Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Database
2.2. Data Preprocessing
2.3. The Prediction Model
Metrics
2.4. Visualization of Results
2.5. Experimental Design for Predicting the New Alloys
3. Results and Discussion
3.1. Basic Statistics, Data Correlation
3.2. Making New Features Using Classifications
3.2.1. Classification Based on: D-Orbital Energy Level (Md) vs. Bond Order (Bo)
3.2.2. Classification Based on the e/a Ratio
3.2.3. Data Preprocessing
3.3. Model Performance
3.3.1. Feature Selection
3.3.2. Extra Trees Regressor
3.4. Variables Influencing the Young’s Modulus
3.5. Predicting a Low Young’s Modulus for New Ti Alloys
3.5.1. Four-Component Ti Alloys
3.5.2. Monte Carlo Simulations for the Design of Multicomponent Alloys
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter | Unit | Count | Mean | Std | Min | 50% | Max |
---|---|---|---|---|---|---|---|
Ti | wt.% | 243.0 | 69.43 | 13.90 | 20.00 | 68.00 | 96.94 |
Ti | at.% | 243.0 | 81.10 | 9.39 | 32.47 | 81.22 | 98.45 |
Nb | wt.% | 243.0 | 17.05 | 13.52 | 0.00 | 15.50 | 45.19 |
Nb | at.% | 243.0 | 10.96 | 9.50 | 0.00 | 9.91 | 33.45 |
Zr | wt.% | 243.0 | 4.53 | 5.82 | 0.00 | 3.00 | 40.00 |
Zr | at.% | 243.0 | 2.94 | 4.10 | 0.00 | 2.03 | 34.07 |
Ta | wt.% | 243.0 | 2.83 | 7.67 | 0.00 | 0.00 | 70.00 |
Ta | at.% | 243.0 | 1.10 | 3.41 | 0.00 | 0.00 | 38.17 |
Sn | wt.% | 243.0 | 2.59 | 4.20 | 0.00 | 0.00 | 20.00 |
Sn | at.% | 243.0 | 1.26 | 2.03 | 0.00 | 0.00 | 9.16 |
Fe | wt.% | 243.0 | 0.72 | 1.93 | 0.00 | 0.00 | 10.00 |
Fe | at.% | 243.0 | 0.68 | 1.80 | 0.00 | 0.00 | 9.40 |
Mn | wt.% | 243.0 | 0.59 | 2.59 | 0.00 | 0.00 | 17.65 |
Mn | at.% | 243.0 | 0.52 | 2.29 | 0.00 | 0.00 | 15.71 |
Si | wt.% | 243.0 | 0.03 | 0.16 | 0.00 | 0.00 | 1.25 |
Si | at.% | 243.0 | 0.06 | 0.31 | 0.00 | 0.00 | 2.37 |
Mo | wt.% | 243.0 | 2.20 | 4.47 | 0.00 | 0.00 | 38.08 |
Mo | at.% | 243.0 | 1.27 | 2.65 | 0.00 | 0.00 | 25.31 |
O | wt.% | 243.0 | 0.06 | 0.15 | 0.00 | 0.00 | 0.78 |
O | at.% | 243.0 | 0.20 | 0.55 | 0000 | 0.00 | 2.81 |
N | wt.% | 243.0 | 0.00 | 0.01 | 0.00 | 0.00 | 0.05 |
N | at.% | 243.0 | 0.00 | 0.02 | 0.00 | 0.00 | 0.19 |
C | wt.% | 243.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 |
C | at.% | 243.0 | 0.00 | 0.01 | 0.00 | 0.00 | 0.06 |
Young’s modulus, exp | GPa | 243.0 | 69.63 | 23.31 | 14.00 | 66.50 | 146.0 |
±d | GPa | 243.0 | 0.70 | 2.56 | 0.00 | 0.00 | 26.70 |
Elongation | % | 94.0 | 14.49 | 10.92 | 0.09 | 13.75 | 42.00 |
Max tensile strength | MPa | 100.0 | 884.94 | 345.74 | 246.00 | 851.50 | 2093.0 |
Yield strength | MPa | 97.0 | 777.29 | 266.27 | 156.00 | 787.00 | 1785.0 |
Hardness | HV | 69.0 | 305.71 | 89.40 | 145.00 | 312.00 | 490.0 |
HT1: T | C | 102.0 | 1025.54 | 211.29 | 450.00 | 1000.00 | 1400.0 |
HT2: T | C | 46.0 | 761.67 | 239.25 | 30.00 | 879.85 | 1000.0 |
Weighted molar mass sum | / | 243.0 | 64.24 | 11.08 | 48.24 | 64.03 | 141.0 |
Density | g/cm3 | 243.0 | 5.87 | 0.97 | 4.60 | 5.67 | 13.0 |
e/a ratio | / | 243.0 | 4.19 | 0.11 | 4.00 | 4.19 | 4.59 |
Bo-bond order | / | 243.0 | 2.83 | 0.04 | 2.74 | 2.82 | 3.00 |
[Mo]eq_B | / | 243.0 | 10.56 | 6.41 | 0.00 | 10.24 | 41.47 |
[Mo]eq_Z | / | 243.0 | 12.19 | 6.16 | 0.00 | 12.45 | 42.80 |
[Mo]eq_W1 | / | 243.0 | 13.27 | 5.68 | 1.50 | 12.78 | 41.47 |
[Mo]eq_W2 | / | 243.0 | 11.22 | 4.30 | 1.57 | 11.25 | 40.86 |
[Mo]eq_chen | / | 243.0 | 10.50 | 6.36 | 0.00 | 10.17 | 41.44 |
d-orbital energy level (Md) | / | 243.0 | 2.43 | 0.05 | 2.23 | 2.43 | 2.61 |
Specific heat | J/(kgK) | 243.0 | 472.09 | 27.29 | 352.23 | 470.91 | 516.7 |
Bulk modulus | GPa | 243.0 | 121.26 | 7.03 | 105.24 | 120.52 | 160.7 |
Shear modulus | GPa | 243.0 | 43.00 | 2.00 | 37.43 | 42.513305 | 52.8 |
ΔL1 | / | 243.0 | 4.09 | 4.47 | −0.16 | 3.22 | 31.7 |
Δr | / | 243.0 | −0.18 | 0.83 | −3.14 | −0.15 | 4.10 |
Y_ls_coef | GPa | 243.0 | 60.55 | 26.33 | 5.56 | 58.28 | 177.2 |
Y_th | / | 243.0 | 116.75 | 7.60 | 95.62 | 114.82 | 169.0 |
References
- Jackson, M.J.; Kopac, J.; Balazic, M.; Bombac, D.; Brojan, M.; Kosel, F. Titanium and Titanium Alloy Applications in Medicine. In Surgical Tools and Medical Devices; Springer: Cham, Switzerland, 2016; pp. 475–517. [Google Scholar] [CrossRef]
- Festas, A.; Ramos, A.; Davim, J. Medical Devices Biomaterials—A Review. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 234, 218–228. [Google Scholar] [CrossRef]
- Gegner, J. Tribology: Fundamentals and Advancements; BoD—Books on Demand: Norderstedt, Germany, 2013. [Google Scholar]
- Liu, X.; Chen, S.; Tsoi, J.K.H.; Matinlinna, J.P. Binary Titanium Alloys as Dental Implant Materials—A Review. Regen. Biomater. 2017, 4, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Huzum, B.; Puha, B.; Necoara, R.M.; Gheorghevici, S.; Puha, G.; Filip, A.; Sirbu, P.D.; Alexa, O. Biocompatibility Assessment of Biomaterials Used in Orthopedic Devices: An Overview (Review). Exp. Ther. Med. 2021, 22, 1315. [Google Scholar] [CrossRef] [PubMed]
- Ratner, B.D. A Perspective on Titanium Biocompatibility. In Titanium in Medicine; Engineering Materials; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1–12. [Google Scholar] [CrossRef]
- Cvijović-Alagić, I.; Rakin, M. Integrity of biomedical implants of titanium alloys (first part). Struct. Integr. Life 2008, 8, 31–40. [Google Scholar]
- Bergmann, G.; Bender, A.; Graichen, F.; Dymke, J.; Rohlmann, A.; Trepczynski, A.; Heller, M.O.; Kutzner, I. Standardized Loads Acting in Knee Implants. PLoS ONE 2014, 9, e86035. [Google Scholar] [CrossRef]
- Pesode, P.; Barve, S. A Review—Metastable β Titanium Alloy for Biomedical Applications. J. Eng. Appl. Sci. 2023, 70, 25. [Google Scholar] [CrossRef]
- Trevisan, F.; Calignano, F.; Aversa, A.; Marchese, G.; Lombardi, M.; Biamino, S.; Ugues, D.; Manfredi, D. Additive Manufacturing of Titanium Alloys in the Biomedical Field: Processes, Properties and Applications. J. Appl. Biomater. Funct. Mater. 2017, 16, 57–67. [Google Scholar] [CrossRef]
- Ruzic, J.; Emura, S.; Ji, X.; Watanabe, I. Mo segregation and distribution in Ti–Mo alloy investigated using nanoindentation. Mater. Sci. Eng. A 2018, 718, 48–55. [Google Scholar] [CrossRef]
- Bocchetta, P.; Chen, L.-Y.; Tardelli, J.D.C.; dos Reis, A.C.; Almeraya-Calderón, F.; Leo, P. Passive Layers and Corrosion Resistance of Biomedical Ti-6Al-4V and β-Ti Alloys. Coatings 2021, 11, 487. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, K. Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications. Mater. Sci. Eng. C 2019, 102, 844–862. [Google Scholar] [CrossRef]
- Siemers, C.; Bäker, M.; Brunke, F.; Wolter, D.; Sibum, H. 4.6—Aluminum- and Vanadium-Free Titanium Alloys for Application in Medical Engineering. ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780128124567000214 (accessed on 25 June 2023).
- Liang, S. Review of the Design of Titanium Alloys with Low Elastic Modulus as Implant Materials. Adv. Eng. Mater. 2020, 22, 2000555. [Google Scholar] [CrossRef]
- Bataineh, K.; Al Janaideh, M. Effect of Different Biocompatible Implant Materials on the Mechanical Stability of Dental Implants under Excessive Oblique Load. Clin. Implant. Dent. Relat. Res. 2019, 21, 1206–1217. [Google Scholar] [CrossRef] [PubMed]
- Niinomi, M.; Nakai, M. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. Int. J. Biomater. 2011, 2011, 836587. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Cui, Y.-W.; Zhang, L.-C. Recent Development in Beta Titanium Alloys for Biomedical Applications. Metals 2020, 10, 1139. [Google Scholar] [CrossRef]
- Bodunrin, M.O.; Chown, L.H.; Omotoyinbo, J.A. Development of Low-Cost Titanium Alloys: A Chronicle of Challenges and Opportunities. Mater. Today Proc. 2021, 38, 564–569. [Google Scholar] [CrossRef]
- Cantor, B. Multicomponent and High Entropy Alloys. Entropy 2014, 16, 4749–4768. [Google Scholar] [CrossRef]
- Abdel-Hady, M.; Hinoshita, K.; Morinaga, M. General Approach to Phase Stability and Elastic Properties of β-Type Ti-Alloys Using Electronic Parameters. Scr. Mater. 2006, 55, 477–480. [Google Scholar] [CrossRef]
- Titanium Alloys Database for Medical Applications. Available online: https://zenodo.org/record/7802694 (accessed on 25 June 2023).
- Manojlović, V.D.; Marković, G. Titanium Alloys Database for Medical Applications. Metall-Mater. Data 2023, 1, 1–6. [Google Scholar] [CrossRef]
- Ti-Alloys: Prediction of New Biocompatible Ti Alloys Using Machine Learning Methods. Available online: https://zenodo.org/record/8315020 (accessed on 4 September 2023).
- Yaro, A.S.; Maly, F.; Prazak, P. Outlier Detection in Time-Series Receive Signal Strength Observation Using Z-Score Method with Sn Scale Estimator for Indoor Localization. Appl. Sci. 2023, 13, 3900. [Google Scholar] [CrossRef]
- Berendrecht, W.; van Vliet, M.; Griffioen, J. Combining Statistical Methods for Detecting Potential Outliers in Groundwater Quality Time Series. Environ. Monit. Assess. 2022, 195, 85. [Google Scholar] [CrossRef]
- Urbanowicz, R.; Zhang, R.; Cui, Y.; Suri, P. STREAMLINE: A Simple, Transparent, End-To-End Automated Machine Learning Pipeline Facilitating Data Analysis and Algorithm Comparison. In Genetic Programming Theory and Practice XIX; Genetic and Evolutionary Computation; Springer: Singapore, 2023; pp. 201–231. [Google Scholar] [CrossRef]
- Abdullah, F.; Christofides, P.D. Data-Based Modeling and Control of Nonlinear Process Systems Using Sparse Identification: An Overview of Recent Results. Comput. Chem. Eng. 2023, 174, 108247. [Google Scholar] [CrossRef]
- Wettschereck, D.; Aha, D.W.; Mohri, T. A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms. Artif. Intell. Rev. 1997, 11, 273–314. [Google Scholar] [CrossRef]
- Kadiyala, A.; Kumar, A. Applications of Python to Evaluate the Performance of Bagging Methods. Environ. Prog. Sustain. 2018, 37, 1555–1559. [Google Scholar] [CrossRef]
- Vishwakarma, G.; Sonpal, A.; Hachmann, J. Metrics for Benchmarking and Uncertainty Quantification: Quality, Applicability, and Best Practices for Machine Learning in Chemistry. Trends Chem. 2021, 3, 146–156. [Google Scholar] [CrossRef]
- Ohtani, K. Bootstrapping R2 and Adjusted R2 in Regression Analysis. Econ. Model. 2000, 17, 473–483. [Google Scholar] [CrossRef]
- Rabadia, C.D.; Jawed, S.F.; Wang, J.; Siddhpura, M.; Siddhpura, A. Revised Semiempirical Approach to Predict the Occurrence of Twinning in Titanium Alloys. ACS Omega 2021, 6, 34056–34064. [Google Scholar] [CrossRef]
- Sidhu, S.S.; Singh, H.; Gepreel, M.A.-H. A Review on Alloy Design, Biological Response, and Strengthening of β-Titanium Alloys as Biomaterials. Mater. Sci. Eng. C 2021, 121, 111661. [Google Scholar] [CrossRef]
- Tian, K.; Darvell, B.W. Determination of the flexural modulus of elasticity of orthodontic archwires. Dent. Mater. 2010, 26, 821–829. [Google Scholar] [CrossRef]
- Bermingham, M.J.; McDonald, S.D.; Dargusch, M.S.; StJohn, D.H. Grain-Refinement Mechanisms in Titanium Alloys. J. Mater. Res. 2008, 23, 97–104. [Google Scholar] [CrossRef]
- Gardner, H. The Role of Oxygen and Nitrogen in Titanium Alloys for Aerospace Applications. Available online: https://ora.ox.ac.uk/objects/uuid:488a4ea7-5360-49ab-8da0-8c68cda6bf27 (accessed on 25 June 2023).
- Pekárek, V. Relation between Elastic and Heat Parameters in Metals. Mater. Sci. Eng. A 1989, 112, 193–198. [Google Scholar] [CrossRef]
- Stølen, S. Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects; Wiley: Hoboken, NJ, USA, 2004; pp. 236–246. [Google Scholar]
- Karre, R.; Niranjan, M.K.; Dey, S.R. First Principles Theoretical Investigations of Low Young’s Modulus Beta Ti–Nb and Ti–Nb–Zr Alloys Compositions for Biomedical Applications. Mater. Sci. Eng. C 2015, 50, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Tavares, A.M.G.; de Souza, E.A.; da Silva, M.S.C.; Matos, G.R.L.; Batista, W.W.; de Araujo Souza, S.A.S. Role of Silicon in the Microstructural Development and Properties of Ti-15Nb-XSi Alloys for Biomedical Applications. Mater. Res. 2021, 24, e20200417. [Google Scholar] [CrossRef]
- Tan, M.H.C.; Baghi, A.D.; Ghomashchi, R.; Xiao, W.; Oskouei, R.H. Effect of Niobium Content on the Microstructure and Young’s Modulus of Ti-XNb-7Zr Alloys for Medical Implants. J. Mech. Behav. Biomed. Mater. 2019, 99, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Brice, D.A.; Samimi, P.; Ghamarian, I.; Liu, Y.; Mendoza, M.Y.; Kenney, M.J.; Reidy, R.F.; Garcia-Avila, M.; Collins, P.C. On the Eutectoid Transformation Behavior of the Ti-Zn System and Its Metastable Phases. J. Alloys Compd. 2017, 718, 22–27. [Google Scholar] [CrossRef]
- Huang, S.; Zhao, Q.; Wu, C.; Lin, C.; Zhao, Y.; Jia, W.; Mao, C. Effects of β-Stabilizer Elements on Microstructure Formation and Mechanical Properties of Titanium Alloys. J. Alloys Compd. 2021, 876, 160085. [Google Scholar] [CrossRef]
- Lourenço, M.L.; Cardoso, G.C.; Cardoso, G.C.; Sousa, K.D.S.J.; Pontes, F.M.L.; Grandini, C.R. Development of Novel Ti-Mo-Mn Alloys for Biomedical Applications. Sci. Rep. 2020, 10, 6298. [Google Scholar] [CrossRef]
- Mohammed, M.T.; Khan, Z.A.; Siddiquee, A.N. Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review. Int. J. Mech. Mater. Eng. 2014, 8, 822–827. [Google Scholar]
- Gloriant, T.; Texier, G.; Prima, F.; Laille, D.; Gordin, D.M.; Thibon, I.; Ansel, D. Synthesis and Phase Transformations of Beta Metastable Ti-Based Alloys Containing Biocompatible Ta, Mo and Fe Beta-Stabilizer Elements. Adv. Eng. Mater. 2006, 8, 961–965. [Google Scholar] [CrossRef]
- Alshammari, Y.; Yang, F.; Bolzoni, L. Mechanical Properties and Microstructure of Ti-Mn Alloys Produced via Powder Metallurgy for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2019, 91, 391–397. [Google Scholar] [CrossRef]
α-Stabilizers | Neutral Stabilizers | β-Stabilizers |
---|---|---|
Al, O, N, C, Ga | Sn, Zr, Hf, | Mo, V, Nb, Ta, Fe, Cr, Mn, Ni, Co, W |
Non-Cytotoxic Elements | Neutral Elements | Cytotoxic Elements |
---|---|---|
Ti, Nb, Zr, Ta, Ru, Sn | W, Fe, Mn, Si, O, N, C, Hf | Pt, V, Al, Ni, Co, Cu, Cr |
MAE | R2 | MSE | MAX | MAPE | |
---|---|---|---|---|---|
Training set | 0.633 | 0.989 | 5.662 | 14.5 | 0.011 |
Test set | 7.722 | 0.699 | 119.6 | 38.9 | 0.118 |
Parameter | Unit | Sample ID | |||
---|---|---|---|---|---|
2165217 | 2351451 | 3295558 | 9044251 | ||
Ti | wt.% | 17.90 | 18.59 | 59.57 | 50.76 |
O | wt.% | 0.56 | 0.17 | 0.092 | 0.099 |
Nb | wt.% | 18.27 | 24.38 | 18.92 | 14.42 |
Zr | wt.% | 12.03 | 13.15 | 3.03 | 2.32 |
Ta | wt.% | 19.27 | 13.65 | 1.30 | 7.10 |
Sn | wt.% | 18.37 | 28.94 | 2.71 | 5.04 |
Mn | wt.% | 8.74 | 0.41 | 7.55 | 8.34 |
Si | wt.% | 0.53 | 0.22 | 1.05 | 0.045 |
Mo | wt.% | 2.68 | 0.27 | 5.21 | 11.24 |
Fe | wt.% | 1.65 | 0.22 | 0.57 | 0.62 |
[Mo]eq_B | / | 30.29 | 11.35 | 24.09 | 31.49 |
[Mo]eq_W1 | / | 47.74 | 26.97 | 34.36 | 39.63 |
Bo-bond order | / | 2.04 | 2.32 | 2.23 | 1.74 |
d orbital energy level (Md) | / | 1.64 | 1.82 | 1.94 | 1.50 |
Specific heat | (J/kgK) | 303.39 | 309.07 | 388.60 | 309.47 |
Δr | / | −4.82 | −1.95 | −1.57 | −2.02 |
Predicted Young’s modulus | GPa | 67.29 | 67.14 | 64.63 | 64.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marković, G.; Manojlović, V.; Ružić, J.; Sokić, M. Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning. Materials 2023, 16, 6355. https://doi.org/10.3390/ma16196355
Marković G, Manojlović V, Ružić J, Sokić M. Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning. Materials. 2023; 16(19):6355. https://doi.org/10.3390/ma16196355
Chicago/Turabian StyleMarković, Gordana, Vaso Manojlović, Jovana Ružić, and Miroslav Sokić. 2023. "Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning" Materials 16, no. 19: 6355. https://doi.org/10.3390/ma16196355
APA StyleMarković, G., Manojlović, V., Ružić, J., & Sokić, M. (2023). Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning. Materials, 16(19), 6355. https://doi.org/10.3390/ma16196355