensors are described in the literature only for detecting
explosives in solution [116].

The infusion of carbon dots (CDs) with MIPs has been widely applied because of
the high sensitivity of CDs and the high selectivity of MIPs [117]. A facile strategy to
immobilize amino-carbon dots (CDs) onto mesoporous structured imprinted polymers
for the highly sensitive and selective detection of TNT was developed, and a mesoporous
structured sensor, M-MIPs@CDs, was obtained [118]. The selective sensing of TNT was
guaranteed by the molecular imprinting technique and improved by two methods. One
involved using mesoporous silica as an imprinting matrix, and the other entailed using
fluorescent amino-CDs directly as a “functional monomer”. The thus-obtained sensory
material exhibited excellent selectivity and sensitivity toward TNT, with a detection limit
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of 17 nM. The recycling process was sustainable for 10 cycles without an obvious efficiency
decrease. The feasibility of the developed method with real samples was successfully eval-
uated through the analysis of TNT in soil and water samples, with satisfactory recoveries
of 88.6–95.7%.

In another example, a fluorometric sensor based on nitrogen-passivated carbon dots
infused with a molecularly imprinted polymer (N-CDs@MIP) via a reverse microemul-
sion technique using 3-aminopropyltriethoxysilane (APTES) as a functional monomer,
tetraethoxysilane (TEOS) as a crosslinker, and PA as a template was published
(Figure 64) [119]. The removal of template molecules leads to the formation of a molecularly
imprinted layer, and the N-CDs@MIP fluorescence response was quenched by PA. The
developed fluorescence probe shows a fine linear range from 0.5 to 2.5 nM with a detection
limit of 0.15 nM. The synthesized fluorescent probe was used to analyze PA in regular tap-
and lake-water samples.
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Figure 64. Schematic diagram of the fluorometric sensor N-CDs@MIP and quenching mechanism of
the N-CDs@MIP emission by TNP. Reproduced with permission from reference [119]. Copyright ©
ACS Publications 2022.

The influence of the nature/amount of the crosslinker, as well as the template–
monomer ratio, on the fluorescence intensity and sensitivity of two fluorescent polymers,
7-hydroxy-4-methylcoumarin acrylate (HMC) and 2,6-bis-acrylamidopyridine (BAP), was
studied by Apodaca and co-authors [120]. Ethylene glycol dimethacrylate (EGDMA),
trimethylolpropane trimethacrylate (TRIM), and divinyl benzene (DV55) were used as
crosslinkers. The target analytes were 1,4-dinitrotoluene (DNT), trinitrotoluene (TNT), and
N-methyl-3-cyano-4-methoxy-2-pyridone (ricinine, neutral alkaloid). It was established
that HMC-MIP displayed a fluorescence-quenching effect, whereas the binding of the
template to BAP-MIP yielded an enhancement of the fluorescent signal. In addition, the
MIP formulation incorporating 20 mmol EGDMA yields an MIP with an obvious change
in the fluorescence response for the detection of chemical warfare agents. Such a formula-
tion exhibits the potential of detecting TNT in the µM concentration range. The resulting
imprinted polymers were assumed to possess structural rigidity brought about by the
interaction of BAP and HMC with the target analyte, allowing the MIP to respond via a
change in the fluorescence signal intensity upon binding to ricinine (an analog of ricin),
DNT, TNT, and other analytes.
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The imprinted-polymer-functionalized optical sensor MIP-NP based on ethylene gly-
col dimethacrylate (EGDMA) for hypersensitive and selective water pollutants in aqueous
media, with a dynamic detection range of 10−12–10−4 M measured using a concatenated
microfiber interferometer technique, was developed (Figure 65) [121]. In the present detec-
tion system, COM was used for the generation and retention of stable interference patterns,
while the MIP was used as a receiving agent for 4-nitrophenol (4-NP). The sensitivity of the
proposed sensor was measured at 6.14 × 10 11 nm/M with a LOD of 1.628 fM.
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3.8. Optical Sensors Based on Fluorescent Polymers Containing Macrocycles

Conjugated macrocycle polymers, as a combination of extended π-conjugated poly-
mers with macrocycles, are an emerging class of organic porous materials [122]. Conjugated
macrocycle polymers synthesized by integrating macrocycles such as crown ethers, por-
phyrins, phthalocyanines, pillararenes, calixarene, and others demonstrate many flexible
modular design possibilities for specific structures and functions, particularly for the
detection of nitro-containing analytes.

A “three-components” supramolecular assembly composed of 2,2′:6′,2′′-terpyridine at-
tached pillar[5]arene P5A1, a guest molecule containing 1,2,3-triazole-bearing CN-terminated
alkyl chain G, and Zn2+ was fabricated (Figure 66) [123]. A supramolecular organo-gel was
formed with a concentration of components amounting to 1 M, which acted as a sensor
probe for nitrobenzene-based explosives. In particular, the limit of detection for picric acid
was determined to be 1.66 × 10 −4 M, with a fluorescent-quenching efficiency of 83.7%.
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A linear supramolecular polymer obtained via the substitution reaction of the hy-
drazide groups on pillar[5]arene derivative P5A2 with terephthaloylchloride (TPC) was
used to construct a sensor for detecting nitro-explosives. Then, a supramolecular polymer
network was successfully constructed via the introduction of a neutral guest G through
pillar[5]arene-based host–guest interactions (Figure 67) [124]. The fluorescence intensity of
the resulting film decreased dramatically upon the addition of nitro-compound explosives
o-DNB and p-DNB. The limits of detection (LODs) of the probe for o-DNB and p-DNB
were determined to be 7.90 × 10−7 M and 4.40 × 10−7 M, respectively.
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The concept behind the assembly of calix[4]arenes with a carbazole-containing conju-
gated polymer (CALIXPPE-CBZs) [125] was used to construct a new conjugated
calix[4]arene-containing polymer, CALIX-p-PPE, which had a p-phenylene ethynylene-
type main chain [126]. Five sensory materials were studied for the detection of non-
volatile nitroaliphatic liquid nitromethane (NM) and the explosive taggant 2,3-dimethyl-
2,3-dinitrobutane (DMNB) in the vapor phase: two CALIXPPE-CBZs (Figure 68A), which
differed in the structural arrangement of the diethynyl substitution (3,6- or 2,7-) pattern
on the carbazole units; two non-calixarene-based polymers, TBP-PPECBZs (Figure 68B),
with the same polymer backbone; and a CALIX-p-PPE (Figure 68C) [127].

Experimental studies and theoretical calculations confirmed the hypothesis that the cal-
ixarene hosts were the unique differentiating elements responsible for the overall enhanced
sensing in the solid state. The most sensitive and selective polymers in the detection of NB
and DMNB were carbazole-containing calix[4]arene-based CPs (CALIX-PPE-CBZs), which
was ascribed to cooperativity effects developed between the calix[4]arene hosts and the
phenylene ethynylene–carbazolylene main chains. In particular, the CALIX-PPE-3,6-CBZ
film was the best sensory material for NM and DMNB and reached around 60% quenching
efficiency after only 10 s of exposure.
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25-(oxymethyl)-26,27,28-tripropyloxycalix[4]arene]-p-phenylene}ethyny-lene-alt-3,6 or 2,7-
carbazolyleneethynylene) (CALIX-PPE-CBZs); (B) poly[2,5-bis(p-tert-butylphenoxymethyl)-p-
phenylene]ethynylene-alt-3,6 or 2,7-carbazolyleneethynylene (TBP-PPE-CBZs); (C) poly({2,5-
bis-[5,11,17,23-tetrakis(1,1-dimethylethyl)-25-(oxymethyl)-26,27,28-tripropyloxycalix[4]arene]-p-
phenylene}ethynylene-p-phenylene ethynylene) (CALIX-p-PPE).

Recently, the same authors published studies of past research on the best calix[4]arene-
containing phenylene-alt-ethynylene-carbazolylene polymers (Calix-PPE-CBZs) for the
detection of nitroaromatic explosive compounds in solution and in the vapor phase. Both
fluorophores exhibit high sensitivity and selectivity for NAC detection. The quenching
efficiencies in solution, assessed through static Stern–Volmer constants KSV, follow the
order picric acid (PA) >> 2,4,6-trinitrotoluene (TNT) > 2,4-dinitrotoluene > (2,4-DNT) >
nitrobenzene (NB) [128].

A novel kind of flexible 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP)-doped
polymer optical fiber (PPOF) for the rapid and accurate detection of trace 2,4-dinitrotoluene
(DNT) in vapor was reported by Gu and co-authors [129]. When the PPOF was pumped
with green laser light, the TAPP molecules were excited, and subsequently, the emitted
fluorescence was transmitted along the PPOF and recorded by a spectrometer (Figure 69).
It was experimentally demonstrated that the limit of detection and response time of the
proposed PPOF could reach around 120 ppb and 3 min, with a fluorescence quenching
efficiency of 80.5%.
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3.9. Paper-Based Sensors

In view of sustainability and green concepts, paper-based electronics [130] and sen-
sorics seem attractive for practical applications. Below, the most representative examples of
paper-supported chemosensors for the detection of explosives are described.

Most paper-supported chemosensors are based on tri- or tetraphenylene fluorophores.
Thus, Feng and co-authors [131] reported tetraphenyle 3a–c-impregnated AIE sensory ma-
terials for the detection of methyl-substituted nitro-explosives (Figure 70). These materials
exhibited a “Turn-off” response to TNT at a concentration as low as 1.0 × 10−13 M with a
LOD of 0.2−4 ppb. The best response, with a LOD of 0.45 pg × cm−3, was observed for
chemosensor 3a (Figure 71), while chemosensors 3b–c exhibited lower sensitivity.
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Figure 71. Chemosensor 3a–c-impregnated paper strips in presence of different concentrations of
TNT under UV light (365 nm). Reproduced with permission from reference [131]. Copyright © ACS
Publications 2014.

In Section 3.2.3, hyperbranched polyglycidols, as highly fluorescent AIE fluorophores/
chemosensors, are reported (Scheme 7) [63]. In aqueous solutions, these chemosensors
formed nanoaggregates and exhibited a strong response to PA, with a Ksv of 2.27 × 104 M−1

and a LOD of 40 ppb. When impregnated on the surfaces of paper strips, these chemosen-
sors exhibited the intensive quenching of blue fluorescence in response to the presence of
PA (0 to 10 µM) (Figure 72).

Materials 2023, 16, x FOR PEER REVIEW 55 of 76 
 

 

In Section 3.2.3, hyperbranched polyglycidols, as highly fluorescent AIE fluoro-
phores/chemosensors, are reported (Scheme 7) [63]. In aqueous solutions, these 
chemosensors formed nanoaggregates and exhibited a strong response to PA, with a Ksv 
of 2.27 × 104 М−1 and a LOD of 40 ppb. When impregnated on the surfaces of paper strips, 
these chemosensors exhibited the intensive quenching of blue fluorescence in response to 
the presence of PA (0 to 10 µM) (Figure 72). 

 
Figure 72. Chemosensor 2-impregnated paper strips in presence of different concentrations of PA 
(up to 10 µM) under UV light (365 nm). Reproduced with permission from reference [63]. Copyright 
© Elsevier 2021. 

Zhou and co-authors reported poly(triphenyl)- and poly(tetraplehyl) ethene poly-
mers P27–28 (Figure 73) as sensory materials for the “turn-off” detection of nitro-explo-
sives [132]. As the first step, polymer films were fabricated from chemosensor P27 by us-
ing drop coating (film thickness of 5.51 ± 0.36 µm), spin coating (film thickness of 2.00 ± 
0.24 µm), and electrospinning (film thickness of 1.61 ± 0.06 µm) and from the electrospun 
chemosensor P27 (film thickness 1.54 ± 0.16 µm). Due to the larger contact surface (SBET 
value of 120 m2 g−1 for the electrospun film of chemosensor P27 vs. SBET = 6 m2 g−1 for the 
drop-casted film), after exposure to DNT vapor, fluorescence quenching of 68% in 2 min 
and 75% in 4 min was observed, while for TNT, 35% fluorescence quenching in 4.0 min 
and 69% in 20 min was detected. To extend the practical application, paper strips were 
fabricated from the polymer more responsive to nitro-explosives, polymer P28, by means 
of fabricating a suspension of nanoparticles, followed by their deposition on paper strips 
with a polymer surface concentration as low as 1.0 µg cm−2. And these strips were effective 
in detecting various nitro-compounds at a scale less than 1 ng (Figure 74). 

P27 P28

n n

 
Figure 73. Structures of poly(triphenyl)- and poly(tetraplehyl) ethene polymers P27–28. 

 
Figure 74. Detection limit of the paper sensor P27 for nitro-compounds (PA, TNT, DNT, and NT). 
The images of the paper sensor are under UV light radiation (365 nm). Reproduced with permission 
from reference [132]. Copyright © Royal Society of Chemistry 2016. 

Figure 72. Chemosensor 2-impregnated paper strips in presence of different concentrations of PA (up
to 10 µM) under UV light (365 nm). Reproduced with permission from reference [63]. Copyright ©
Elsevier 2021.



Materials 2023, 16, 6333 54 of 74

Zhou and co-authors reported poly(triphenyl)- and poly(tetraplehyl) ethene polymers
P27–28 (Figure 73) as sensory materials for the “turn-off” detection of nitro-explosives [132].
As the first step, polymer films were fabricated from chemosensor P27 by using drop coating
(film thickness of 5.51 ± 0.36 µm), spin coating (film thickness of 2.00 ± 0.24 µm), and
electrospinning (film thickness of 1.61 ± 0.06 µm) and from the electrospun chemosensor
P27 (film thickness 1.54 ± 0.16 µm). Due to the larger contact surface (SBET value of
120 m2 g−1 for the electrospun film of chemosensor P27 vs. SBET = 6 m2 g−1 for the drop-
casted film), after exposure to DNT vapor, fluorescence quenching of 68% in 2 min and 75%
in 4 min was observed, while for TNT, 35% fluorescence quenching in 4.0 min and 69% in
20 min was detected. To extend the practical application, paper strips were fabricated from
the polymer more responsive to nitro-explosives, polymer P28, by means of fabricating a
suspension of nanoparticles, followed by their deposition on paper strips with a polymer
surface concentration as low as 1.0 µg cm−2. And these strips were effective in detecting
various nitro-compounds at a scale less than 1 ng (Figure 74).
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Figure 74. Detection limit of the paper sensor P27 for nitro-compounds (PA, TNT, DNT, and NT).
The images of the paper sensor are under UV light radiation (365 nm). Reproduced with permission
from reference [132]. Copyright © Royal Society of Chemistry 2016.

Wang and co-authors reported [133] di-, tri-, and tetraphenyletylen-based polymers
P29–31 (Figure 75). According to the obtained results, the porosity of the obtained polymer
strongly depends on the substitution degree of ethylene. Thus, compared with polymer
P29 (SBET = 603 m2 g−1, total pore volume Vtotal = 1.01 cm3 g−1, micropore surface area
Smicro = 60 m2 g−1, micropore volume Vmicro = 0.02 cm3, Vmicro/Vtotal = 0/02), polymers
P30 and P31 exhibited enhanced porosities, with SBET of 747 (P30) and 848 m2 g−1 (6),
Vtotal of 1.50 (P30) and 0.86 cm3 g−1 (P29), and higher microporous properties, with Smicro
of up to 451 m2 g−1 (P31) and Vmicro of 0.21 cm3 g−1 (6). In an ethanol solution, polymer
P30 exhibited dramatic fluorescence quenching, with Stern–Volmer constants (Ksv) of
494 M−1 (NT), 1930 M−1 (DNT), 21,980 M−1 (TNT), 638 M−1 (NP), 2100 M−1 (DNP), and
24,140 M−1 (PA).
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Figure 75. Structures of di-, tri- and tetraphenyletylen-based polymers P29–31.

As the next step, a fluorescent paper sensor was fabricated by means of the simple
vacuum filtration of a P30 dispersion in ethanol, followed by washing and natural dry-
ing (Figure 76). The resultant paper sensor was found to be sensitive to explosives in
the solution, solid, and vapor phases, with a rapid response time of <10 s, by visually
observing the fluorescence-quenching phenomenon. Moreover, this paper sensor was more
sensitive to NT (Ksv = 578 M−1, LOD 57.3), DNT (Ksv = 3260 M−1, LOD = 43.39), and DNP
(Ksv = 3630 M−1, LOD = 40.84), and it was fully recyclable with a desirable fluorescence
recovery ratio, which was higher than 75% after 10 cycles of detection and recycling.
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Figure 76. (A) Fluorescence-quenching spectra of paper sensors based on polymer P30 with different
concentrations of PA (0~1 × 10−3 mol/L) (λex = 365 nm); inset: photos of paper sensors under UV
light (365 nm); (B) Stern–Volmer plots for paper sensors in the presence of NT, DNT, TNT, NB, DNP,
and PA. Reproduced with permission from reference [133]. Copyright © Elsevier 2018.

Liang and co-authors reported a paper-supported sensory material based on spirofuorene-
9,9′-xantene 4 (Figure 77) that was highly fluorescent in the solid state [134]. This sensory
material exhibited a quantitative fluorescence “Turn-off” response to PA in solution with
a low detection limit of up to 0.12 nmol/cm2 (the response was analyzed by means of
the variation in fluorescent images in grayscale). Simplicity and reliability, as well as
good thermal stability at temperatures up to 100 ◦C, are the most attractive features of the
reported material.
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Figure 77. Structure of spirofuorene-9,9′-xantene 4.

A separate group of sensors for nitroanalytes immobilized on paper carriers com-
prises polyacrylates containing fluorescent end groups. Thus, Ming Hui Chua and col-
leagues described a number of polymers containing AIE-active fragments of 3,6-bis(1,2,2-
triphenylvinyl)carbazole P32 and bis(4-(1,2,2-triphenylvinyl)phenyl)amine P33 linked to
the polymer backbone via a flexible alkyl chain (Figure 78) [50]. Paper sensors were also
made for the solid-state detection of explosives.
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Figure 78. Polymers containing AIE-active fragments of 3,6-bis(1,2,2-triphenylvinyl)carbazole P32
and bis(4-(1,2,2-triphenylvinyl)phenyl)amine P33.

Polymers P32 and P33 exhibited good performance for the detection of TNT with a
LOD of 10−4 M, which was, however, lower than that for PA and 4-NT (Figure 79).
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Figure 79. Fluorescence quenching of polymer-coated filter paper (A) P32 and (B) P33 at different con-
centrations of picric acid, TNT, and p-nitrotoluene. Reproduced with permission from reference [50].
Copyright © Wiley 2017.
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The authors also studied the ability of the above-mentioned paper-based sensors
to detect dispersions of nitro-explosives in air (dust) by means of the direct contact of a
nitro-explosive-contaminated gloved finger with the surface of polymer-coated filter paper
probes. Fluorescence quenching was observed for coated filter paper probes P32 and P33
when exposed to a UV lamp (365 nm), as shown in Figure 80. At the same time, mechanical
action on the sensor in the absence of nitro-explosive dust does not lead to the quenching
of its fluorescence.
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Figure 80. Fluorescence quenching of polymer-coated filter paper (A) P32 and (B) P33 with the
dust of nitroaromatic explosives. Reproduced with permission from reference [50]. Copyright ©
Wiley 2017.

Another polyacrylate-based polymer, P34, was reported by Lu and co-authors
(Figure 81) [135]. The paper-based sensory material was prepared by means of the di-
rect impregnation of filter paper with a solution of P34. According to the authors, due to
the presence of pyrene moieties and oxygen groups, the obtained paper-based material
would provide both a good driving force for the transport of NACs inside the material
and good interaction contact with pyrene moieties via π-π stacking to result in dramatic
fluorescence quenching (Figure 82a).
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Figure 81. Polyacrylate-based polymer P34.

Upon the treatment of a paper sensor with a solution of NACs, a “turn-off” response
was observed after 5 s (in the case of TNT) or longer periods (in the case of DNT and NB)
(Figure 82c). These results show that the developed paper sensors provide a much faster
fluorescence response than their counterparts on quartz plates. It was also shown that
the change in fluorescence was recorded by test strips at TNT concentrations up to 1 ppm
(Figure 82d).

In addition to organic solutions, the ability of the test strips to detect NACs in water
was also demonstrated (Figure 83). Again, the best results were observed for TNT.
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Figure 82. (a) Photographs of test strips based on polymer 8 on cellulose paper substrates taken
in UV light at a wavelength of 365 nm, as well as their schematic representation; (b) fluorescence
photographs of paper sensors based on polymer P34 at various durations (5~300 s) after adding
5 µL of aqueous solutions of various concentrations to these paper sensors at room temperature;
(c) comparison of fluorescence quenching of sensors based on polymer P34 under the action of TNT,
DNT, and NB; (d) fluorescence quenching of sensors based on polymer P34 caused by aqueous
solutions of TNT at various concentrations. Reproduced with permission from reference [135].
Copyright © ACS Publications 2017.

Materials 2023, 16, x FOR PEER REVIEW 59 of 76 
 

 

 
Figure 82. (a) Photographs of test strips based on polymer 8 on cellulose paper substrates taken in 
UV light at a wavelength of 365 nm, as well as their schematic representation; (b) fluorescence pho-
tographs of paper sensors based on polymer P34 at various durations (5~300 s) after adding 5 µL of 
aqueous solutions of various concentrations to these paper sensors at room temperature; (c) com-
parison of fluorescence quenching of sensors based on polymer P34 under the action of TNT, DNT, 
and NB; (d) fluorescence quenching of sensors based on polymer P34 caused by aqueous solutions 
of TNT at various concentrations. Reproduced with permission from reference [135]. Copyright © 
ACS Publications 2017. 

In addition to organic solutions, the ability of the test strips to detect NACs in water 
was also demonstrated (Figure 83). Again, the best results were observed for TNT. 

 
Figure 83. (a) Photographs of fluorescence quenching of paper sensors based on polymer P34 for 
various durations (10~300 s) after the test paper was immersed in aqueous solutions of TNT at var-
ious concentrations at room temperature; (b) fluorescent titration spectra of paper sensors based on 

Figure 83. (a) Photographs of fluorescence quenching of paper sensors based on polymer P34 for
various durations (10~300 s) after the test paper was immersed in aqueous solutions of TNT at
various concentrations at room temperature; (b) fluorescent titration spectra of paper sensors based
on sensor 8 after treatment with aqueous solutions of TNT at various concentrations; (c) profiles
of radiation intensity of paper sensors based on polymer P34 as a function of time in the presence
of TNT at various concentrations (5, 10, and 50 ppm); (d) extinguishing efficiency values of paper
sensors at 480 nm as a function of TNT concentration in the range from 0 to 120 ppm. Reproduced
with permission from reference [135]. Copyright © ACS Publications 2017.
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In 2022, the pyrene-based porous aromatic polymer P35 was reported (Figure 84) [136].
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Figure 84. Pyrene-based porous aromatic polymer P35.

P35 exhibited strong blue fluorescence with a quantum yield of 18.31%, as well as ex-
cellent light and heat resistance. Due to the high-lying LUMO level, polymer P35 exhibited a
strong “turn-off” response to common NACs, with a detection limit (LOD) ≈ 1.47 × 10−5 M.
When impregnated with P35, the paper-based sensor exhibited a visual response to ni-
trobenzene vapor within 10 s (Figure 85A), as well as nitrobenzene-contaminated dust
(Figure 85B) and nitrobenzene solutions (Figure 85C).
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Hussain and co-authors reported benzo[ghi]perylene- and coronene-based excimer
probes for the selective sensing of NACs [137]. These two compounds are polyaromatic
hydrocarbons (PAHs) and tend to form excimers/nanoaggregates, which was observed in
an ethanol/water (1:4) mixture. In fluorescence spectra, monomer–excimer dual emissions
were detected. As the next step, fluorescent paper strips were prepared by means of
impregnating filter paper with solutions of the above-mentioned PAHs. As a result, the
thus-obtained materials exhibited strong excimer quenching upon the addition of a drop of
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a PA solution at various concentrations (Figure 86). According to the authors, the observed
detection range for PA varied from 0.1 to 120 µM PA (22.9 ppb–27.5 ppm). In addition, the
authors tested for the presence of a response to non-explosive compounds, such as volatile
organic solvents, including aromatics (toluene, xylene, and ethylbenzene), as well as acids
and bases. As a result, it was shown that the fluorescence of the strips remained unchanged,
which demonstrates the high selectivity of this test system for foreign substances.
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Figure 86. PA detection down to 0.1 µM with fluorescent paper strips (left) and strip selectivity for
interfering compounds. Reproduced with permission from reference [137]. Copyright © Elsevier 2020.

We reported a series of pyrene derivatives 5–8, as well as micelle-like aggregates/
preaggregates 9–10 obtained from 7 by means of the introduction of surface-active hy-
drophilic “heads” onto the periphery of lipophilic “tails” (Figure 87) [138]. As a result,
in aqueous solutions at a concentration of 10−5 M, the formation of highly fluorescent
micelle-like aggregates/preaggregates was observed.

Materials 2023, 16, x FOR PEER REVIEW 61 of 76 
 

 

Hussain and co-authors reported benzo[ghi]perylene- and coronene-based excimer 
probes for the selective sensing of NACs [137]. These two compounds are polyaromatic 
hydrocarbons (PAHs) and tend to form excimers/nanoaggregates, which was observed in 
an ethanol/water (1:4) mixture. In fluorescence spectra, monomer–excimer dual emissions 
were detected. As the next step, fluorescent paper strips were prepared by means of im-
pregnating filter paper with solutions of the above-mentioned PAHs. As a result, the thus-
obtained materials exhibited strong excimer quenching upon the addition of a drop of a 
PA solution at various concentrations (Figure 86). According to the authors, the observed 
detection range for PA varied from 0.1 to 120 µM PA (22.9 ppb–27.5 ppm). In addition, the 
authors tested for the presence of a response to non-explosive compounds, such as volatile 
organic solvents, including aromatics (toluene, xylene, and ethylbenzene), as well as acids 
and bases. As a result, it was shown that the fluorescence of the strips remained un-
changed, which demonstrates the high selectivity of this test system for foreign sub-
stances. 

 
Figure 86. PA detection down to 0.1 µM with fluorescent paper strips (left) and strip selectivity for 
interfering compounds. Reproduced with permission from reference [137]. Copyright © Elsevier 
2020. 

We reported a series of pyrene derivatives 5–8, as well as micelle-like aggre-
gates/preaggregates 9–10 obtained from 7 by means of the introduction of surface-active 
hydrophilic “heads” onto the periphery of lipophilic “tails” (Figure 87) [138]. As a result, 
in aqueous solutions at a concentration of 10–5 M, the formation of highly fluorescent mi-
celle-like aggregates/preaggregates was observed. 

OH

O

NH2
SO3H NH2

S
O

O H
N

C
H2

COOH

5
S

O

O H
N

C
H2 5

N
H

O H2
C

COOH
5

5 6 7 8

9 10  
Figure 87. Pyrene derivatives 5–8 and micelle-like aggregates/preaggregates 9–10. Figure 87. Pyrene derivatives 5–8 and micelle-like aggregates/preaggregates 9–10.

For all of the chemosensors, in the presence of NACs, improved fluorescence quench-
ing was achieved with Stern–Volmer quenching constants close to 105 M−1 and a detection
limit of only 182 ppb, and the most hydrophilic probes, 9–10, showed a higher response to
2,4-DNT than to TNT. As the next step, paper strips impregnated with 10−5 M solutions
of 5–10 were fabricated. These paper strips were capable of the “turn-off” fluorescence
detection of TNT, 2,4-DNT, and other nitro-explosives at a level of 50 ppb in water for
10 s (Figure 88).
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same paper strips after brief contact (10 s) with a solution of TNT in water (50 ppb) under UV light.
Reproduced with permission from reference [138]. Copyright © Wiley 2016.

In addition to PAHs, a significant number of examples of paper sensors for nitro-
analytes based on fluorophores bearing residues of nitrogen-containing heterocycles are
described in the literature. Thus, a group of researchers from India reported a poly-
mer cationic sensor, poly(3,3′-((2-phenyl-9H-fluorene-9,9-diyl)bis(hexane-6, 1-diyl))bis(1-
methyl-1H-imidazol-3-y)bromide), P36, for the subsequent preparation of nanoparticles
(Figure 89) [38].
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The authors described experiments on the detection of PC vapor with the contact
method using fluorescent paper strips based on the obtained polymer, P36 (Figure 90).
The ability of the sample to detect PC in vapor with a concentration up to 10−11 M and a
detection limit of 22.9 fg/cm2 was shown, which makes it one of the best indicators among
the sensors described in the literature. The authors attributed the observed oversensitivity
mechanism of the PA detection probe to the “molecular wire effect” and electrostatic
interactions, combined with PET and possibly RET mechanisms.
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Mao Xia Guo et al. reported a representative of the class of luminescent organometallic
gels based on a complex of trivalent aluminum with 4-[2,2′:6′,2′′-terpyridine]-4′-ylbenzoic
acid (Figure 91) [139].
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Figure 91. Complex of trivalent aluminum with 4-[2,2′:6′,2′′-terpyridine]-4′-ylbenzoic acid.

The authors reported the ability of the complex to selectively recognize hydroxyl
nitroaromatic compounds, including those in mixtures with other analytes that do not
contain OH groups. The quenching of the fluorescence of test paper sensors based on the
complex at 467 nm by PA solutions with different concentrations is described. As shown in
Figure 92, the fluorescence intensity of the test paper gradually decreased with an increase
in the concentration of teardrop-shaped PA from 10−5 M.
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Figure 92. Paper-based sensory material for recognition of PA in solutions with varying concen-
trations (from left to right): control sample; 1.0 × 10−5; 5.0 × 10−5; 1.0 × 10−4; 2.0 × 10−4 M
(λex = 365 nm). Reproduced with permission from [139]. Copyright © Elsevier 2017.

Guo and colleagues described the copolymer P37 based on N-hexylcarbazole and
tetraphenylsilane for the detection of nitroaromatic compounds (Figure 93) [140]. In ad-
dition to fluorescent and sensory properties, among the advantages of the polymer, the
authors emphasize the high glass transition temperature and good thermal stability of the
resulting copolymer.
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plex formed a suspension with an emission peak at 519 nm upon excitation at 388 nm. In 
the presence of TNP (90.9 µM), the fluorescence intensity of Bhq-Al was reduced by 
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Figure 93. Copolymer P37 based on N-hexylcarbazole and tetraphenylsilane.

For potential in-field applications, P37-copolymer-based paper strips were fabricated
for experiments on the detection of PA in solutions and vapors. According to Figure 94,
with an increase in the concentration of PA in solution up to 1000 µg/mL, the progressive
quenching of the fluorescence of the sample is observed. However, it is noted that apparent
quenching is unambiguously recognizable at a concentration of 0.01 µg/mL PA in solution.
In addition, the quenching of the image emission under the influence of TNP vapor for
25 min is shown.
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Figure 94. Paper strips based on copolymer before and after contact with THF solution (concen-
trations: 0.01, 0.1, 0.25, 0.5, 1, 10, 25, 50, 100, and 1000 µg/mL) and after storage over THF vapor
for 25 min at 365 nm excitation. Reproduced with permission from reference [140]. Copyright ©
Elsevier 2021.

In 2016, a fluorescent complex of Al3+ and bis(8-hydroxyquinoline) (Bhq-Al) was
prepared and applied for the detection of PA (TNP) [141]. In a formamide solution, this
complex formed a suspension with an emission peak at 519 nm upon excitation at 388 nm.
In the presence of TNP (90.9 µM), the fluorescence intensity of Bhq-Al was reduced by
83.1%. As the next step, the paper-based sensor was prepared by means of the impregnation
of filter paper with a solution of Bhq-Al, and it was shown that the quenching of the sensor
emission was noticeable at a concentration of 2 µM TNP (Figure 95).
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A Canadian–Egyptian research team [142] developed a fluorescent organometallic
framework based on zeolitic imidazole (ZIF-8) doped with fluorescent 8-hydroxyquinoline
zinc (ZnQ) (Figure 96). In comparison with the fluorescence of ZnQ at ∼420 nm, the
resulting ZnQ@ZIF-8 exhibited red-shifted emission at ∼520 nm due to the encapsulation
of ZnQ guests inside the ZIF-8 matrix. As the next step, a paper-based sensor was prepared.
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Figure 96. Schematic diagram illustrating the strategy of the in situ encapsulation of ZnQ guest
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Chemistry 2020.

When applying various concentrations of TNT, the authors observed a visible color
change from ivory to light red in about one minute, indicating an interaction between TNT
and ZnQ@ZIF-8, as shown in Figure 97A.
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Figure 97. (A) Images of a paper sensor coated with ZnQ@ZIF-8 in contact with solutions of TNT
at various concentrations; (B) UV–visible reflectance spectra as a function of TNT concentration;
(C) UV–visible reflectance spectra in contact with various nitroaromatic compounds. Reproduced
with permission from reference [142]. Copyright © Royal Society of Chemistry 2020.

This interaction proceeds between the electron-deficient aromatic nucleus of TNT and
the electron-rich ZnQ@ZIF-8 fragments, which contribute to the formation of a donor–
acceptor electron transfer mechanism, which, consequently, causes a color change in the
visible range. It is noted that the lowest concentration of TNT that causes a visible color
change observed by the naked eye is 3 ppm. As shown in Figure 98B, as the concentration
of TNT increases, the absorption of light with a wavelength of about 500 nm increases,
resulting in a color change in the visible region. However, UV–visible reflectance mea-
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surements also showed no interaction after the addition of TNT, RDX, and ACN at low
concentrations (1000 ppm), as shown in Figure 98C.

Materials 2023, 16, x FOR PEER REVIEW 66 of 76 
 

 

 
Figure 97. (A) Images of a paper sensor coated with ZnQ@ZIF-8 in contact with solutions of TNT at 
various concentrations; (B) UV–visible reflectance spectra as a function of TNT concentration; (C) 
UV–visible reflectance spectra in contact with various nitroaromatic compounds. Reproduced with 
permission from reference [142]. Copyright © Royal Society of Chemistry 2020. 

This interaction proceeds between the electron-deficient aromatic nucleus of TNT 
and the electron-rich ZnQ@ZIF-8 fragments, which contribute to the formation of a do-
nor–acceptor electron transfer mechanism, which, consequently, causes a color change in 
the visible range. It is noted that the lowest concentration of TNT that causes a visible 
color change observed by the naked eye is 3 ppm. As shown in Figure 98B, as the concen-
tration of TNT increases, the absorption of light with a wavelength of about 500 nm in-
creases, resulting in a color change in the visible region. However, UV–visible reflectance 
measurements also showed no interaction after the addition of TNT, RDX, and ACN at 
low concentrations (1000 ppm), as shown in Figure 98C. 

 
Figure 98. (A) Images of paper sensor coated with ZnQ@ZIF-8 as a function of TNT concentration 
under UV irradiation (λex = 365 nm); (B) fluorescence quenching at various wavelengths (λem = 455 
nm, 525 nm, and 605 nm) for a sensor coated with ZnQ@ZIF-8 depending on the TNT concentration 
from 1 to 100 ppm; (C) fluorescence quenching at different wavelengths (λem = 455 nm, 525 nm, and 
605 nm) for a ZnQ@ZIF-8-coated sensor upon contact with various nitroaromatic compounds. Re-
produced with permission from reference [142]. Copyright © Royal Society of Chemistry 2020. 
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525 nm, and 605 nm) for a sensor coated with ZnQ@ZIF-8 depending on the TNT concentration
from 1 to 100 ppm; (C) fluorescence quenching at different wavelengths (λem = 455 nm, 525 nm,
and 605 nm) for a ZnQ@ZIF-8-coated sensor upon contact with various nitroaromatic compounds.
Reproduced with permission from reference [142]. Copyright © Royal Society of Chemistry 2020.

When exposed to TNT on a paper sensor coated with ZnQ@ZIF-8, fluorescence
quenching is also observed upon irradiation with portable UV light (λex = 365 nm)
(Figure 98A). A decrease in bluish-green fluorescence was noted as the concentration
of TNT increased from 10 to 100 ppm. The fluorescence intensities at different radiation
wavelengths (λem = 455 nm, 525 nm, and 605 nm) obtained using a fluorescent microscope
are shown in Figure 96b. It was noted that the maximum quenching of fluorescence always
occurs in the blue emission mode at 455 nm.

The authors also found that the bluish-green fluorescence intensity was not signifi-
cantly affected by the addition of other nitroaromatic compounds, including TNT, RDX,
and ACN, as shown in Figure 98C. However, some changes in fluorescence quenching were
noted with the addition of 2,4-DNT and 2,6-DNT, which means that high concentrations of
TNT by-products are also detected with this paper sensor. This fact indirectly confirms the
emission-quenching mechanism of the described nanomaterial.

In 2021, a Schiff-base-functionalized graphene quantum dot nanocomposite PA sensor
(Schiff-GQD) was reported (Figure 99) [143]. According to the authors, the fluorescence
quantum yield of Schiff-GQD increased to as high as 11.63% (due to the AIE effect), which
was higher than that of graphene oxide quantum dots (N-GQDs) (2.71%) and seven times
higher than that of triphenylamino-substituted thiophene-2-carbaldehyde (1.51%). As the
next step, an electrospun material, Schiff-GQD/PVA, was prepared, and the obtained
material exhibited up to 82.5% at a PA concentration of 2.5 × 10−4 M.

More importantly, paper-based Schiff-GQD sensor materials were fabricated using
a self-assembly method for the visual detection of PA by immobilization on filter paper
(Figure 100a).
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After contact with various PACs, the test paper showed various color changes, and in
the presence of PA, intensive fluorescence and color changes were observed (Figure 100B).
As the PA concentration gradually increases, the concentration of the fluorescent indicator
paper gradually decreases. The color changes significantly under the influence of UV
radiation, and the limit of detection, visible to the naked eye, reaches 11.45 ng/cm2.

In rare cases, paper-based matrices can be doped with inorganic luminophores. Thus,
in research by a Canadian–German team [144], a paper sensor based on luminescent silicon
nanocrystals was reported. For improved selectivity, the surface was functionalized with
dodecyl groups, which are sensitive to solutions of nitroanalytes, including RDX and PETN.
The results of the experiments (Figure 101) described by the authors show that the sample
is more effective at a concentration of 0.01 mM nitroanalytes, while no visible differences in
the response were observed for any concentrations of RDX and PETN. In the case of DNT,
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however, a sharp increase in quenching is observed in the region surrounding the initial
compound spot.
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4. Conclusions and Future Perspectives

In the face of growing terroristic threats, one can see an intense interest in improving
explosive detection. Of the many detection methods, fluorescence-based methods and
materials are among the most promising tools for the detection of (nitro-)explosives due
to their high sensitivity and selectivity, fast response time, simplicity, portability, and,
in most cases, low cost. Therefore, fluorescence-based sensory materials can be easily
and effectively integrated into sensing devices for remote (nitro-)explosive detection, for
instance, the well-known Fido explosive detector [145], as well as other types of “electronic
noses” [146,147]. In addition, some simpler devices and approaches can be introduced, for
instance, mobile-phone-based explosive detection systems [148] or computer-vision-based
algorithms [149].

Indeed, fluorescence-based conjugated polymers provide a fast and intensive response
and good selectivity and sensitivity to the most common nitro-explosives, such as TNT,
DNT, and PA, while in the case of aliphatic nitro-explosives, such as PETN, RDX, and
others, these materials exhibit a low or no sensory response. The synthetic preparation
of such polymers always requires multi-step synthesis, starting from specially designed
monomers, and these issues make the mass production of sensory materials based on
the above-mentioned polymers complicated and expensive. Another serious issue is the
low durability and low thermo- and photostability of polymers. Finally, in the case of
the detection of explosives in the vapor phase, the effectiveness of the sensory response
depends strongly on the thickness of the polymer film and/or on the effective contact
surface to provide efficient mass exchange. To overcome this issue, porous polymer
materials can be introduced; for instance, iptycene-based or molecularly imprinted polymer-
based aggregates or nanoparticles can be constructed, or electrospun materials can be
used [150,151].

In terms of the mechanical properties of polymers, the impregnation of commercially
available polymers with single-molecule sensors [152,153] or sensor arrays [154] or bio-
/naturally occurring polymer-based materials can be used [155] as a way to increase the
selectivity and sensory response of the polymer materials.

In the case of semiconductive organic polymers, bi-modular sensors for explosive
detection can be designed, and these materials can detect explosives in dual modes. In this
case, in addition to fluorescence “turn-off” detection, these polymers also show changes
in electrochemical properties in the presence of explosives [156]. This results in improved
sensing reliability, sensitivity, or selectivity due to the integration of two independent
sensing technologies into one sensory material.

Fluorescence “turn-off” (fluorescence quenching) via PET, FRET, the “molecular wire”
effect, or even the inner-filter effect is a common and the most understood method for
fluorescence-based explosive detection. In this regard, PAH-containing fluorophores may
be introduced into the sensory material to provide an excimer/excimer-like-based photo-
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luminescence response for explosive detection [157,158]. In addition, the introduction of
AIE-genic groups can be used to develop materials for the selective and sensitive detection
of some explosives [24]. Finally, there is great promise in developing sensing systems
for the detection of nitro-explosives based on a “turn-on” detection mechanism, where
nitro-analytes will interrupt/destroy the quenching process, which results in dramatic
fluorescence enhancement [159].

Finally, more detailed data are needed for a better interpretation/prediction of explosive-
sensing mechanisms and the correlation of the connection between the nature of the sensing
material, including its physical and mechanical properties, and the nature of its sensory
response and sensing performance. So far, most explosive-sensing materials are made
empirically and/or by a method of trial and error. The main reasons for this are the absence
of both systematic literature analysis and theoretical methods for the better prediction of
electronic and sensing performance for the proper material design.

Author Contributions: Conceptualization, G.V.Z. and B.C.R.; data curation, W.K.A.A.-I., I.L.N.,
D.S.K., I.S.K., S.S., A.F.K., O.S.T. and L.K.S.; writing—original draft preparation, G.V.Z., W.K.A.A.-I.,
I.L.N., O.S.T., L.K.S., D.S.K., I.S.K., S.S., A.F.K. and B.C.R.; writing—review and editing, G.V.Z.,
W.K.A.A.-I., I.L.N., D.S.K., I.S.K., S.S., A.F.K. and B.C.R.; supervision, G.V.Z. and B.C.R.; project
administration, G.V.Z. and B.C.R.; funding acquisition, G.V.Z. and B.C.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Council for Grants of the President of the Russian
Federation, Grant # NSh-1223.2022.1.3 (Sections 3.4 and 3.9); the Russian Science Foundation, Grant #
21-13-00304 (Section 2.2); the Russian Science Foundation, Grant # 23-13-00318 (Sections 3.2 and 3.3);
and the Ministry of Science and Higher Education of the Russian Federation, Reference # 075-15-2022-
1118, dated 29 June 2022 (all other sections).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ACQ Aggregation-caused quenching
AFP Amplifying fluorescent polymers
AIE Aggregation-induced emission
CD Carbon dots
CP Conjugated polymer
DNP Dinitrophenol
DNT Dinitrotoluene
FRET Förster resonance energy transfer
KSV Stern–Volmer constant
LOD Limits of detection
MIP Molecularly imprinted polymer
NACs Nitroaromatic compounds (nitroaromatics)
NB Nitrobenzene
NT Nitrotoluene
PA (or TNP) Picric acid (or trinitrophenol)
PAH Polycyclic aromatic hydrocarbon
PET Photoinduced electron transfer
PETN Pentaerythritol tetranitrate
RDX Research Department eXplosive (hexagen)
RET Resonance energy transfer
SBET Surface of a porous solid material calculated according to Brunauer–Emmett–Teller

theory
TNT Trinitrotoluene
TPE Tetraphenylethene
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