Review of Cutting Temperature Measurement Methods
Abstract
:1. Introduction
- The volume of the cutting zone is typically limited to several tens of mm3.
- Significant differences between thermal conductivity coefficients λ [W/m K] are observed for tool materials (ceramics—λ = ≈15.5, diamond—λ = ≈140) and for the workpiece materials (titanium—λ = ≈22, aluminum—λ = ≈200) [9].
- Values of friction coefficients, thermoelectric properties, and emission coefficients for individual layers of anti-wear coatings forming thermal barriers are different from each other and from the tool material, causing potential disturbances in measurements, in particular, when the layers become discontinued due to wear; the influence of such disturbances on the phenomena related to cutting temperatures is difficult to estimate [10].
- Chip breakers and control grooves on the rake face of the tool edge affect the generation and distribution of heat in the cutting zone, potentially leading to incorrect comparative interpretations of cutting temperatures between different tool edges [11].
- The conditions of heat generation and distribution are affected by different methods employed in the cooling of the cutting zone, including the type of coolant, the direction and intensity of its application, or the use of minimal-quality lubrication system (MQL) [12].
- Highly dynamic phenomena occur in the cutting zone—for example, for a cutting speed of 300 m/min, the workpiece particle passes a 10 mm long cutting zone in approximately 2 ms.
- The temperature can only be identified for a certain area rather than for a specific point due to substantial surface areas of “measurement points” in the case of pyrometers and of pixels in the case of thermal images [13].
- The emission and reflection coefficients of the surface depend on a great number of factors [14].
- Processing fluids and chips, as well as the movement of heat-emitting surfaces, cause disturbances in the transfer of thermal radiation.
- The positioning of sensors on the tool edge and signal acquisition are problematic, in particular when the cutting operation is performed with tools or workpieces rotating at high speeds [15].
- Openings or slots accommodating the temperature sensors or “windows” for infrared radiation transfer may disturb the heat distribution, and thus the temperature distribution, in the cutting zone.
- Electric faults caused by chips occur during measurements in the majority of methods which employ natural thermocouples comprising the tool or the workpiece [16].
- Dielectricity of the tool or workpiece material limits the use of some methods based on natural thermocouples.
- Access to the cutting zone is difficult, and the cutting zone often moves dynamically within the processing space of the cutting machine, e.g., in the case of drilling, slot milling, or high-speed milling [17].
- The tool edge is subject to wear, which affects the amount of heat generated during cutting operations and increases the edge–workpiece interface, thus hindering the identification of mean or maximum cutting temperatures; this factor is of particular importance in measurements based on natural or semi-artificial thermocouples [18].
- Wear of the tool edge is increased in locations where the thermocouples protrude from the cutting surfaces of the tool, leading to local temperature changes.
- The distance between the measurement point and the cutting surface changes due to tool wear [19].
- Potential reflections from heat and light sources present in the vicinity of the cutting machine occur on the surfaces in the case of temperature measurements with emissivity-based methods.
- Boundary conditions are uncertain in calculation methods used in the identification of temperature distributions [20].
2. Methods of Cutting Temperature Measurement
- Thermal balance (calorimetric method);
- Change of chip color during cutting or after cooling;
- Changing color of a special paint (chemical thermocolor method);
- Application to the tool edges of thin layers of different materials having known melting points;
- Changes of metallographic structure;
- The Seebeck, Peltier, Thomson (thermocouple) effect;
- Change of electric resistance (resistance thermometers, thermistors);
- Infrared emission (pyrometric, thermal vision methods).
- By the zone, which served for the identification, e.g.,:
- Point;
- Line;
- Surface;
- Volume.
- From mathematical models estimated experimentally;
- From physical models, e.g., with the use of finite elements method (FEM) or finite difference method (FDM).
- Significant problems transmitting the signal from the rotating workpiece and even more problems transmitting the signal from the thermocouple in the chip, particularly in high-speed cutting conditions;
- No possibility to perform measurements on ceramic tool edges or on edges provided with electrically non-conductive anti-wear coatings;
- Oscilloscopes with short reaction times are needed;
- No practical possibility to perform measurements if the cutting time is longer than several seconds, as it does not allow the cutting zone and particularly the tool edge to stabilize thermically;
- Signal disturbances due to friction between the thermoelectrodes and the edge surfaces, causing significant noise and hindering the insulation of the proper signal value;
- Disturbances of weak thermoelectric signals due to electric current being induced in the thermocouple wires from electromagnetic waves; the problem is observed in a number of measurement methods, as many such waves exist around the measurement stand, including waves from strong fields generated by electric motors in machining and other production equipment;
- Significant measurement problems in non-orthogonal cutting and machining processes other than turning.
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Sun, J.; Li, J.; Lu, L.; Li, N. Evaluation of cutting force and cutting temperature in milling carbon fiber-reinforced polimer composites. Int. J. Adv. Manuf. Technol. 2016, 82, 1517–1525. [Google Scholar] [CrossRef]
- Kato, S.; Yamaguchi, K.; Watanabe, Y.; Hiraiwa, Y. Measurement of temperature distribution within tool using of constant melting point. J. Eng. Ind. 1976, 108, 607–613. [Google Scholar] [CrossRef]
- Cichosz, P.; Żebrowski, H. Nowe i zmodyfikowane metody pomiaru temperatur skrawania. Arch. Technol. Budowy Masz. 1992, 9, 217–223. [Google Scholar]
- Bono, M.; Ni, J. A method for measuring the temperature distribution along the cutting edges of a drill. J. Manuf. Sci. Eng. 2002, 124, 921–923. [Google Scholar] [CrossRef]
- Davies, M.A.; Cao, Q.; Cooke, A.L.; Ivester, R. On the measurement and prediction of temperature fields in machining AISI 1045 steel. CIRP Ann. 2003, 52, 77–80. [Google Scholar] [CrossRef]
- Palmai, Z. Cutting temperature in intermittent cutting. Int. J. Mach. Tools Manuf. 1987, 27, 261–274. [Google Scholar] [CrossRef]
- Cichosz, P.; Żebrowski, H. Messung der Schnittemperatur beim Drehen mit keramischen Schneiden. In Proceedings of the VII International Conference and Exhibition on Tools, Miskolc, Hungary, 29–31 August 1989. [Google Scholar]
- Casto, S.L.; Valvo, E.L.; Piacentini, M.; Ruisi, V.; Lucchini, E.; Maschio, S.; Lonardo, P. Cutting Temperatures Evaluation in Ceramic Tools: Experimental Tests, Numerical Analysis and SEM Observations. CIRP Ann. 1994, 43, 73–76. [Google Scholar] [CrossRef]
- Longbottom, J.M.; Lanham, J.D. Cutting temperature measurement while machining—A review. Aircr. Eng. Aerosp. Technol. 2005, 77, 122–130. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; Wnag, B.; Hu, J. PVD AlTiN coating effects on tool-chip heat partition coefficient and cutting temperature rise in orthogonal cutting Inconel 718. Int. J. Heat Mass Transf. 2020, 163, 120449. [Google Scholar] [CrossRef]
- Sushanta, K.; Sahu, O.; Ozdoganlar, B.; DeVor, R.E.; Kapoor, S.G. Effect of groove-type chip breakers on twist drill performance. Int. J. Mach. Tools Manuf. 2003, 43, 617–627. [Google Scholar]
- Le Coz, G.; Marinescu, M.; Devillez, A.; Dudzinski, D.; Velnom, L. Measuring temperature of rotating cutting tools: Application to MQL drilling and dry milling of aerospace alloys. Appl. Therm. Eng. 2012, 36, 434–441. [Google Scholar] [CrossRef]
- Kaczmarek, J. Using a thermovision method for measuring temperatures of a workpiece during abrasive cut-off operation. Adv. Manuf. Sci. Technol. 2011, 35, 85. [Google Scholar]
- Nowacki, J.; Wypych, A. Application of thermovision method to welding thermal cycle analysis. J. Achiev. Mater. Manuf. Eng. 2010, 40, 131–137. [Google Scholar]
- Lima, H.V.; Campidelli, A.F.V.; Maia, A.A.T.; Abrão, A.M. Temperature assessment when milling AISI D2 cold work die steel using tool-chip thermocouple, implanted thermocouple and finite element simulation. Appl. Therm. Eng. 2018, 143, 532–541. [Google Scholar] [CrossRef]
- Basti, A.; Obikawa, T.; Shinozuka, J. Tools with built-in thin film thermocouple sensors for monitoring cutting temperature. Int. J. Mach. Tools Manuf. 2007, 47, 793–798. [Google Scholar] [CrossRef]
- Ming, C.; Fanghong, S.; Haili, W.; Renwei, Y.; Zhenghong, Q.; Shuqiao, Z. Experimental research on the dynamic characteristics of thecutting temperature in the process of high-speed milling. J. Mater. Process. Technol. 2003, 138, 468–471. [Google Scholar] [CrossRef]
- Kus, A.; Isik, Y.; Cakir, M.C.; Coşkun, S.; Özdemir, K. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting. Sensors 2015, 15, 1274–1291. [Google Scholar] [CrossRef]
- Karaguzel, U.; Bakkal, M.; Budak, E. Modeling and measurement of cutting temperatures in milling. Procedia CIRP 2016, 46, 173–176. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, W. Study on cutting temperature during milling of titanium alloy based on FEM and experiment. Int. J. Adv. Manuf. Technol. 2014, 73, 1511–1521. [Google Scholar] [CrossRef]
- Li, T.; Long, H.; Shi, T.; Yang, J.; Duan, J. Cutting temperature measurement using a novel near-infrared two-color pyrometer under dry and wet cutting of Ti-6Al-4V alloy. J. Mater. Process. Technol. 2022, 309, 117751. [Google Scholar] [CrossRef]
- Özbek, O.; Saruhan, H. The effect of vibration and cutting zone temperature on surface roughness and tool wear in eco-friendly MQL turning of AISI D2. J. Mater. Res. Technol. 2020, 9, 2762–2772. [Google Scholar] [CrossRef]
- Pereira Guimarães, B.M.; da Silva Fernandes, C.M.; Amaral de Figueiredo, D. Cutting temperature measurement and prediction in machining processes: Comprehensive review and future perspectives. Int. J. Adv. Manuf. Technol. 2022, 120, 2849–2878. [Google Scholar] [CrossRef]
- Núñez-Cascajero, A.; Tapetado, A.; Vargas, S.; Vázquez, C. Optical fiber pyrometer designs for temperature measurements depending on object size. Sensors 2021, 21, 646. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, C.; Chen, M.; El Mansori, M.; Davim, J.P. On the analysis of temperatures, surface morphologies and tool wear in drilling CFRP/Ti6Al4V stacks under different cutting sequence strategies. Compos. Struct. 2020, 234, 111708. [Google Scholar] [CrossRef]
- Da Silva, M.B.; Wallbank, J. Cutting temperature: Prediction and measurement methods—A review. J. Mater. Process. Technol. 1999, 88, 195–202. [Google Scholar] [CrossRef]
- Navrotsky, A. Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 1997, 24, 222–241. [Google Scholar] [CrossRef]
- Dhar, N.R.; Islam, M.W.; Islam, S.; Mithu, M.A.H. The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel. J. Mater. Process. Technol. 2006, 171, 93–99. [Google Scholar] [CrossRef]
- Pagani, L.; Parneti, P.; Cataldo, S.; Scott, P.J.; Annoni, M. Indirect cutting tool wear classification using deep learning and chip colour analysis. Int. J. Adv. Manuf. Technol. 2020, 111, 1099–1114. [Google Scholar] [CrossRef]
- Yoo, S.; Dugasani, R.S.; Jeon, S.; Jeong, J.; Park, S.H. Chroma-hue controllable color and thermocolor-added deoxyribonucleic acid films. J. Mater. Process. Technol. 1999, 88, 195–202. [Google Scholar] [CrossRef]
- Kato, T.; Fujii, H. PVD film method for measuring the temperature distribution in cutting tools. J. Eng. Ind. 1996, 118, 117–122. [Google Scholar] [CrossRef]
- Wright, P.K.; Trent, E.M. Metallographic methods of determining temperature gradients in cutting tools. J. Iron Steel Ins. 1973, 211, 364–388. [Google Scholar]
- Van Herwaarden, A.W.; Sarro, P.M. Thermal sensors based on the Seebeck effect. Sens. Actuators 1986, 10, 321–346. [Google Scholar] [CrossRef]
- Morrison, K.; Dejene, F.K. Thermal imaging of the Thomson effect. Physics 2020, 13, 137. [Google Scholar] [CrossRef]
- Astakhov, V.P.; Outeiro, J. Importance of temperature in metal cutting and its proper measurement/modeling. In Measurement in Machining and Tribology; Materials Forming, Machining and Tribology; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Uchida, K.; Murata, M.; Miura, A.; Iguchi, R. Observation of the Magneto-Thomson Effect. Phys. Rev. Lett. 2020, 125, 106601. [Google Scholar] [CrossRef]
- Pearce, J.V.; Ogura, H.; Izuchi, M.; Machin, G. Evaluation of the Pd–C eutectic fixed point and the Pt/Pd thermocouple. Metrologia 2009, 46, 473–479. [Google Scholar] [CrossRef]
- Pert, E.; Carmel, Y.; Birnboim, A.; Olorunyolemi, T.; Gershon, D.; Calame, J.; Lloyd, I.K.; Wilson, O.C. Temperature Measurements during Microwave Processing: The Significance of Thermocouple Effects. J. Am. Ceram. Soc. 2001, 84, 1981–1986. [Google Scholar] [CrossRef]
- Danisman, K.; Dalkiran, I.; Celebi, F.V. Design of a high precision temperature measurement system based on artificial neural network for different thermocouple types. Measurement 2006, 39, 695–700. [Google Scholar] [CrossRef]
- Dosbaeva, G.K.; Hakim, M.A.; Shalby, M.A.; Krzanowski, J.E.; Veldhuis, S.C. Cutting temperature effect on PCBN and CVD coated carbide tools in hard turning of D2 tool steel. Int. J. Refract. Met. Hard Mater. 2015, 50, 1–8. [Google Scholar] [CrossRef]
- Trajčevski, N.; Tomov, M.; Kuzinovski, M.; Stevanoski, G. Evaluation of the uncertainty contribution of the natural thermocouple characteristics in the empirical modelling of temperature during metal cutting process. Mech. Eng. Sci. J. 2022, 40, 5–10. [Google Scholar] [CrossRef]
- Lefebvre, A.; Vieville, P.; Lipinski, P.; Lescalier, C. Numerical analysis of grinding temperature measurement by the foil/workpiece thermocouple method. Int. J. Mach. Tools Manuf. 2006, 46, 1716–1726. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; Wang, B.; Hu, J.; Wan, Y. Tool coating effects on cutting temperature during metal cutting processes: Comprehensive review and future research directions. Mech. Syst. Signal Process. 2021, 150, 107302. [Google Scholar] [CrossRef]
- Leonidas, E.; Ayvar-Soberanis, S.; Laalej, H.; Fitzpatrick, S.; Willmott, J.R. A Comparative Review of Thermocouple and Infrared Radiation Temperature Measurement Methods during the Machining of Metals. Sensors 2022, 22, 4693. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, B.; Zhou, Y.; He, Y.; Chi, D.; Gao, X.; Liu, Q. A real-time cutting temperature monitoring of tool in peripheral milling based on wireless transmission. Int. J. Therm. Sci. 2023, 186, 108084. [Google Scholar] [CrossRef]
- Cichosz, P.; Żebrowski, H. Sposób Pomiaru Temperatury Skrawania. Patent 264864, 26 March 1987. Available online: https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.264864?lng=pl (accessed on 15 September 2023).
- Cichosz, P.; Żebrowski, H. Sposób Pomiaru Temperatury Skrawania. Patent 264865, 26 March 1987. Available online: https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.264865?lng=pl (accessed on 15 September 2023).
- Cichosz, P.; Żebrowski, H. Sposób Pomiaru Temperatury Skrawania. Patent 264863, 26 March 1987. Available online: https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.264863?lng=pl (accessed on 15 September 2023).
- Cichosz, P. Wpływ parametrów skrawania na rozkład temperatur na ostrzu ceramicznym. In VI Ogólnopolska Konferencja nt. “Tendencje Rozwojowe w Technologii Maszyn”; Komisja TBM PAN Oddział w Poznaniu; WSI Zielona Góra: Zielona Góra, Poland, 1990. [Google Scholar]
- Lian, Y.; Chen, X.; Zhang, T.; Liu, C.; Lin, L.; Lin, F.; Li, Y.; Chen, Y.; Zhang, M.; Zhou, W. Temperature measurement performance of thin-film thermocouple cutting tool in turning titanium alloy. Ceram. Int. 2023, 49, 2250–2261. [Google Scholar] [CrossRef]
- Kamnise, A.K.; Guimaraes, G.; da Silva, M.B. Development of a tool–work thermocouple calibration systemwith physical compensation to study the influence of tool-holder material on cutting temperature in machining. Int. J. Adv. Manuf. Technol. 2014, 73, 735–747. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, J.; Li, J.; Xiong, Q. An experimental investigation of the influence of cutting parameters on cutting temperature in milling Ti6Al4V by applying semi-artifical thermocouple. Int. J. Adv. Manuf. Technol. 2014, 70, 765–777. [Google Scholar] [CrossRef]
- Ghodam, S.D.; Student, M. Temperature measurement of a cutting tool in turning process by using tool work thermocouple. Int. J. Res. Eng. Technol. 2014, 3, 831–835. [Google Scholar]
- Li, R.; Shih, A.J. Spiral point drill temperature and stress in high-throughput drilling of titanium. Int. J. Mach. Tools Manuf. 2007, 47, 2005–2017. [Google Scholar] [CrossRef]
- Masek, P.; Zeman, P.; Kolar, P. Cutting temperature measurement in turning of thermoplastic composites using a tool-work thermocouple. Int. J. Adv. Manuf. Technol. 2021, 116, 3163–3178. [Google Scholar] [CrossRef]
- Trajčevski, N.; Kuzinovski, M.; Cichosz, P. Investigation of temperature during machining process by high speed turning. J. Prod. Eng. 2009, 12, 47–50. [Google Scholar]
- Yoshioka, H.; Hashizume, H.; Shinno, H. Inprocess microsensor for ultraprecision machining. IEEE Proc. Sci. Meas. Technol. 2004, 151, 121–125. [Google Scholar] [CrossRef]
- Li, T.; Shi, T.; Tang, Z.; Liao, G.; Duan, J.; Han, J.; He, Z. Real-time tool wear monitoring using thin-film thermocouple. J. Mater. Process. Technol. 2021, 288, 116901. [Google Scholar] [CrossRef]
- Modest, M.F. Radiative Heat Transfer; Academic Press: Waltham, MA, USA, 2013. [Google Scholar]
- Vollmer, M.; Möllmann, K.P. Infrared Thermal Imaging: Fundamentals, Research and Applications; Wiley: Weinheim, Germany, 2011. [Google Scholar]
- Gade, R.; Moeslund, T.B. Thermal cameras and applications: A survey. Mach. Vision Appl. 2014, 25, 245–262. [Google Scholar] [CrossRef]
- Torsten, R. Guidelines for Thermography in Architecture and Civil Engineering; Birkhauser: Basel, Switzerland, 2021. [Google Scholar]
- Tattersall, G.J. Infrared thermography: A non-invasive window into thermal physiology. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2016, 202, 78–98. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Cao, K.; Xiao, L.; Tan, X.; Li, T.; Xu, L.; Tang, Z.; Liao, G.; Shi, T. In situ measurement of cutting edge temperature in turning using a near-infrared fiber-optic two-color pyrometer. Measurement 2020, 156, 107595. [Google Scholar] [CrossRef]
- Ueda, T.; Hosokawa, A.; Oda, K.; Yamada, K. Temperature on flank face of cutting tool in high speed Milling. CIRP Ann. 2001, 50, 37–40. [Google Scholar] [CrossRef]
- Jaspers, S.P.F.C.; Dautzenberg, J.H.; Taminiau, D.A. Temperature Measurement in Orthogonal Metal Cutting. Int. J. Adv. Manuf. Technol. 1998, 14, 7–12. [Google Scholar] [CrossRef]
- Ueda, T.; Sato, M.; Nakayama, K. The temperature of a single crystal diamond tool in turning. CIRP Ann. 1998, 47, 41–44. [Google Scholar] [CrossRef]
- Lea, M.B.; Weller, E. Infrared Thermography; Fulton Books: Meadville, PA, USA, 2022; ISBN 1639855645. [Google Scholar]
- Lane, B.; Whitenton, E.; Madhavan, V.; Donmez, A. Uncertainty of temperaturemeasurements by infrared thermography for metal cutting applications. Metrologia 2013, 50, 637–653. [Google Scholar] [CrossRef]
- Kelly, D.L.; Scarborough, D.E.; Thurow, B.S. A novel multi-band plenoptic pyrometer for high-temperature applications. Meas. Sci. Technol. 2021, 32, 105901. [Google Scholar] [CrossRef]
- Saez-de-Buruaga, M.; Soler, D.; Aristimuno, P.X.; Esnaola, J.A.; Arrazola, P.J. Determining tool/chip temperatures from thermography measurements in metal cutting. Appl. Therm. Eng. 2018, 145, 305–314. [Google Scholar] [CrossRef]
- Rossetto, S.; Koch, U. An investigation of temperature distribution on tool flank surface. CIRP Ann. 1970, 19, 551–557. [Google Scholar]
- Jawahir, I.; Brinksmeier, E.; M’Saoubi, R.; Aspinwall, D.; Outeiro, J.; Meyer, D.; Umbrello, D.; Jayal, A.D. Surface integrity in material removal processes: Recent advances. CIRP Ann. 2011, 60, 603–626. [Google Scholar] [CrossRef]
- Davies, M.A.; Cooke, A.L.; Larsen, E.R. High bandwidth thermal microscopy of machining AISI 1045 steel. CIRP Ann. 2005, 54, 63–66. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, J.; Yang, S. The development of a multispectral pyrometer for achievable true temperature field measurements of the explosion flame. Meas. Sci. Technol. 2023, 34, 065501. [Google Scholar] [CrossRef]
- M’Saoubi, R.; Chandrasekaran, H. Investigation of the effects of tool micro-geometry and coating on tool temperature during orthogonal turning of quenched and tempered steel. Int. J. Mach. Tools Manuf. 2004, 44, 213–224. [Google Scholar] [CrossRef]
- Soler, D.; Aristimuno, P.X.; Saez-de-Buruaga, M.; Garay, A.; Arrazola, P.J. New calibration method to measure rake face temperature of the tool during dry orthogonal cutting using thermography. Appl. Therm. Eng. 2018, 137, 74–82. [Google Scholar] [CrossRef]
- Liu, W.; Li, G.; Shao, Z.; Wu, X.; Ma, G.; Wang, F. Advance in experimental research on cutting temperature of titanium alloys. Int. J. Adv. Manuf. Technol. 2023, 126, 1827–1844. [Google Scholar] [CrossRef]
- Valiorgue, F.; Brosse, A.; Naisson, P.; Rech, J.; Hamdi, H.; Bergheau, J.M. Emissivity calibration for temperatures measurement using thermography in the context of machining. Appl. Therm. Eng. 2013, 58, 321–326. [Google Scholar] [CrossRef]
- Bartoszuk, M. Thermovision measurements of temperature on the tool-chip upper side in turning of aisi 321 steel. Tech. Sci. 2020, 23, 69–80. [Google Scholar]
- Jakubek, B.; Grochalski, K.; Rukat, W.; Sokol, H. Thermovision measurements of rolling bearings. Measurement 2022, 189, 110512. [Google Scholar] [CrossRef]
- Herve, P.; Cedelle, J.; Negreanu, I. Infrared technique for simultaneous determination of temperature and emissivity. Infrared Phys. Technol. 2012, 55, 1–10. [Google Scholar] [CrossRef]
- Constantin, G.; Balan, E.; Voiculescu, I.; Geanta, V.; Craciun, V. Cutting Behavior of Al0.6CoCrFeNi High Entropy Alloy. Materials 2020, 13, 4181. [Google Scholar] [CrossRef] [PubMed]
- Mohring, H.C.; Kushner, V.; Strochak, M.; Stehle, T. Temperature calculation in cutting zones. CIRP Ann. 2018, 67, 61–64. [Google Scholar] [CrossRef]
- Rajchevski, N.; Tomov, M.; Sarac, V. An approach of empirical model uncertainty estimation during physical quantities investigation in turning. J. Adv. Manuf. Syst. 2022, 21, 851–868. [Google Scholar] [CrossRef]
- Boué, C.; Holé, S. Infrared thermography protocol for simple measurements of thermal diffusivity and conductivity. Infrared Phys. Technol. 2012, 55, 376–379. [Google Scholar] [CrossRef]
- Grzesik, W. Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique. Int. J. Mach. Tools Manuf. 2006, 46, 651–658. [Google Scholar] [CrossRef]
- Grzesik, W. Advanced Machining Processes of Metallic Materials; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Athavale, S.M.; Strenkowski, J.S. Finite element modelling of machining: From proof-of-concept to engineering applications. Mach. Sci. Technol. 1998, 2, 317–342. [Google Scholar] [CrossRef]
- Nemetz, A.W.; Daves, W.; Klunsner, T.; Praetzas, C.; Liu, W.; Teppernegg, T.; Czettl, C.; Hass, F.; Bolling, C.; Schafer, J. Experimentally validated calculation of the cutting edge temperature during dry milling of Ti6Al4V. J. Mater. Process. Technol. 2020, 278, 116544. [Google Scholar] [CrossRef]
- Klocke, F.; Beck, T.; Hoppe, S.; Krieg, T.; Muller, N.; Nothe, T.; Raedt, H.W.; Sweeney, K. Examples of FEM application in manufacturing technology. J. Mater. Proc. Technol. 2002, 120, 450–457. [Google Scholar] [CrossRef]
- Zhang, W.; Dillon, O.W.; Jawahir, I.S. A finite element analysis of 2-D machining with a grooved tool. Trans. N. Am. Manuf. Res. Inst. SME 2001, 29, 327–334. [Google Scholar]
- Rezende, B.A.; de Castro Magalhães, C.; Rubio, J.C. Study of the measurement and mathematical modelling of temperature in turning by means equivalent thermal conductivity. Measurement 2020, 152, 107275. [Google Scholar] [CrossRef]
- Grzesik, W.; Niesłony, P. A computational approach to evaluate temperature and heat partition in machining with multilayer coated tools. Int. J. Mach. Tools Manufact. 2003, 43, 1311–1317. [Google Scholar] [CrossRef]
- Augspurger, T.; Koch, M.; Klocke, F.; Dobbler, B. Investigation of transient temperature fields in the milling cutter under CO2 cooling by means of an embedded thermocouple. Procedia CIRP 2019, 79, 33–38. [Google Scholar] [CrossRef]
- Usui, E.; Shirakashi, T. Mechanics of Machining-from Descriptive to Predictive Theory. In On the Art of Cutting Metals-75 Years Later; ASME PED: New York, NY, USA, 1982; Volume 7, pp. 13–55. [Google Scholar]
- Gupta, M.K.; Korkmaz, M.E.; Sarikaya, M.; Krolczyk, G.M.; Gunay, M.; Wojciechowski, S. Cutting forces and temperature measurements in cryogenic assisted turning of AA2024-T351 alloy: An experimentally validated simulation approach. Measurement 2022, 188, 110594. [Google Scholar] [CrossRef]
- Rech, J.; Kusiak, A.; Battaglia, J.L. Tribological and thermal functions of cutting tool coatings. Surf. Coat. Technol 2004, 186, 364–371. [Google Scholar] [CrossRef]
- Gupt, M.K.; Korkmaz, M.E.; Sarikaya, M.; Krolczyk, G.M.; Gunay, M. In-process detection of cutting forces and cutting temperature signals in cryogenic assisted turning of titanium alloys: An analytical approach and experimental study. Mech. Syst. Signal Process. 2022, 169, 108772. [Google Scholar] [CrossRef]
- Niesłony, P. Modelowanie Przepływu Ciepła i Rozkładu Temperatury w Strefie Skrawania dla Ostrzy z Twardymi Powłokami Ochronnymi; Studia i Monografie; Wydawnictwo Politechniki Opolskiej: Opole, Poland, 2008. [Google Scholar]
Polished steel | 0.07 |
Freshly rolled steel | 0.24 |
Unpolished steel | 0.96 |
Highly oxidized steel | 0.88 |
Corroded steel | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cichosz, P.; Karolczak, P.; Waszczuk, K. Review of Cutting Temperature Measurement Methods. Materials 2023, 16, 6365. https://doi.org/10.3390/ma16196365
Cichosz P, Karolczak P, Waszczuk K. Review of Cutting Temperature Measurement Methods. Materials. 2023; 16(19):6365. https://doi.org/10.3390/ma16196365
Chicago/Turabian StyleCichosz, Piotr, Paweł Karolczak, and Kamil Waszczuk. 2023. "Review of Cutting Temperature Measurement Methods" Materials 16, no. 19: 6365. https://doi.org/10.3390/ma16196365
APA StyleCichosz, P., Karolczak, P., & Waszczuk, K. (2023). Review of Cutting Temperature Measurement Methods. Materials, 16(19), 6365. https://doi.org/10.3390/ma16196365